Supplemental Figures

Figure. S1. (A) Transcription analysis of the mccPDI genes (*mcpI*, *mcpA* and *mcpB*) using qPCR after culture in LB or M9 media. All fold changes are expressed relative to gene expression in LB at 24 hr. ${}^{a}P < 0.05$ when compared to all LB time points and for the 4 and 12 h measurements for culture in M9 media. ${}^{b}P < 0.05$ when compared to all other time points (LB or M9). Statistical significance was assessed using a single-factor ANOVA followed by a Bonferroni multiple comparison test. Error bars = SEM for three independent replicates. (B) Genetic organization of the PDI gene cluster which shows the length of non-coding region between the mccPDI genes.

(A)

Figure. S2. Expression and purification of OmpR and Xenobiotic Responsive Element (XRE) proteins. Briefly, the OmpR and XRE gene were individually cloned into the pPAL7 vector to construct the recombinant plasmids pPAL-OmpR and pPAL-XRE. These were then transformed into *E. coli* BL21 (DE3). These strains were induced in LB for 5 h with 0.2 mM IPTG at room temperature. Induced cells (20 ml cultures) were harvested by centrifugation at $3200 \times g$ for 10 min. The pellets were lysed by adding 600 µl of BugBuster master mix (Novagen) for 20 min at room temperature. The soluble fraction was separated by centrifugation at $18,000 \times g$ for 15 min, and was then subjected to affinity chromatography using the Profinity eXact purification system following the manufacturer's instructions (Bio-Rad). Samples were assessed using electrophoresis with AnykD TGX precast gels (Bio-Rad). Profinity eXact affinity-tagged proteins are indicated by green arrow while red arrows show the tag-free protein. Lane 1, Precision Plus Protein standards; lane 2, crude lysate from *E. coli* carrying pPAL-OmpR; lane 3, soluble fraction from *E. coli* carrying pPAL-OmpR; lane 6, soluble fraction from *E. coli* carrying pPAL-XRE; lane 6, soluble fraction from *E. coli* carrying pPAL-XRE; lane 7, purified tag-free XRE.

Figure. S3. Electrophoretic Gel Mobility shift assay (EMSA). (A) A 270 bp unrelated control DNA fragment (*atpE*), a 201 bp DNA fragment ($P_{mic-233/-433}$) located at position from -233 bp to -433 bp relative to the start codon of *mcpM*, and a 143 bp DNA fragment ($P_{micD-20/-163}$) located at position from -20 bp to -163 bp relative to the start codon of *mcpD*, were subjected to EMSA using OmpR expressed and purified from LB both (Fig. S2). No shift was evident for these DNA fragments indicating no evidence that OmpR binds to these regions. (B) A representative gel showing binding of OmpR with $P_{mic-10/-210}$ and loss of binding when OmpR was dephosphorylated by using calf intestinal alkaline phosphatase (CIP). 300 ng OmpR was used in this assay.

(A)

(B)

Figure. S4. (A) Amino acid sequence alignment of class II microcin precursors. McsS, microcin S (YP_006954535); ColV, colicin V (CAA40746); MccL microcin L (AAP03989); Mcc24, microcin 24 (AAA88772); MccE492, microcin E492 (AAD04332); MccH47, MchB protein (CAB54534). The red arrows indicate the cleavage sites corresponding to McpM that we identified in this study. The inverted triangles indicate the position of the four cysteines of McpM. Sequence alignments were generated using ClustalX 1.83. Parenthetical numbers on the right indicate the amino acid position relative to the N terminus of each sequence. The black shaded regions indicate completely conserved residues, while the grey shaded regions are partially conserved residues with greater than 60% identity. (B) Western blot analysis of McpM after replacement of specific residues in double-knockout strain E25 Δ mcpM Δ mcpA. (C) Competition assays between the different residue-specific mutants and BW25113 (vector ctrl). Competition was performed in M9 medium with chloramphenicol (34 µg/ml) and 0.5 mM IPTG for 12 h. Results are expressed as the difference in CFUs of the sensitive strain grown in co-culture and monoculture.

	Cleavage site I Cleavage s	site II
	¥ ¥	∇
mccPDI	MANI <mark>RELTLDEITLVSG</mark> GNANSNFEGGPRNDRSSGARN	SLGRNAPTHIYSDPSTVKCANAV (61)
mcsS	MSNI <mark>RELSFDEIALVS</mark> GNANSNYEGGGSRSRNTGARN	SLGRNAPTHIYSDPSTVKCANAV (61)
colV	MRTLTLNELDSVS <mark>G</mark> GASGRDIAM	AIGTLSGQFVAGGIGAAAGGV (44)
mccL	MREITLNEMNNVSGAGDVNWVDVGK	TVATNGAGVIGGAFGAGLCGP (46)
mcc24	-MYMRELDREELNCVGGGAGDPLADPNSG	IVRQIMSNAAWGPPL-VPERF (47)
mccE492	MREISQKDLNLAFGAGETDPNTG	LLNDLGNNMAWGAALGAPGGL (44)
mccH47	MREITESQLRYIS <mark>G</mark> AGGAPAT-	SANAAGAAAIVGALAGIPGGP (42)
	∇	∇ ∇
mccPDI	FSGMIGGAIKGGPIGMARGTIGGAVVGQCLSDHGSGNG	SG-NRGSSSSCSGNNVGGTCNR (120)
mcsS	FSGMVGGAIKGGPVGMTRGTIGGAVIGQCLSGGGNGNG	GG-NRAGSSNCSGSNVGGTCSR (120)
colV	AGGAIYDYASTHKPNPAMSPSGLGGTIKQKPEGIPSEA	WNYAAGRLCNWSPNNLSDVCL- (103)
mccL	VCAGAFAVGSSAAVAALYDAAGNSNSAKQKPEGLPPEA	WNYAEGRMCNWSPNNLSDVCL- (105)
mcc24	R-GMAVGAAGGVTQTVLQGAAAHMPVNVPIPKVPMGPS	WNGS-KG (90)
mccE492	G-SAALGAAGGALQTVGQGLIDHGPVNVPIP-VLIGPS	WNGSGSGYNSATSSSGSGS (99)
mccH47	L-GVVVGAVSAGLTTAIGSTVGSGSASSSAG	GGS (75)

1	۸	1
L	А	
· ·		

(C)

(B)

Figure. S5. Western blot of McpM from four different constructs ($\Delta 1$ -18, $\Delta 1$ -36, $\Delta 19$ -36, and colV1-15/ $\Delta 19$ -36) in strain E25 $\Delta mcpM \Delta mcpA$. Wild-type E25 (McpM producing; wt) was used as positive control. Three bands, indicated by black arrows adjacent to the first lane, correspond to the putative full length McpM (top) followed by two cleaved forms of the protein.

