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Supplementary	Material:	Validation	via	Simulation	

	

Overview:	

The	validation	of	our	methodology	provided	in	the	main	manuscript	is	centred	upon	its	application	to	real	MEG	

data.	However,	 it	also	proves	instructive	to	examine	the	performance	of	our	methodology	in	simulation.	The	

performance	 of	 envelope	 correlation	 as	 a	means	 to	 examine	 connectivity	 in	 short	 time	windows	 has	 been	

addressed	extensively	in	previous	work	(Brookes	et	al,	2014;	O’Neill	et	al	2015)	and	will	not	be	repeated	here.	

However,	 the	 ability	 of	 ICA,	 applied	 to	 timecourses	 of	 connectivity,	 to	 uniquely	 extract	 the	 spatiotemporal	

signatures	of	multiple	brain	networks	has	not	been	validated.	In	what	follows,	we	test	the	extent	to	which	ICA	

successfully	characterises	a	set	of	simulated	networks	which	are	obfuscated	by	realistic	noise.	In	addition	to	a	

simple	 simulation	 validating	 our	method,	we	 also	 probe	 the	 effect	 of	 poor	 signal	 to	 noise	 ratio	 and	 shared	

signal	variance	across	networks.	We	will	show	that	our	methodology	can	indeed	reconstruct	accurately	both	

the	 spatial	 and	 temporal	 network	 profiles.	 However,	 we	 also	 show	 that	 accurate	 reconstruction	 depends	

critically	on	signal	to	noise	ratio,	the	number	of	connections	in	a	network,	and	(intuitively)	the	extent	to	which	

underlying	network	timecourses	are	independent.	

	

Simulation	Methodology	

We	aimed	to	simulate	data	at	the	level	of	the	adjacency	tensor,	𝑹.	Recall	that	this	tensor	is	representative	of	a	

set	 of	 adjacency	 matrices,	 measured	 at	 different	 points	 in	 time	 and	 characterising	 moment	 to	 moment	

changes	in	connectivity	between	parcellated	regions.	The	simulated	tensor,	𝑹𝒔𝒊𝒎,	was	constructed	based	upon	

2	separate	tensors,	one	representing	simulated	networks	𝑺𝒔𝒊𝒎,	and	the	second	representing	interference	𝑰𝒔𝒊𝒎.	

	

To	generate	𝑺𝒔𝒊𝒎,	four	spatially	distinct	networks	were	constructed	based	on	a	previous	MEG	study	(Brookes	

et	al.,	2015).	The	spatial	patterns	of	connectivity	were	each	represented	by	an	(𝑛(	×𝑛(	)	adjacency	matrix,	𝜬,,	

(where	𝑗	 = 	1 − 4	and	𝑛(		 is	the	number	of	AAL	regions).	These	matrices,	alongside	a	3D	visualisation	of	the	

network,	are	shown	in	columns	1-4	of	Figure	S1	and	reflect	visual,	sensorimotor,	superior	frontal	and	fronto-

parietal	 networks.	 In	 addition	 to	 the	 spatial	 signature,	 we	 simulated	 the	 time	 evolution	 of	 dynamic	

connectivity	 in	 each	 network.	 (i.e.	 we	 allow	 each	 of	 these	 networks	 to	 form	 and	 dissolve	 on	 a	 timescale	

commensurate	to	brain	activity).	In	order	to	do	this,	Each	network	was	assigned	a	simulated	timecourse	𝑚3(𝑡)	

which	was	given	by	

𝑚3(𝑡) = 𝛼𝑓93(𝑡) + 𝛽𝑓<3(𝑡),	 	 	 	 	 	 	 [S1]	



