Prediction and diagnosis of renal cell carcinoma using nuclear magnetic resonance-based serum metabolomics and self-organizing maps

Supplementary Materials

				I I I
No.	Compound	ррт	Assignment	Multiplicity
1	LDL/VLDL	0.84–0.91, 1.22–1.31	$CH_{3}(CH_{2})_{n}/CH_{3}CH_{2}CH_{2}C=,$ (CH ₂) _n /CH ₂ CH ₂ CH ₂ CO	m, m
2	isoleucine	0.92-0.93, 1.00-1.02	d-CH ₃ , b-CH ₃	t, d
3	leucine	0.94-0.97	d-CH ₃	d, d
4	valine	0.98-1.00, 1.03-1.05	CH ₃ CH ₃	d, d
5	lactate	1.32-1.35, 4.10-4.15	CH ₃ , CH	d, q
6	alanine	1.47-1.50	CH ₃	d
7	lipids + NAC	1.98-2.10	-	m
8	glutamine	2.42-2.48	half g -CH ₂	m
9	creatine	3.04-3.05	CH ₃	S
10	choline	3.20-3.22	N(CH ₃) ₃	S
11	TMAO	3.26-3.27	N(CH ₃) ₃	S
12	taurine	3.40-3.42	CH ₂	t
13	sugars + AAs	3.48-3.88	various	m
14	β-glucose	4.63-4.67	СН	d
15	α-glucose	5.22-5.25	СН	d
16	poly-UFA	5.26-5.36	CH = CHCH ₂ CH = CH, = CHCH ₂ CH,	m

Table S1: Assignment of metabolites in ¹H NMR spectra from human serum samples

Abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; LDL, low density lipid; VLDL, very low density lipid; NAC, *N*-acetyl signals from α_1 -acid glycoproteins; TMAO, *N*-oxide trimethylamine; AA, amino acid.