Figure. S6. Disulfide bond formation system in *E. coli* is not involved in mccPDI activity in producing strains. CFUs of *E. coli* BW25113 following competition with wild-type E25 and different knockouts strains in the E25 background (single and double). Results are expressed as the difference in CFUs of the sensitive strain grown in co-culture and monoculture. Experiments were done in duplicate with error bars representing the standard error of the mean (SEM). *, statistically significant ANOVA (P < 0.01 with Dunnett's upper one-sided multiple-comparison test with control).

Supplemental Table S1. E.coli strains used in this study

Strains name	Designation	Relevant genotype/phenotype	Reference
E. coli-25	E25	Wild type; SSuT ^r PDI ⁺	Sawant et al., 2011
$E25\Delta envZ$	$\Delta envZ$	SSuT ^r PDI ^r , <i>envZ</i> knockout	This study
$E25\Delta ompR$	$\Delta ompR$	SSuT ^r PDI ⁻ , <i>ompR</i> knockout	This study
$E25\Delta envZ(p207::envZ)$	$\Delta envZ(envZ)$	envZ knockout complemented with envZ	This study
E25 <i>\DenvZ</i> (p207:: <i>envZ</i> H243A)	$\Delta ompR(envZ H243A)$	envZ knockout complemented with mutant envZ(H243A)	This study
$E25\Delta ompR(p207::ompR)$	$\Delta ompR(ompR)$	envZ knockout complemented with ompR	This study
$E25\Delta mcpM$	$\Delta m c p M$	SSuT ^r PDI ^r , <i>mcpM</i> knockout	This study
$E25\Delta mcpM\Delta mcpA$	$\Delta m c p M \& A$	SSuT ^r PDI ⁻ , mcpM and mcpA double-knockout	This study
$E25\Delta mcpB$	$\Delta m c p B$	SSuT ^r PDI ⁻ , <i>mcpB</i> knockout	This study
$E25\Delta mcpD$	$\Delta m c p D$	SSuT ^r PDI ⁻ , <i>mcpD</i> knockout	This study
$E25\Delta mcpM\Delta mcpB$	$\Delta m c p M \& B$	SSuT ^r PDI ⁻ , <i>mcpM</i> and <i>mcpB</i> double-knockout	This study
$E25\Delta mcpM\Delta mcpD$	$\Delta m cp M \& D$	SSuT ^r PDI ⁻ , <i>mcpM</i> and <i>mcpD</i> double-knockout	This study
E25∆ <i>mcpM</i> (p207:: <i>mcpM</i>)	$\Delta mcpM(mcpM)$	<i>mcpM</i> knockout complemented with <i>mcpM</i> driven by tac promoter	This study
$E25\Delta mcpM(pCR2.1:: P_{mic-1/-210}+mcpM)$	$\Delta mcpM(P_{mic}+mcpM)$	<i>mcpM</i> knockout complemented with <i>mcpM</i> driven by the endogenous promoter	This study
E25Δ <i>mcpB</i> (p207:: <i>mcpB</i>)	$\Delta mcpB(mcpB)$	<i>mcpB</i> knockout complemented with <i>mcpB</i> driven by tac promoter	This study
E25Δ <i>mcpD</i> (p207:: <i>mcpD</i>)	$\Delta mcpD(mcpD)$	<i>mcpM</i> knockout complemented with <i>mcpD</i> driven by tac promoter	This study
$E25\Delta mcpM\Delta mcpB(p207::mcpM)$	$\Delta mcpM\&B(mcpM)$	<i>mcpM</i> and <i>mcpB</i> double-knockout complemented with <i>mcpM</i> driven by tac promoter	This study
$E25\Delta mcpM\Delta mcpD(p207::mcpM)$	$\Delta mcpM\&D(mcpM)$	<i>mcpM</i> and <i>mcpD</i> double-knockout complemented with <i>mcpM</i> driven by tac promoter	This study
$E25\Delta mcpM\Delta mcpA$ (p207::mcpM R5A)	$\Delta mcpM\&A(mcpMR5A)$	mcpM and $mcpA$ double-knockout complemented with point mutant $mcpM$ (R5A)	This study
$E25\Delta mcpM\Delta mcpA$ (p207::mcpM E11A)	$\Delta mcpM\&A(mcpM E11A)$	<i>mcpM</i> and <i>mcpA</i> double-knockout complemented with point mutant <i>mcpM</i> (E11A)	This study
$E25\Delta mcpM\Delta mcpA$ (p207::mcpM V15A)	$\Delta mcpM\&A(mcpMV15A)$	mcpM and $mcpA$ double-knockout complemented with point mutant $mcpM$ (V15A)	This study
$E25\Delta mcpM\Delta mcpA$ (p207::mcpM S16A)	$\Delta mcpM\&A(mcpM S16A)$	<i>mcpM</i> and <i>mcpA</i> double-knockout complemented with point mutant <i>mcpM</i> (S16A)	This study
	$\Delta mcpM\&A(mcpMV15A/S16A)$	<i>mcpM</i> and <i>mcpA</i> double-knockout complemented with point mutant <i>mcpM</i>	This study
$E25\Delta mcpM\Delta mcpA$ (p20/::mcpM V15A/S16A)		(V15A/S16A)	
$E25\Delta mcpM\Delta mcpA$ (p207::mcpM G17A)	$\Delta mcpM\&A(mcpMG17A)$	mcpM and $mcpA$ double-knockout complemented with point mutant $mcpM$ (G17A)	This study
$E25\Delta mcpM\Delta mcpA$ (p207::mcpM G18A)	$\Delta mcpM\&A(mcpMG18A)$	mcpM and $mcpA$ double-knockout complemented with point mutant $mcpM$ (G18A)	This study
$E25\Delta mcpM\Delta mcpA$ (p207::mcpM G17A/G18A)	$\Delta mcpM\&A(mcpMG17A/G18A)$	mcpM and $mcpA$ double-knockout complemented with point mutant $mcpM$ (G17/18A)	This study
E25Δ <i>mcpM</i> Δ <i>mcpA</i> (p207:: <i>mcpM</i> G17P)	$\Delta mcpM\&A(mcpMG17P)$	mcpM and $mcpA$ double-knockout complemented with point mutant $mcpM$ (G17P)	This study
$E25\Delta mcpM\Delta mcpA$ (p207::mcpM G18P)	$\Delta mcpM\&A(mcpMG18P)$	<i>mcpM</i> and <i>mcpA</i> double-knockout complemented with point mutant <i>mcpM</i> (G18P)	This study
$E25\Delta mcpM\Delta mcpA$ (p207::mcpM N19A)	$\Delta mcpM\&A(mcpMN19A)$	mcpM and $mcpA$ double-knockout complemented with point mutant $mcpM$ (N19A)	This study
$E25\Delta mcpM\Delta mcpA$ (p207::mcpM G26P)	$\Delta mcpM\&A(mcpMG26P)$	mcpM and $mcpA$ double-knockout complemented with point mutant $mcpM$ (G26P)	This study
$E25\Delta mcpM\Delta mcpA$ (p207::mcpM G27P)	$\Delta mcpM\&A(mcpMG27P)$	<i>mcpM</i> and <i>mcpA</i> double-knockout complemented with point mutant <i>mcpM</i> (G27P)	This study
$E25\Delta mcpM\Delta mcpA$ (p207::mcpM S33A)	$\Delta mcpM\&A(mcpM S33A)$	mcpM and $mcpA$ double-knockout complemented with point mutant $mcpM$ (S33A)	This study
$E25\Delta mcpM\Delta mcpA$ (p207::mcpM G35P)	$\Delta mcpM\&A(mcpMG35P)$	mcpM and $mcpA$ double-knockout complemented with point mutant $mcpM$ (G35P)	This study
$E25\Delta mcpM\Delta mcpA$ (p207::mcpM A36D)	$\Delta m c p M \& A(m c p M A 36 D)$	mcpM and $mcpA$ double-knockout complemented with point mutant $mcpM$ (A36D)	This study
$E25 \Lambda mcn M \Lambda mcn A$ (p207::mcn M R37A)	$\Delta m c p M \& A(m c p M R 37 A)$	<i>mcpM</i> and <i>mcpA</i> double-knockout complemented with point mutant <i>mcpM</i> (R37A)	This study
$E25\Delta mcpM\Delta mcpA$ (p207::mcpM G41P)	$\Delta m c p M \& A(m c p M G 41P)$	<i>mcpM</i> and <i>mcpA</i> double-knockout complemented with point mutant <i>mcpM</i> (G41P)	This study
$E25\Delta mcpM\Delta mcpA$ (p207::mcpM C57A)	$\Delta mcpM \& A(mcpM C57A)$	mcpM and $mcpA$ double-knockout complemented with point mutant $mcpM$ (C57A)	This study
$E25\Delta mcpM\Delta mcpA$ (p207::mcpM C90A)	$\Delta mcpM \& A(mcpM C90A)$	mcpM and $mcpA$ double-knockout complemented with point mutant $mcpM$ (C90A)	This study
$E25\Delta mcpM\Delta mcpA$ (p207::mcpM C109A)	$\Delta m c p M \& A (m c p M C 109 A)$	mcpM and $mcpA$ double-knockout complemented with point mutant $mcpM$ (C109A)	This study
$E25 \Lambda mcn M \Lambda mcn A$ (p207::mcn M C118A)	$\Delta m c p M \& A(m c p M C 118A)$	<i>mcpM</i> and <i>mcpA</i> double-knockout complemented with point mutant <i>mcpM</i> (C118A)	This study
$E25\Delta mcpM\Delta mcpA$ (p207::mcpM Λ 1-18)	$\Delta mcpM\&A(mcpM \Lambda 1-18)$	<i>mcpM</i> and <i>mcpA</i> double-knockout complemented with mutant <i>mcpM</i> (1-18 deletion)	This study
E25 Δ mcp $M\Delta$ mcp A (p207::mcp $M\Delta$ 1-36)	$\Delta mcpM\&A(mcpM\Delta 1-36)$	<i>mcpM</i> and <i>mcpA</i> double-knockout complemented with mutant <i>mcpM</i> (1-36 deletion)	This study