Here,	𝑓93(𝑡)	 is	the	modulation	function	for	the	𝑗=>	network,	which	was	represented	by	a	Hanning	window	of	

unit	amplitude,	periodically	occurring	once	every	minute	for	60	minutes.	The	full	width	half	maximum	(FWHM)	

of	the	Hanning	window	was	6	seconds.	For	the	visual,	sensorimotor,	frontal	and	fronto-parietal	networks,	the	

onset	of	the	Hanning	window	was	on	the	3rd,	18th,	33rd	and	48th	second	of	every	minute	respectively.	𝑓<3(𝑡)	

represents	 uncorrelated	 Gaussian	 noise	 which	 was	 added	 to	 the	 simulated	 timecourses,	 reflecting	 natural	

variations	 in	 network	 connectivity.	𝛼,	𝛽	 are	 scalar	 parameters	which	 set	 the	 contribution	 of	 each	 temporal	

component.	The	sampling	rate	of	𝑚(t)	was	2	Hz	(reflecting	the	0.5	s	steps	 in	the	sliding	window	used	in	real	

data).	These	network	timecourses	(averaged	across	minute	long	trials)	are	shown	in	Figure	S1.	

	

	



Fig	S1:	The	four	simulated	networks	and	their	respective	connectivity	time	courses.	The	separate	rows	represent	1)	visual	
2)	sensorimotor	3)	superior	frontal	and	4)	fronto-parietal	networks.	The	columns	represent	A)	The	adjacency	matrices	of	
each	network,	B)	A	3D	representations	of	the	same	network.	C)	The	connectivity	timecourse.	Here,		α	=	0.45,	β	=	0.15.	
	
In	order	to	generate	the	network	contribution,	𝑺𝒔𝒊𝒎,	to	the	simulated	adjacency	𝑹𝒔𝒊𝒎,	The	4	separate	network	

matrices	were	 combined	 in	 a	weighted	 sum,	 such	 that	𝑺𝒔𝒊𝒎𝒋(𝑡),	 the	 single	 adjacency	matrix	 at	 single	 time	

point	𝑡,	is	given	by:	

𝑺𝒔𝒊𝒎 𝑡 = 𝑚3(𝑡)𝜬,𝟒
𝒋C𝟏 	 	 	 	 	 	 	 	 [S2]	

Concatenation	over	time	generated	𝑺𝒔𝒊𝒎,	which	represents	 transient	 formation	of	our	4	simulated	networks	

over	a	timecourse	spanning	60	minutes.		

	

In	order	to	add	realistic	interference	to	our	simulated	adjacency	tensor	we	added	a	second	adjacency	tensor,	

𝑰𝒔𝒊𝒎,	generated	using	empty	room	MEG	data.	60	minutes	of	empty	room	data	were	recorded	at	600	Hz	using	a	

275-channel	MEG	 system	 (MISL,	 Coquitlam,	BC,	 Canada)	 in	 synthetic	 third	 order	 gradiometer	 configuration.	

Empty	 room	 data	 were	 processed	 in	 the	 same	way	 as	 the	 data	 in	 the	main	 paper	 (save	 for	 correcting	 for	

leakage)	to	form	𝑰𝒔𝒊𝒎.	Note	here	that	because	we	do	not	perform	leakage	correction,	common	mode	signals	

recorded	at	the	MEG	sensors	 in	the	empty	room	recording	will	correlate	over	AAL	regions.	This	manifests	as	

networks	 of	 connectivity	 which	 will	 necessarily	 change	 in	 time	 (according	 to	 fluctuating	 interference).	 The	

interference	tensor,	𝑰𝒔𝒊𝒎,	thus	effectively	represents	networks	of	no	interest.	[Note	that	in	reality	networks	of	

no	interest	could	be	formed	through	environmental	noise,	biological	interference,	or	the	brain	itself.	Although	

we	use	empty	room	noise	to	generate	𝑰𝒔𝒊𝒎,	we	use	this	construct	to	represent	all	correlations	of	no	interest	

that	would	be	recoded	experimentally.]	

	

The	 values	 contained	 in	 both	 𝑺𝒔𝒊𝒎	 and	 𝑰𝒔𝒊𝒎	 are	 representative	 of	 correlation	 coefficients	 (i.e.	 are	 scaled	

between	-1	and	1).	(I.e.	values	in		𝑺𝒔𝒊𝒎	represent	genuine	correlations	caused	by	interactions	in	brain	regions	

represented	by	our	networks	in	Figure	1,	whereas	values	in		𝑰𝒔𝒊𝒎	represent	artefactual	correlations.	These	two	

tensors	were	then	combined	according	to	the	equation	

𝑹𝒔𝒊𝒎 = 	 𝑺𝒔𝒊𝒎
9E( F

GHI)
+ 𝑺𝒔𝒊𝒎

9EJKL
	,	 	 	 	 	 	 	 	 [S3]	

where	 that	SNR	represents	 the	effective	signal	 to	noise	of	 the	data.	A	derivation	showing	 the	origins	of	 this	

combination	of	correlation	coefficients	is	given	in	our	appendix	below.	

