Stem Cell Reports, Volume 8

Supplemental Information

C/EBP-Induced Transdifferentiation Reveals Granulocyte-Macrophage

Precursor-like Plasticity of B Cells

Branko Cirovic, Jörg Schönheit, Elisabeth Kowenz-Leutz, Jelena Ivanovska, Christine Klement, Nina Pronina, Valérie Bégay, and Achim Leutz

Supplemental Figures

Ly-6G

F

G

	upreg	ulated		
Ahr	Csf1r	ll18r1	Notch2	
Arhgdib	Csf2rb	ll1m	Nt5e	
Btnl1	Ctsc	II28a	Pecam1	
Ccl12	Cybb	<i>I</i> I33	Plaur	
Ccl24	Ddx58	Irak2	Runx3	
Ccl3	Entpd1	Irak3	S100a9	
Ccl6	Ets1	Irf7	Sele	
Ccl9	Fcgr1	Itgal	Sell	
Ccr5	Fcgr2b	Itgam	Ski	
Ccrl2	Gfi1	Kir3dl1	Smad3	
Cd4	Gpi1	Klra7	Stat3	
Cd44	Gpr183	Lair1	Tagap	
Cd55	H2-Ea-ps	Lilrb3	Tgfbi	
Cd69	Hcst	Lilrb4	Tlr1	
Cdkn1a	Hfe	Ltb4r1	Trem1	
Ceacam1	Hlx	Mbl2	Tyrobp	
Cfb	lfih1	Muc1	Vcam1	
Csf1	lfitm1	Nfil3	Vtn	

Ч	0	nr	20	I	at.	$\sim d$
u	υw	111	eq	uı	aı	eu

Aicda	Ciita	Klrc3	Tnfrsf13c
Bcl3	Cmklr1	Lta	Traf4
Btla	Cxcr2	Ltb	Xcr1
C1qa	Cxcr6	Masp1	
C1s	Fas	Masp2	
C8a	Fn1	Pax5	
Ccr6	lcam2	Pdcd1lg2	
Ccr7	lfna2	Pla2g2a	
Ccr8	lfng	Pou2f2	
Cd160	lkzf4	Rag1	
Cd163	<i>l</i> /10	Rag2	
Cd2	ll17b	Rorc	
Cd22	<i>II20</i>	Slamf1	
Cd244	<i>I</i> /22	Slamf7	
Cd40	ll7r	Tfrc	
Cd74	Irf4	Tgfb3	
Cd79b	Irf8	Tigit	
Cfd	Klrb1	Tnfaip6	

Figure S1: Lympho-myeloid conversion potential of C/EBP family members,

Related to Figure 1

(**A**) Immunoblot analysis of C/EBP family members of total protein lysates from Plat-E cells 72 h after transduction with C/EBP-MIG constructs. Untransduced cells served as control and ACTB as housekeeping gene. (**B**) Flow cytrometric analysis of B cells transduced with individual C/EBPs focusing on macrophage (CD11b⁺CD115⁺), dendritic (CD11b⁺CD11c⁺) and granulocytic (CD11b⁺Ly-6G⁺) markers 4 days after transduction. (**C**) Semi-quantitative RT-PCR analysis of C/EBP expression in murine primary FACS-purified B cells (CD19⁺), granulocytes (CD11b⁺Ly-6G⁺) and macrophages (CD11b⁺CD115⁺). *Gapdh* served as housekeeping gene. (**D**) Flow cytometric analysis of C/EBP-transduced GFP⁺-gated HAFTL1 cells 4 days after induction.

Figure S2: The role of endogenous Cebpa and Cebpb on transdifferentiation,

Related to Figure 3

(A) Semi-quantitative RT-PCR expression analysis of endogenous C/EBP family members in C10 cells treated with OHT for 4 days and non-induced controls (Bussmann et al. 2009). RNA from total bone marrow or monocytic Raw264.7 cells served as controls. *Gapdh* was used as housekeeping gene. (B) Expression kinetics of endogenous C/EBP α , and β protein in C/EBP ϵ -transduced B cells based on immunoblot analysis. (C) Workflow for the generation of *Cebpa* and *Cebpb* double knockout v-Abl immortalized B cells and isogenic controls derived from a mouse with homozygous floxed *Cebpa* and *Cebpb* alleles. Deletion of *Cebpa* and *Cebpb* by incubating cells with recombinant Cre-recombinase. (D) *Cebpa* and *Cebpb* genotypes of established Cre-incubated cell clones was assessed by PCR. Pools of Cre-treated and untreated cells served as controls. Clone 4 was selected for further experiments.