E25 Δ mcpM Δ mcpA (p207::mcpM Δ 19-36)	$\Delta mcpM\&A(mcpM\Delta 19-36)$	<i>mcpM</i> and <i>mcpA</i> double-knockout complemented with mutant <i>mcpM</i> (19-36 deletion)	This study
$E25\Delta mcpM\Delta mcpA$ (p207:: $ColV_{1-15}$ +mcpM Δ 1-	$\Delta mcpM\&A(ColV1-15/\Delta1-18)$	<i>mcpM</i> and <i>mcpA</i> double-knockout complemented with the recombinant mcpM	This study
18)		(replacement of the first leader peptide sequence1-18 by colicin V leader sequence)	
$E25\Delta dsbA$	$\Delta dsbA$	SSuT ^r PDI ⁺ , <i>dsbA</i> knockout	This study
$E25\Delta dsbB$	$\Delta dsbB$	SSuT ^r PDI ⁺ , <i>dsbB</i> knockout	This study
$E25\Delta dsbA\Delta dsbB$	$\Delta dsbA \& B$	SSuT ^r PDI ⁺ , <i>dsbA</i> and <i>dsbB</i> double-knockout	This study
$E25\Delta dsbD$	$\Delta dsbD$	SSuT ^r PDI ⁺ , <i>dsbD</i> knockout	This study
$E25\Delta dsbA\Delta dsbD$	$\Delta dsbA \& D$	SSuT ^r PDI ⁺ , <i>dsbA</i> and <i>dsbD</i> double-knockout	This study
$E25\Delta dsbA\Delta dsbB\Delta dsbD$	$\Delta dsbA \&B \&D$	SSuT ^r PDI ⁺ , <i>dsbA</i> , <i>dsbB</i> and <i>dsbD</i> triple-knockout	This study
E25AtraM::Cm	Δ <i>traM</i> ::Cm	SSuT ^r PDI ⁺ , <i>traM</i> knockout with a replacement of chloramphenicol cassette	Eberhart et al.,
			2014
E25∆ <i>traM</i> ::Kan	∆ <i>traM</i> ∷Kan	SSuT [*] PDI ⁺ , <i>traM</i> knockout with a replacement of kanamycin cassette	Eberhart et al.,
			2012
E C DW25112	DW		D.1 (1.000)
<i>E. coli</i> BW25113	BW	Nal', Keio collection wild-type K-12 strain	Baba et al., 2006
BW25113 (pMMB207 only)	BW(vector ctrl)	Nal ⁴ Cm ⁴ , BW25113 with empty pMMB207 vector	Zhao et al, 2015
BW25113 (p207::mcpM)	BW(mcpM)	Nal ⁴ Cm ⁴ , BW25113 with recombinant plasmid p207:: <i>mcpM</i>	This study
P U 404	186	Wild type: Nal PDI, susceptible strain to microcin PDI.	Eberhart et
E. coli 186			al.,2012
186(p207:: <i>mcpM</i>)	186(<i>mcpM</i>)	Nal ^r Cm ^r , 186 with recombinant plasmid p207:: <i>mcpM</i>	This study
E. coli S17-1 λ pir	S17	<i>thi pro hsdR hsdM</i> ⁺ <i>recA</i> RP4-2-Tc::Mu-Km::Tn7 λ <i>pir</i> lysogen	Simon et al.(1983)
S17:pDM4-ΔenvZ(A1+A2)	S17:pDM4-\DeltaenvZ	S17 strain carrying the plasmid pDM4- $\Delta envZ$	This study
$S17:pDM4-\Delta ompR(A1+A2)$	S17:pDM4- $\Delta ompR$	S17 strain carrying the plasmid pDM4- $\Delta ompR$	This study
S17:pDM4-Δ <i>mcpM</i> (A1+A2)	S17:pDM4-Δ <i>mcpM</i>	S17 strain carrying the plasmid pDM4- $\Delta mcpM$	This study
S17:pDM4-Δ <i>mcpB</i> (A1+A2)	S17:pDM4-Δ <i>mcpB</i>	S17 strain carrying the plasmid pDM4- $\Delta mcpB$	This study
$S17:pDM4-\Delta mcpD(A1+A2)$	S17:pDM4-Δ <i>mcpD</i>	S17 strain carrying the plasmid pDM4- $\Delta mcpD$	This study
$S17:pDM4-\Delta dsbA(A1+A2)$	S17:pDM4-\DeltadsbA	S17 strain carrying the plasmid pDM4- $\Delta dsbA$	This study
$S17:pDM4-\Delta dsbB(A1+A2)$	$S17:pDM4-\Delta dsbB$	S17 strain carrying the plasmid pDM4- $\Delta dsbB$	This study
$S17:pDM4-\Delta dsbD(A1+A2)$	S17:pDM4-∆dsbD	S17 strain carrying the plasmid pDM4- $\Delta dsbD$	This study
			2
E. coli BL21(DE3)	BL21	$F^- ompT hsdS_B(r_B^-, m_B^-) gal dcm (DE3)$	Invitrogen
BL21(DE3):pPAL7-ompR	BL21:pPAL7-ompR	BL21 (DE3) carrying the plasmid pPAL7-ompR	This study
BL21(DE3):pPAL7-ompR D55A	BL21:pPAL7-ompR D55A	BL21 (DE3) carrying the plasmid pPAL7-ompR D55A	This study
BL21(DE3):pPAL7-XRE	BL21:pPAL7-XRE	BL21 (DE3) carrying the plasmid pPAL7-XRE	This study