	

Testing	the	effectiveness	of	ICA	

We	 applied	 the	 ICA	 decomposition	 described	 in	 the	 main	 paper	 to	𝑹𝒔𝒊𝒎	 in	 order	 to	 test	 whether,	 in	 the	

presence	 of	 interference,	 we	 would	 accurately	 reconstruct	 the	 spatial	 signatures	 and	 timecourses	 of	 the	

stimulated	networks.	The	similarities	between	simulated	and	reconstructed	data	were	measured	by	Pearson	

correlation	 between	 1)	 simulated	 and	 reconstructed	 timecourses	 and	 2)	 simulated	 and	 reconstructed	

adjacency	matrices.	To	summarise	the	performance	of	ICA	in	a	single	run,	for	a	single	network,	we	developed	

figure	 of	 merit.	 This	 was	 defined	 as	 the	 correlation	 of	 the	 best	 matching	 independent	 component	 to	 a	

simulated	 network,	 minus	 the	 mean	 correlations	 to	 all	 other	 components.	 Mathematically,	 if	 the	 𝑖=>	



independent	component	timecourse	(𝑿O)	best	matches	the	𝑗=>	simulated	network	timecourse	(𝒎3),	then	the	

figure	of	merit	would	be	

𝐹3 = 𝑟 𝒎3, 𝑿O − 9
(STU9

𝑟(𝒎3, 𝑿VWOV ),	 	 	 	 	 	 	 [S4]	

𝐹	can	range	between	0	and	1,	where	1	would	correspond	to	a	single	independent	component	representing	a	

network	 with	 no	 other	 component	 contributing.	 Importantly,	 the	 figure	 of	 merit	 penalises	 both	 poor	

representation	 and	 degeneracy,	 that	 is	 to	 say	 when	 all	 components	 can	 equally	 explain	 a	 single	 simulated	

network.	

	

Testing	SNR	and	temporal	overlap	

We	extracted	7	components	(𝑛OX = 7),	and	SNR	was	allowed	to	range	between	0	and	3	 in	steps	of	0.02.	For	

these	initial	simulations,	the	onset	of	the	Hanning	window	was	as	described	above	(i.e.	on	the	3rd,	18th,	33rd	

and	 48th	 second	 of	 every	 minute	 for	 the	 visual,	 sensorimotor,	 frontal	 and	 fronto-parietal	 networks	

respectively).		

	

We	also	tested	the	effect	of	changing	the	overlap	between	temporal	representation	of	networks.	In	the	initial	

simulation,	the	time	lag	between	networks	peak	connectivity	was	Δ=15	s.	However,	we	wanted	to	investigate	

the	effect	of	 reducing	Δ	 to	 the	point	when	two	networks	 timecourses	would	overlap	 (i.e.	networks	were	no	

longer	 independent).	 To	 do	 this,	 the	 simulation	was	 simplified	 to	 use	 only	 two	networks	 (1	 and	 2)	 and	 the	

interference	 removed.	 Δ	 	 was	 changed	 from	 0	 s	 to	 15	 s	 in	 1	 s	 steps;	 ICA	 was	 asked	 to	 return	 only	 2	

components.	