(**E**) Quantification of transdifferentiated cells (CD11b⁺, related to Figure 3C) from four independent experiments. \pm SEM, **p<0.01. (**F**) Nanostring analysis showing upregulated genes 24 h after C/EBP ϵ transduction in GFP⁺-sorted cells compared to control B cells (MIG-transduced). Genes that were not upregulated in *Cebpa*^{Δ/Δ};*Cebpb*^{Δ/Δ} cells are marked in red. (**G**) Downregulated genes in GFP⁺ FACS-purified control cells transduced for one day with C/EBP ϵ compared to empty vector. Genes refractory to down-regulation in *Cebpa*^{Δ/Δ};*Cebpb*^{Δ/Δ} cells are marked in red. See also Table S1.

Figure S3: Effect of C/EBPε dosage on transdifferentiated cell type outcome, Related to Figure 4

(A) Sorting scheme of GFP⁺ Plat-E cells transduced with empty vector control (MIG) or C/EBP ϵ -MIG for 72 h. (B) Immunoblot detection of C/EBP ϵ , GFP and ACTB in protein lysates of 1 × 10⁶ FACS-purified cells from GFP-fractions in (A). Two exposure times (short and long) are shown. (C) B cell were transduced with pMSCV-based vectors either containing bi-cistronic C/EBP ϵ -IRES-EGFP (top panels) or C/EBP ϵ -EGFP fusion (bottom panels) transgenes. Transduced cells were classified according to GFP intensity and analysed for CD11b⁺Ly-6G⁺ and CD11b⁺CD115⁺ fractions.

Figure S4: Myeloid signalling-response of transdifferentiated bi-potential cells,

Related to Figure 5

(**A**) Bright field images of long-term C/EBPβ-transduced cells, untreated or treated with 10 ng/ml GM-CSF for 24 h. Empty vector (MIG) transduced B cells served as control. (**B**) Subsequent cytospin preparations and May-Grünwald-staining after 16 days of culture.

Figure S5: Persistence of the GMP-like phenotype after serial subcloning,

Related to Figure 5

Analysis of 17 subclones derived from a GMP-like parental clone presented in Figure 5G,H. Flow cytometric analysis of CD115 versus Ly-6G in the GFP+CD11b+-gated population indicates persistence of the GMP-like potential.

Supplemental Tables

Table S1: Gene expression signature in C/EBP-transduced B cells,

Related to Figure 2, 3

Nanostring analysis (gene set GXA-MIM) of GFP⁺ B cells ($Cebpa^{t/f}$; $Cebpb^{t/f}$) transduced with individual C/EBPs for 24 h. C/EBPɛ-infected $Cebpa^{\Delta/\Delta}$; $Cebpb^{\Delta/\Delta}$ B cells (B-DKO) were included for comparison. MIG-transduced cells served as control. Normalized gene expression values are shown.

Table S2: List of primer sequences,

Oligonucleotide	Sequence 5'-3'
Cebpa FW	GCCAGTTGGGGCACTGGGTG
Cebpa RV	CCGCGGCTCCACCTCGTAGA
Cebpb FW	GCGTTCATGCACCGCCTGCT
Cebpb RV	TAGGCCAGGCAGTCGGGCTC
Cebpd FW	AGAACCCGCGGCCTTCTAC
Cebpd RV	ATGTAGGCGCTGAAGTCGAT
Cebpe FW	CACACTGCGGGCAGACAG
Cebpe RV	GTGCCTTGAGAAGGGGACT
Gapdh FW	AATGTGTCCGTCGTGGATCTGA
Gapdh RV	GATGCCTGCTTCACCACCTTCT
Cebpa flox FW	TGGCCTGGAGACGCAATGA
Cebpa flow RV	CGCAGAGATTGTGCGTCTTT
Cebpa ∆ FW	GCCTGGTAAGCCTAGCAATCCT
Cebpa Δ RV	TGGAAACTTGGGTTGGGTGT
Cebpb flox/Δ FW	GAGCCACCGCGTCCTCCAGC
Cebpb flox RV	GGTCGGTGCGCGTCATTGCC
Cebpb ΔRV	AGCAGAGCTGCCCCGGCAAA
DQ52 FW1	ACGTCGACTTTTGYAAGGGATCTACTACTGT
DFS FW2	ACGTCGACGCGGACGACCACAGTGCAACTG
JH4A RV	GGGTCTAGACTCTCAGCCGGCTCCCTCAGGG

Related to Experimental Procedures, Figure 4, Figure S1, S2