Supplemental Table S2. PCR primers used in this study

Primer name	Sequence(5'_3')*	Usage
mcpM_A1_BgIII mcpM_A1_R mcpM_A2_F mcpM_A2_SalI	GGA <u>AGATCT</u> ATGGCAATGCTGGAAGAG CATTATTACCATCATATTTCCCCTATCGGT GAAATATGATGGTAATAATGTTGGCGGAAC ACGC <u>GTCGAC</u> ATGAGAGCAATCACAGCAA	construct suicide plasmid pDM4_ <i>\DmcpM</i> (A1+A2) for mcpM knockout
mcpM_int_F: mcpM_int_R:	AGATGAGATAACGCTTGTCA ACTTCCTCTGTTACCACTTC	confirm mcpM knockout
mcpM/I_A1_BgIII mcpM/I_A1_R mcpM/I_A2_F mcpM/I_A2_SaII	GGA <u>AGATCT</u> ATGGCAATGCTGGAAGAG AATCTTGCCGATCATATTTCCCCTATCGGT GAAATATGATCGGCAAGATTCATGGACTA ACGC <u>GTCGAC</u> CTTCATAATACGGAACTGTCAG	construct suicide plasmid pDM4_Δ <i>mcpM/I</i> (A1+A2) for mcpM & mcpI knockout
mcpI_int_F mcpI_int_R	TATGTGGTTTGTTACTGGGAT CGCGGAGATTGTTCTTATTT	confirm mepI knockout
mcpA_A1_SacI mcpA_A1_R mcpA_A2_F mcpA_A2_SalI	GGA <u>GAGCTC</u> GATGAGATAACGCTTGTCAG AGTTTTATACAATGCTATTTCGCGGAGAT AAATAGCATTGTATAAAACTTTAACATCACACA ACGC <u>GTCGAC</u> GGCTTCCTGTTGTTGACTA	construct suicide plasmid pDM4_Δ <i>mcpA</i> (A1+A2) for mcpA knockout
mcpA_int_F mcpA_int_R	CGGCATTCACCATACAATA CATAATACGGAACTGTCAGG	confirm mcpA knockout
mcpD_A1_SacI mcpD_A1_R mcpD_A2_F mcpD_A2_SalI	GGA <u>GAGCTC</u> TTGCTGTGATTGCTCTCAT ACAGATTTCCAAGTAACCTTTCCGTCAACA AAGGTTACTTGGAAATCTGTAATGGAATCA ACGC <u>GTCGAC</u> TCACTGGCTGGAGTTAATTC	construct suicide plasmid pDM4_Δ <i>mcpD</i> (A1+A2) for mcpA knockout
mcpD_int_F mcpD_int_R	TCAACAACAGGAAGCCATA AAGGAGCCAGAGTCGTAT	confirm mcpD knockout
mcpB_A1_SacI mcpB_A1_R mcpB_A2_F mcpB_A2_SalI	GGA <u>GAGCTC</u> CAATGGACACAGCCAAAGA GCGGATGCTATACAGATTTCCTTTCATGCTCC GAAATCTGTATAGCATCCGCAGACAGAGTT ACGC <u>GTCGAC</u> ACCCGTTGATTTATGTGAGA	construct suicide plasmid pDM4_Δ <i>mcpB</i> (A1+A2) for mcpA knockout
mcpB_int_F mcpB_int_R	CCATTTCGTCGTTCTCCATA TTGCCACATCCTGATTTACC	confirm mcpB knockout
mcpM_p207_EcoRI mcpM_p207_SalI	CCGGAATTCATGGCAAATATAAGAGA ACGCGTCGACTTAATGGTGATGGTGATGATGTCGGTTACATGTTCCGCCA	construct recombinant plasmid p207::mcpM for mcpM expression under tac promoter control
mcpD_p207_SacI mcpD_p207_SalI	GGA <u>GAGCTC</u> ATGAATATATTCAGAAGTGA ACGC <u>GTCGAC</u> TTAATGGTGATGGTGATGATGCAGATTTCCTTTCATGCTCCA	construct recombinant plasmid p207::mcpD for mcpD expression under tac promoter control
mcpB_p207_EcoRI mcpB_p207_SalI	GGAGAGCTCATGGAATCAATAAACTGGA GCAGGTCGACTCAATGGTGATGGTGATGATGCCTCCTGTTGGGGGTGATTA	construct recombinant plasmid p207::mcpB for mcpB expression under tac promoter control

