Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia)

Antony van der Ent^{1,2}*, Damien L. Callahan³, Barry N. Noller¹, Jolanta Mesjasz-Przybylowicz⁴, Wojciech J. Przybylowicz^{4,5}, Alban Barnabas⁴, Hugh H. Harris^{6*}

¹Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Queensland, Australia

²Université de Lorraine–INRA, Laboratoire Sols et Environnement, UMR 1120, France

³Deakin University, Geelong, Australia. School of Life and Environmental Sciences, Centre for Chemistry and Biotechnology (Burwood Campus), Victoria, Australia

⁴Materials Research Department, iThemba LABS, National Research Foundation, Somerset West, South Africa

⁵AGH University of Science and Technology, Faculty of Physics & Applied Computer Science, Krakow, Poland

⁶Department of Chemistry, The University of Adelaide, South Australia, Australia

* <u>a.vanderent@uq.edu.au</u> & <u>hugh.harris@adelaide.edu.au</u>

Supplementary Figure 1. Ni K-edge extended X-ray absorption structure for A, Rinorea bengalensis leaf mid-vein tissue; B, Rinorea bengalensis leaf tissue; C, Rinorea bengalensis phloem tissue; D, Phyllanthus balgooyi root sheath tissue; E, Phyllanthus balgooyi phloem tissue; F, Phyllanthus balgooyi leaf tissue; G, Phyllanthus securinegioides root tissue; H, Phyllanthus securinegioides phloem tissue; I, Phyllanthus securinegioides leaf tissue.

Supplementary Figure 2. Ni K-edge extended X-ray absorption structure for A, 1:10 Ni:tartrate in aqueous solution at pH 5.5; B, 1:10 Ni:malonate in aqueous solution at pH 5.5; C, 1:10 Ni:malate in aqueous solution at pH 5.5; D, 1:10 Ni:citrate in aqueous solution at pH 5.5; E, 1:1 Ni:citrate in aqueous solution at pH 5.5; F, Ni:nitrate in aqueous solution (*i.e.* [Ni(H₂O)₆]²⁺.

Supplementary Figure 3. Elemental maps of root cross-section of *Phyllanthus balgooyi*. Concentration scale in wt% dry weight (for Si, Cl, K and Fe) and $\mu g g^{-1}$ dry weight (for Ni, P, S, Ca, Mn and Zn). Scale bar – 100 μ m.

Supplementary Figure 4. Elemental maps of root cross-section of *Phyllanthus* securinegioides. Concentration scale in wt% dry weight (for Ni, Si, S, K and Fe) and μg g⁻¹ dry weight (for P, Cl, Ca, Mn and Zn). Scale bar – 100 μm.

Supplementary Figure 5. Elemental maps of root cross-section of *Rinorea bengalensis*. Concentration scale in wt% dry weight (for Ni, Si, K and Ca) and $\mu g g^{-1}$ dry weight (for P, S, Cl, Mn, Fe and Zn). Scale bar – 100 μ m.

Phyllanthus balgooyi (stem section)

Phyllanthus securinegoides (stem section)

Rinorea bengalensis (stem section)

Supplementary Figure 6. Elemental maps of stem cross-sections of Phyllanthus balgooyi, Phyllanthus securinegioides and Rinorea bengalensis. Concentration scale in μg g⁻¹ dry weight. Scale bar – 1000 μm.

Phyllanthus balgooyi (leaf section)

Phyllanthus securinegioides (leaf section)

Rinorea bengalensis (leaf section)

Supplementary Figure 7. Elemental maps of leaf cross-sections of Phyllanthus balgooyi, Phyllanthus securinegioides and Rinorea bengalensis. Concentration scale in $\mu g g^{-1}$ dry weight. Scale bar – 100 μm .