	

Results:	

Figure	S2	shows	the	reconstruction	of	7	networks,	based	upon	ICA	decomposition	of	the	simulated	adjacency	

tensor	𝑹𝒔𝒊𝒎.	 Panel	A	 shows	 the	 reconstructed	 timecourses	whilst	Panel	B	 shows	 the	3D	visualisation	of	 the	

network.	It	is	clear	that	all	four	of	the	simulated	networks	in	Figure	S1	have	been	reconstructed	successfully,	

alongside	three	separate	noise	components.	The	bar	plots	in	panel	C	show	the	degree	of	temporal	(left	hand	

plot)	 and	 spatial	 (right	 hand	plot)	 correlation	between	 independent	 components	 and	 the	original	 simulated	

networks.	 I.e.	 for	 each	 reconstructed	 component,	 the	 temporal/spatial	 correlation	 with	 all	 4	 simulated	

networks	is	shown.	For	both	the	spatial	and	temporal	plot,	a	single	independent	component	clearly	matches	

the	simulated	network.	It	 is	noteworthy	that	these	bar	charts	form	the	basis	of	the	figure	of	merit	described	

above.		

	



	
Figure	S2:	Reconstruction	of	7	networks,	based	upon	ICA	decomposition	of	the	simulated	adjacency	tensor	𝑹𝒔𝒊𝒎.	A)	The	
trial	 averaged	 independent	 component	 timecourses.	 B)	 3D	 representations	 of	 the	 independent	 component	 (i.e.	
corresponding	columns	of	 the	mixing	matrix)	 thresholded	to	50%	of	 the	maximum	value.	C)	Bar	plots	showing	temporal	
(left)	 and	 spatial	 (right)	 correlation	 between	 the	 reconstructed	 independent	 components	 and	 the	 original	 simulated	
networks.	The	columns	are	colour	coded	to	match	the	colours	of	the	timecourses,	and	show	there	is	one	clear	match,	with	
little	residual	mixing.	
	

Figure	S3	shows	our	temporal	figure	of	merit	plotted	against	SNR,	for	all	four	simulated	networks.	At	high	SNR,	

all	 4	 simulated	 networks	 are	 reconstructed	 faithfully	 using	 ICA.	 However,	 decreasing	 SNR	 sees	 a	 sharp	

transition	meaning	that,	below	some	minimum	‘threshold’	value,	a	specific	network	is	no	longer	reconstructed.	

Importantly,	these	thresholds	differ	across	networks,	showing,	for	example,	that	the	frontal	or	fronto-parietal	

networks	can	be	reconstructed	using	data	at	a	 lower	SNR	compared	to	the	visual	or	sensorimotor	networks.	

This	 interesting	 dissociation	 likely	 results	 from	 the	 number	 of	 connections	 in	 the	 network;	 It	 can	 be	 seen	

clearly	 from	the	matrices	 in	Figure	S1	that	the	visual	and	sensorimotor	networks	have	 less	connections	than	

the	frontal	and	fronto-parietal	networks,	and	it	is	these	networks	that	require	higher	SNR.	This	relationship	is	

further	shown	by	the	graph	in	Figure	S3B.	Here,	number	of	connections	is	represented	by	the	Frobenius	norm	

of	the	network	adjacency	matrix.	Note	that	Frobenius	norm	(given	by	 𝑨 \ = 𝑎O3<3O 	where	𝑎O3 	represents	



the	element	in	the	ith	row	and	jth	column	of	𝑨)	usually	represents	both	number	and	strength	of	connections,	

however	 since	maximum	 strength	 of	 any	 connection	 (maximum	 value	 of	𝑎O3)	 in	 each	 simulated	matrix	was	

made	equal,	Frobenius	norm,	 in	this	case,	 is	solely	representative	of	spatial	extent.	Figure	S3B	shows	clearly	

that	 SNR	 is	 a	monotonically	 decreasing	 function	 of	 norm,	meaning	 that	 networks	with	 large	 extent	 can	 be	

reconstructed	using	lower	SNR	data.		

	
Figure	S3:	The	effect	of	the	signal	to	noise	ratio	(SNR).	A)	The	mean	temporal	figure	of	merit	for	each	network	plotted	as	a	
function	of	SNR;	note	that	for	high	SNR	all	networks	are	well	characterised.	However,	a	critical	SNR	exists	below	which	our	
ability	to	successfully	reconstruct	any	one	network	drops.	Panel	B	shows	the	relationship	between	the	Frobenius	Norm	of	
the	simulated	adjacency	matrix	(representing	spatial	extent	of	the	network)	and	critical	SNR	(defined	as	the	SNR	required	
for	a	temporal	figure	of	merit	of	0.5).	Note	that	adjacency	matrices	with	a	high	Frobenius	norm	can	be	reconstructed	using	
lower	SNR	data.		
	