Δ1-18_p207_EcoRI	CCG <u>GAATTC</u> ATGAACGCAAACAGCAACTTTGA	construct recombinant plasmid
Δ1-18_p207_SalI	ACGC <u>GTCGAC</u> TTAATGGTGATGGTGATGATGTCGGTTACATGTTCCGCCA	p207:: $mcpM \Delta 1$ -18for mutant mcpM expression (1-
		18 deletion) under tac promoter control
$\Delta 1-36_{p207}$ EcoRI	CCGGAATICATGCGTAACTCACTGGGTCGAA	construct recombinant plasmid
Δ1-36_p207_San	ACGC <u>GICGAC</u> ITAAIGGIGAIGGIGAIGAIGICGGITACAIGITCCGCCA	$p_{20}/mcp_{M} \Delta 1-30$ for mutant mcpM expression (1-
A19-36 p207 EcoRI		construct recombinant plasmid
	GTAACTCACTGGGTCGAA	p207:: $mcpM \Delta 19$ -36 for mutant mcpM expression
Δ19-36 p207 Sall	ACGC <u>GTCGAC</u> TTAATGGTGATGGTGATGATGTCGGTTACATGTTCCGCCA	(19-36 deletion) under tac promoter control
ColV1-15/Δ1-18_	CCG <u>GAATTC</u> ATGAGAACTCTGACTCTAAATGAATTAGATTCTGTTTCTGGTGGTAACGCAAACAG	construct recombinant plasmid
p207_EcoRI	CAACTTTGA	p207:: $ColV_{1-15}+mcpM_{\Delta 1-18}$ for the recombinant mcpM
Δ1-18_p207_SalI	ACGC <u>GTCGAC</u> TTAATGGTGATGGTGATGATGTCGGTTACATGTTCCGCCA	(replacement of mcpM 1-18 by colicin V leader
DC4 E		sequence under tac promoter control
K5A_F	TGGCAAATATaggaGAATTAACTITAGATGAG	generate the replacement of K5 by alanine in the
KJA_K		p207mcpM
F11A F	AATTCTCTTATATTTGCCATGAATTC	p207: mcnM
VISA_F VISA_P		generate the replacement of V15 by alanine in the
S16A_F S16A_P		generate the replacement of S16 by alanine in the
V15/S16A_F		generate the replacement of V15 and S16 by alanine
V15/510A_K		
GI7A_F G17A_P	GUIIGIUAGUgcaGGAAAUGUAA GTTATCTCATCTAAACTTAATTCTCTTATATTTGC	generate the replacement of G1/ by alanine in the
GI8A_F		generate the replacement of G18 by alanine in the
		$p_{207mcpM}$
G17/18A_F	GTTATCTCATCTAAAGTTAATTCTCTTATATTTG	in the p207: mcnM
GI/P_F C17P_P	CGUIIGICAUCCCAUGAAAUGUAA TTA TOTO A TOTA A A OTTA A TTOTOTTA TA TTTO	generate the replacement of G1/ by proline in the
C12P E		p207mcpM
G18P_F G18P_R	GCGTTATCTCATCTAAAGTTAATTC	p207:: mcnM
		provide the product of N10 by cloning in the
NI9A_F NI9A_R		p207: mcnM
		generate the replacement of C26 by proling in the
G26P_F G26P_R	CTGTTTGCGTTTCCTCCG	p207: mcnM
		provide the number of CO7 has analyzed in the
$G_{27P}F$	TTGCTGTTTGCGTTTCCTC	p207:: mcnM
		generate the replacement of \$22 by elemine in the
S33A R	CGGGGGCCACCTTCAAAG	p207 ^{··} mcnM
C25D E		generate the replacement of C25 by proline in the
G35P R		p207: mcnM
426D E		p_{207} , mep n_1
A36D R		the p207" mcnM