Finally,	Figure	S4	shows	the	effect	of	increasing	the	temporal	overlap	between	simulated	network	timecourses	

(i.e.	decreasing	Δ).	It	is	well	known	that	ICA	attempts	to	pull	out	temporally	independent	timecourses	meaning	

that,	when	timecourses	of	separate	networks	begin	to	overlap,	the	spatial	representations	of	those	networks	

will	 become	 mixed.	 This	 is	 a	 fundamental	 assumption	 of	 ICA,	 and	 thus	 the	 way	 in	 which	 networks	 are	

characterised	using	our	method.	Figure	S4A	shows	the	temporal	Figure	of	merit	(for	a	2	network	simulation,	

see	 above)	 plotted	 as	 a	 function	 of	Δ.	 As	 expected	when	 timecourses	 become	mixed,	 the	 networks	 are	 no	

longer	 reconstructed	 separately.	 Panels	 B,	 C	 and	 D	 show	 both	 temporal	 and	 spatial	 representations	 of	 the	

independent	 components	 for	 Δ = 6	s,	 Δ = 3	s	 and	 Δ = 0	s	 respectively.	 As	 expected,	 with	 no	 temporal	

overlap	(Δ = 6	s)	both	the	spatial	and	temporal	signature	of	the	two	extracted	components	represent	a	single	

simulated	network.	However,	with	increasing	overlap	those	spatial	and	temporal	properties	combine,	meaning	

that	the	two	networks	are	no	longer	separable.	



	
Figure	S4:	 Effect	of	 reducing	 the	 temporal	 independence	between	networks.	 A)	 Temporal	 Figure	of	merit	 plotted	as	 a	
function	of	Δ.	Note	 that,	as	would	be	expected,	when	 timecourses	become	mixed	 the	networks	are	no	 longer	 faithfully	
reconstructed.	Panels	B)-D)	show	the	independent	components	and	their	corresponding	network	topographies	for	a	range	
of	Δ	values.	Note	that	network	topographies	in	blue	represent	connections	whose	timecourses	are	anticorrelated	with	the	
timecourse	shown.		
	

Discussion	

We	 have	 shown	 in	 simulation	 that	 ICA	 can	 successfully	 separate	 functional	 networks	 based	 on	 their	

connectivity	timecourses.	However,	importantly,	we	show	that	success	of	this	algorithm	is	a	function	of	both	

signal	to	noise	ratio	and	the	number	of	connections	in	a	network.	As	would	be	expected,	the	ability	of	ICA	to	

uniquely	extract	networks	 is	diminished	at	 low	signal	to	noise	ratio.	However,	the	point	of	 failure	(minimum	

SNR	at	which	the	network	is	accurately	reconstructed)	varies	as	a	function	of	the	number	of	connections,	with	

spatially	 extended	 networks	 being	 more	 robustly	 detectable	 at	 low	 SNR.	 This	 important	 point	 should	 be	



considered	in	all	future	uses	of	this	or	related	methodologies.	 In	addition,	as	would	be	expected	with	an	ICA	

based	method,	the	reconstruction	fails	when	network	timecourses	are	no	longer	temporally	orthogonal.	
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Appendix	A:	Derivation	of	Equation	S3	

	
The	correlation	coefficient	between	two	vectors,	𝒂	and	𝒃	is	given	by		
	

𝑟 = 	 𝒂𝒃d

(𝒂𝒂d)(𝒃𝒃d)
.	 	 	 	 	 [A1]	

	
This	value	is	bounded	between	-1	and	1.	Note	that	the	values	𝒂𝒂eand	𝒃𝒃e	reflect	the	un-normalised	variance	
of	𝒂	and	𝒃.	
	
Now,	let	us	assume	that	𝒂	and	𝒃	are	each	made	up	of	two	signals,	a	signal	of	interest	representing	real	brain	
activity	and	a	signal	representing	a	source	of	interference.		
	