R37A_F R37A_R	CCAGTGGGGCtgetAACTCACTGGGTC AACGGTCATTACGGGGGC	generate the replacement of A36 by alanine in the p207:: <i>mcpM</i>
G41P_F G41P_R	GTAACTCACTgcctCGAAACGCACCAACTCATATTTATAG GAGCCCCACTGGAACGGT	generate the replacement of G41 by alanine in the p207:: <i>mcpM</i>
C57A_F C57A_R	GCACTGTAAAagccGCTAACGCTG TTGGATCACTATAAATATGAGTTG	generate the replacement of C57 by alanine in the p207:: <i>mcpM</i>
C90A_F C90A_R	TTGTTGGTCAagetCTCTCAGATCATGGTAGTGG CGGCTCCACCAATGGTAC	generate the replacement of C90 by alanine in the p207:: <i>mcpM</i>
C109A_F C109A_R	GTTCCAGTAGtgctTCAGGTAATAATGTTGGC TTCCTCTGTTACCACTTC	generate the replacement of C109 by alanine in the p207:: <i>mcpM</i>
C118A_F C118A_R	TTGGCGGAACagetAACCGACATCATC CATTATTACCTGAACAACTACTG	generate the replacement of C118 by alanine in the p207:: <i>mcpM</i>
envZ_A1_SacI envZ_A1_R envZ_A2_F envZ_A2_SalI	GGAGAGCTCGCTGACGACTACATTCCAA ATTTACCCTTGTGACGATGAGCAATAACG TCATCGTCACAAGGGTAAATAAACGGGAGG ACGCGTCGACGGCATTGAAACTATTGTCAGA	construct suicide plasmid pDM4_\DenvZ (A1+A2) for envZ knockout
ompR_A1_SacI ompR_A1_R ompR_A2_F ompR_A2_SalI	GGAGAGCTCATTTCACGCAGACGCTTT CACCATGCGGGACCACCAGAATCTTGTAGT TCTGGTGGTCCCGCATGGTGGAAGAAGA ACGCGTCGACCAGACGACAGGCGAACTT	construct suicide plasmid pDM4_\[LompR (A1+A2) for envZ knockout
envZ_207_SacI envZ_207_SalI	GGAGAGCTCATGAGGCGATTGCGCTTCTC ACGCGTCGACTTAATGGTGATGGTGATGATGCCCTTCTTTTGTCGTGCCCTG	construct recombinant plasmid p207::envZ for envZ expression under tac promoter control
envZ_H243A_F envZ_H243A_R	CGGGGGTAAGtgccGACTTGCGCAC CCATCAGCAGCGTGCGGT	generate the replacement of H243 by alanine in the p207:: <i>envZ</i>
ompR_207_SacI ompR_207_SalI	GGAGAGCTCATGCAAGAGAACTACAAGA ACGCGTCGACTCAATGGTGATGGTGATGATGTGCTTTAGAGCCGTCCGGT	construct recombinant plasmid p207:: <i>ompR</i> for ompR expression under tac promoter control
ompR_PAL_SpeI ompR_PAL_EcoRI	TTTG <u>ACTAGT</u> ATGCAAGAGAACTACAAGA CTGC <u>GAATTC</u> TCAATGGTGATGGTGATGATGTGCTTTAGAGCCGTCCGGT	construct recombinant plasmid pPAL7:: <i>ompR</i> for ompR expression under tac promoter control
ompR_D55A_F ompR_D55A_R	TTATGGTACTggctTTAATGTTACC GATGGAAAGATTCACGAGTC	generate the replacement of D55 by alanine in the pPAL7:: <i>ompR</i>
XRE_PAL_SpeI XRE_PAL_EcoRI	TTTG <u>ACTAGT</u> ATGAAAGATGAATTATTTGCT CTGC <u>GAATTC</u> TTAATGGTGATGGTGATGGTGATGGATTGTTTTCAATTGATTG	construct recombinant plasmid pPAL7::XRE for XRE expression under tac promoter control
atpA_A1_SacI atpA_A1_R atpA_A2_F atpA_A2_SalI	GGAGAGCTCGTCGTTTATCGCAGTTTGT TCGAGGATGCTAACACCGTCACTTACAGAA GACGGTGTTAGCATCCTCGATTCCTTCAA ACGCGTCGACTCGGTCCAGGTCTTCATT	construct suicide plasmid pDM4_\(\Delta\) atpA(A1+A2) for atpA knockout
atpF_A1_SacI atpF_A1_R atpF_A2_F atpF_A2_SalI	GGAGAGCTCTCTGATTGCTGGTCTGTTG AGCGACAAGTCCGAGGATTGTTGCGTTA CAATCCTCGGACTTGTCGCTGAACTGTAA ACGCGTCGACATGATAACGCCTGCCATTA	construct suicide plasmid pDM4_\(\Delta\atprice\) for atpA knockout
dsbA_A1_SacI dsbA_A1_R dsbA_A2_F dsbA_A2_Sal	GGAGAGCTCGCGACAGATGAGCTGATT CAGCATACTGCTCTCCGATTAATACATAGGTG AATCGGAGAGCAGTATGCTGATACAGTGAA ACGCGTCGACTGCTCAACATCCACATCA	construct suicide plasmid pDM4_\DeltadsbA(A1+A2) for dsbA knockout

dsbB A1 SacI	GGAGAGCTCGGTCTGCTGTCATCCATT	construct suicide plasmid pDM4 $\Delta dsbB(A1+A2)$ for
dsbB_A1_R	TAAGCGATAAGCCTTGTGAACATTGGTT	dsbB knockout
dsbB_A2_F	TTCACAAGGCTTATCGCTTACCTGATTGTC	
dsbB_A2_SalI	ACGCGTCGACATATCATTAACGCTGCTACG	
ompF A1 SacI	GGAGAGCTCTGGCATTCTGGATGTCTG	construct suicide plasmid pDM4 $\Delta ompF(A1+A2)$ for
ompFA1 R	ATTAGAACTGCAGTACCTGCTACTAACAGA	ompF knockout
ompF_A2_F	GCAGGTACTGCAGTTCTAATAGCACACCTCT	1
ompF_A2_Sall	ACGCGTCGACAACAGCAGTTCCTGAGTG	
dsbD A1 SacI	GGAGAGCTCCGCCGACTAACATCCTTC	construct suicide plasmid pDM4 $\wedge dsbD$ (A1+A2) for
dsbD_A1_R	GTCGGTAGGCTTGAGCCATGAGAGGTAATC	dsbD knockout
dsbD_A2_F	CATGGCTCAAGCCTACCGACAATTCTCTT	
dsbD_A2_Sall	ACGCGTCGACTCCGATAACGCCTGATAAC	
Pmic -210 F	TGGAACGAGATGTACTGAA	
Pmic -10 R	CCCTATCGGTTGTTTGTTAT	amplify the promoter of mccPDI (Pmic) using PCR
Pmic -210 F		amplify the fragment 1 of Pmic using PCR
Price 35 P	TGCGTTCAAGATACCAATA	ampirity the magnitude 1 of 1 line using 1 CR
Pmic210_F	1GGAACGAGAIGIACIGAA	amplify the fragment 2 of Pmic using PCR
Pmic61_R	AIGTAAIGAAAGIGAAATIGI	
Pmic210_F	TGGAACGAGATGTACTGAA	amplify the fragment 3 of Pmic using PCR
Pmic81_R	TGTGATTAAATGTAAATATGTG	
Pmic -210 F	TGGAACGAGATGTACTGAA	amplify the fragment 4 of Pmic using PCR
Pmic -99 R	TGTGAAAAAATTTGTATGT	amping the hughest for time using fore
Duris 210 Er		annulify the forement for f Durin units a DCD
Pmic210_F:		ampility the fragment 5 of Pmic using PCK
Pmic116_K	GITTEGAGGTIGIGIAAT	
Pmic134_F	ATTACACAACCTCGAAAAC	amplify the fragment 6 of Pmic using PCR
Pmic10_R	CCCTATCGGTTGTTTGTTAT	
Pmic -117 F	ACATACAAATTTTTTCACA	amplify the fragment 7 of Pmic using PCR
Pmic-10 R	CCCTATCGGTTGTTTGTTAT	
Pmic -102 F	CACATATTTACATTTAATCACA	amplify the fragment 8 of Pmic using PCR
Pmic -10 R	CCTATCGGTTGTTGTTAT	unphily the hughlent of of thise using t ere
Pmic35/-84_F	TCACACAAIIICACIIICAIIACAIIIIIGIIAIIGGCIAICIIGAACGCA	generate the fragment 9 of Pmic using PCR
Pmic35/-84_R	IGCGIICAAGAIAGCCAAIAACAAAAAIGIAAIGAAAGIGAAAIIGIGIGA	
Pmic61/-110_F	AATTTTTTCACATATTTACATTTAATCACACAAATTTCACTTTCATTACAT	generate the fragment 10 of Pmic using PCR
Pmic61/-110_R	ATGTAATGAAAGTGAAATTGTGTGATTAAATGTAAATATGTGAAAAAA	
Pmic -433 F	GGGAAACAGCGGTGAATA	amplify DNA fragment located at position from -233
Pmic ⁻²³³ R	GATGAAACCAGTTTACAGGAC	bp to -433bp relative to the start codon of mcpM gene
		(Pmic-233/-433)
PmicD -163 F	CTATCCAATGCTGTTACATGC	amplify DNA fragment located at position from -20
$PmicB - 20 \overline{R}$	ACCTTTCCGTCAACAAGAG	bp to -163 bp relative to the start codon of mcnD gene
		(PmicD-20/-163)
atpE-F	CCGGAATTCATGGAAAACCTGAATATGGA	amplify atpE gene as control
atpE-R	CGCGTCGACCTAATGGTGATGGTGATGCGCGCGACAGCGAACATCACGTA	
pCR2.1_Pmic_F	TGGAACGAGATGTACTGAA	construct recombinant plasmid pCR::Pmic+mcpM for
pCR2.1_mcpM_Sall	ACGCGTCGACTTAATGGTGATGGTGATGATGTCGGTTACATGTTCCGCCA	mcpM expression under the endogenous promoter

qPCR_mcpA_F qPCR_mcpA_R	AGCCGTTTATTCCCGCATGT GCCTGATGCATCCGCAGTAT	Measure transcription of <i>mcpA</i> using quantitative PCR under different conditions and timepoints
qPCR_mcpB_F qPCR_mcpB_R	AATGGATGGACGCTGCACAT ATCAGCTGAATGCGGTCTGG	Measure transcription of <i>mcpB</i> using quantitative PCR under different conditions and timepoints
qPCR_mcpI_F qPCR_mcpI_R	ATGAATCTTGCCGTGGAAAA TGGAGGCGCTACTATGTTT	Measure transcription of <i>mcpl</i> using quantitative PCR under different conditions and timepoints
qPCR_mcpM_F qPCR_mcpM_R	TAGGAATGGCAAGAGGTA CTGAACAACTACTGGAACT	Measure transcription of <i>mcpM</i> using quantitative PCR under different conditions and timepoints
qPCR_rpoD_F qPCR_rpoD_R	AGGTATCGCTGGTTTCGTTG TTCGTACGCAAGAACGTCTG	Housekeeping gene for quantitative PCR experiments

Supplemental Table S3. Plasmids used in this study

Plasmids	Relevant characteristics	Reference
pMMB207 vector (p207)	Cm ^r , RSF1010 derivative, <i>IncQ lacI</i> ^q Tac <i>ort</i> T	Morales et al. 1991
p207:: <i>envZ</i>	Cm ^r , pMMB207 containing the <i>envZ</i> with a His.tag at the C-terminus	This study
p207::envZ H243A	Cm ^r , pMMB207 containing the <i>envZ</i> H243A with a His.tag at the C-terminus	This study
p207:: <i>ompR</i>	Cm ^r , pMMB207 containing the <i>ompR</i> with a His.tag at the C-terminus	This study
p207:: <i>mcpM</i>	Cm ^r , pMMB207 containing the mcpM gene with a His tag at the C-terminus	This study
p207:: <i>mcpM</i> R5A	Cm ^r , pMMB207 containing the mcpM R5A gene with a His.tag at the C-terminus	This study
p207::mcpM E11A	Cm ^r , pMMB207 containing the mcpM E11A gene with a His.tag at the C-terminus	This study
p207::mcpM V15A	Cm ^r , pMMB207 containing the mcpM V15A gene with a His tag at the C-terminus	This study
p207::mcpM S16A	Cm ^r , pMMB207 containing the mcpM S16A gene with a His tag at the C-terminus	This study
p207::mcpM V15A/S16A	Cm ^r , pMMB207 containing the mcpM V15A/S16A gene with a His.tag at the C-terminus	This study
p207::mcpM G17A	Cm ^r , pMMB207 containing the mcpM G17A gene with a His tag at the C-terminus	This study
p207::mcpM G18A	Cm ^r , pMMB207 containing the mcpM G18A gene with a His tag at the C-terminus	This study
p207::mcpM G17A/G18A	Cm ^t , pMMB207 containing the mcpM G17A/G18A gene with a His tag at the C-terminus	This study
p207::mcpM G17P	Cm ^r . pMMB207 containing the mcpM G17P gene with a His tag at the C-terminus	This study
p207::mcpM G18P	Cm ^r , pMMB207 containing the mcpM G18P gene with a His tag at the C-terminus	This study
p207:: <i>mcpM</i> N19A	Cm ^r , pMMB207 containing the mcpM N19A gene with a His tag at the C-terminus	This study
p207:: <i>mcpM</i> G26P	Cm ^r , pMMB207 containing the mcpM G26P gene with a His tag at the C-terminus	This study
p207:: <i>mcpM</i> G27P	Cm ^r , pMMB207 containing the mcpM G27P gene with a His tag at the C-terminus	This study
p207:: <i>mcpM</i> \$33A	Cm ^r , pMMB207 containing the mcpM S33A gene with a His tag at the C-terminus	This study
p207:: <i>mcpM</i> G35P	Cm ^r , pMMB207 containing the mcpM G35P gene with a His tag at the C-terminus	This study
p207:: <i>mcpM</i> A36D	Cm ^r , pMMB207 containing the mcpM A36D gene with a His tag at the C-terminus	This study
p207:: <i>mcpM</i> R37A	Cm ^r , pMMB207 containing the mcpM R37A gene with a His.tag at the C-terminus	This study
p207:: <i>mcpM</i> G41P	Cm ^r , pMMB207 containing the mcpM G41P gene with a His tag at the C-terminus	This study
p207:: <i>mcpM</i> C57A	Cm ^r , pMMB207 containing the mcpM C57A gene with a His.tag at the C-terminus	This study
p207:: <i>mcpM</i> C90A	Cm ^r , pMMB207 containing the mcpM C90A gene with a His.tag at the C-terminus	This study
p207:: <i>mcpM</i> C109A	Cm ^r , pMMB207 containing the mcpM C109A gene with a His.tag at the C-terminus	This study
p207:: <i>mcpM</i> C118A	Cm ^r , pMMB207 containing the mcpM C118A gene with a His.tag at the C-terminus	This study
р207:: <i>mcpM</i> Δ1-18	Cm ^r , pMMB207 containing the mutant mcpM (first leader peptide sequence 1-18 deleted) gene with a His.tag at the C-terminus	This study
р207:: <i>mcpM</i> Δ1-36	Cm ^r , pMMB207 containing the mutant mcpM (both leader peptide sequences 1-36 deleted) gene with a His.tag at the C-terminus	This study
р207:: <i>mcpM</i> Δ19-36	Cm ^r , pMMB207 containing the mutant mcpM (secondary leader peptide sequence 19-36 deleted) with a His.tag at the C-terminus	This study
$p207::ColV_{1-15}+mcpM_{\Delta 1-18}$	Cm ^r , pMMB207 containing the recombinant mcpM (replacement of the first leader peptide sequence1-18 by colicin V leader sequence) with a His.tag at the C-terminus	This study
pCR2.1-TOPO vector (pCR)	Amp ^r , cloning vector	Invitrogen
pCR::Pmic+mcpM	Ampr, pCR2.1 containing the mcpM gene with a His.tag at the C-terminus under the endogenous promoter control	This study
pPAL7 vector (pPAL)	Amp ^r , a T7-based expression vector with an N-terminal Profinity eXact tag	Bio-Rad
pPAL7-ompR	Amp ^r , pPAL7 containing the <i>ompR</i>	This study
pPAL7-ompR D55A	Amp ^r , pPAL7 containing the <i>ompR</i> D55A	This study

pPAL7-XRE	Amp ^r , pPAL7 containing the <i>XRE</i>	This study
pDM4 vector	Cm ^r , Suicide vector with an R6K origin (pir-requiring) and sacBR of Bacillus subtilis	Milton et al. 1996
pDM4-\DenvZ(A1+A2)	Cm ^r , pDM4 containing the flanking region sequences of <i>envZ</i>	This study
$pDM4-\Delta ompR(A1+A2)$	Cm ^r , pDM4 containing the flanking region sequences of <i>ompR</i>	This study
$pDM4-\Delta mcpM(A1+A2)$	Cm ^r , pDM4 containing the flanking region sequences of <i>mcpM</i>	This study
$pDM4-\Delta mcpB(A1+A2)$	Cm ^r , pDM4 containing the flanking region sequences of <i>mcpB</i>	This study
$pDM4-\Delta mcpD(A1+A2)$	Cm ^r , pDM4 containing the flanking region sequences of <i>mcpD</i>	This study
$pDM4-\Delta dsbA(A1+A2)$	Cm ^r , pDM4 containing the flanking region sequences of <i>dsbA</i>	This study
$pDM4-\Delta dsbB(A1+A2)$	Cm ^r , pDM4 containing the flanking region sequences of <i>dsbB</i>	This study
$pDM4-\Delta dsbD(A1+A2)$	Cm ^r , pDM4 containing the flanking region sequences of <i>dsbD</i>	This study

References:

- Sawant AA, Casavant NC, Call DR, Besser TE. 2011. Proximity-dependent inhibition in *Escherichia coli* isolates from cattle. Appl Environ Microbiol 77:2345-2351.
- Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M,
 Wanner BL, Mori H. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2: 2006.0008.
- Eberhart LJ, Ochoa JN, Besser TE, Call DR. 2014. Microcin MccPDI reduces the prevalence of susceptible Escherichia coli in neonatal calves. J Appl Microbiol. 117(2):340-6.
- **Eberhart LJ, Deringer JR, Brayton KA, Sawant AA, Besser TE, Call DR.** 2012. Characterization of a novel microcin that kills enterohemorrhagic *Escherichia coli* O157:H7 and O26. Appl Environ Microbiol **78**:6592-6599.
- Zhao Z, Eberhart LJ, Orfe LH, Lu SY, Besser TE, Call DR. 2015. Genome-Wide Screening Identifies Six Genes That Are Associated with Susceptibility to Escherichia coli Microcin PDI. Appl Environ Microbiol 81:6953-6963.
- Simon R, Priefer U, Pühler A. 1983. A Broad Host Range Mobilization System for *In Vivo* Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. Nat Biotechnol 1:784–791.
- Morales VM, Backman A, Bagdasarian M. 1991. A series of wide-host-range low-copynumber vectors that allow direct screening for recombinants. Gene 97: 39–47.
- Valdivia RH, Falkow S.1996. Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol Microbiol. 22(2):367-78.
- Milton DL, O'Toole R, Horstedt P, Wolf-Watz H. 1996. Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol **178**: 1310–1319.
- Bland DM, Eisele NA, Keleher LL, Anderson PE, Anderson DM. 2011. Novel genetic tools for diaminopimelic acid selection in virulence studies of Yersinia pestis. PLoS One. 6(3):e17352.