𝒂 = 𝒂f + 𝒂O	 	 	 	 	 [A2]	
𝒃 = 𝒃f + 𝒃O	 	 	 	 	 [A3]	
	
For	 our	 simulations,	 𝒂f	 and	 𝒃f	 reflect	 genuine	 network	 connectivity	 (i.e.	 they	 will	 generate	 the	 network	
adjacency	matrices)	and		𝒂O	and	𝒃O	represent	the	noise.	So,	when	an	adjacency	matrix	for	a	given	network	is	
defined	in	𝑺fOg	,	the	elements	reflect	
	

𝑟f = 	
𝒂h𝒃hd

(𝒂h𝒂hd)(𝒃h𝒃hd)
.	 	 	 	 [A4]	

	
Likewise,	the	adjacency	matricies	from	the	empty	room	noise	in	𝑰fOg	contain	elements	represented	by	
	

𝑟O = 	
𝒂S𝒃S

d

(𝒂S𝒂S
d)(𝒃S𝒃S

d)
.	 	 	 	 [A5]	

	
In	order	 to	simulate	realistic	connectivity	matrices	containing	both	signal	and	noise	 (i.e	𝑹fOg),	we	could	 just	
add	𝑟f	and	𝑟O,	however	this	may	result	in	simulated	correlation	values	with	a	magnitude	larger	than	1.	For	this	
reason	we	need	to	examine	carefully	how	to	combine	them.	The	true	combined	correlation	coefficient	is	
	

𝑟 = 	 𝒂hE𝒂S 𝒃hE𝒃S d

𝒂hE𝒂S 𝒂hE𝒂S d 𝒃hE𝒃S 𝒃hE𝒃S d
i.k,		 	 [A6]	

	
which	is	equal	to	
	

𝑟 = 	 𝒂h𝒃hdE𝒂h𝒃S
dE𝒂S𝒃hdE𝒂S𝒃S

d

𝒂h𝒂hdE𝒂h𝒂S
dE𝒂S𝒂hdE𝒂S𝒂S

d 𝒃h𝒃hdE𝒃h𝒃S
dE𝒃S𝒃hdE𝒃S𝒃S

d i.k		 [A7]	

	
since	𝒂f	represents	signal	and	𝒂O	represents	noise,	we	can	assume	that	the	signal	and	noise	are	uncorrelated,	
and	so	𝒂f𝒂Oe = 0	and	𝒃f𝒃Oe = 0.	We	also	allow	the	interference	to	be	correlated	between	regions	and	likewise	
the	signal	to	be	correlated	between	regions,	meaning		𝒂f𝒃fe	and	𝒂O𝒃Oe	are	finite.	However	we	assume	that	the	
signal	at	region	1	(𝒂f)	does	not	correlate	with	interference	at	region	2	(𝒃O)	and	vice	versa.	Therefore,	𝒂f𝒃Oe =
0	and	𝒃f𝒂Oe = 0	meaning	Equation	A7	can	be	simplified	
	

𝑟 = 	 𝒂h𝒃hdE𝒂S𝒃S
d

𝒂h𝒂hdE𝒂S𝒂S
d 𝒃h𝒃hdE𝒃S𝒃S

d i.k	.	 	 	 [A8]	

	
In	the	denominator	of	Equation	A8,	each	of	the	4	terms	represent	variances:	
	

• 𝒂f𝒂fe = 𝜈mf,	the	variance	of	the	signal	at	region	1;	
• 𝒂O𝒂Oe = 𝜈mO,	the	variance	of	the	interference	at	region	1;	
• 𝒃f𝒃fe = 𝜈nf,	the	variance	of	the	signal	at	region	2;	
• 𝒃O𝒃Oe = 𝜈nO,	the	variance	of	the	interference	at	region	2.	



Therefore:	
	

𝑟 = 	 𝒂h𝒃hdE𝒂S𝒃S
d

ophEopS oqhEoqS
i.k	.		 	 	 [A9]	

	
We	 could	 then	assume	 that	 the	magnitude	of	 the	 signal	 and	 interference	 is	 approximately	 the	 same	across	
spatially	separate	regions,	i.e:	
	
𝜈mf = 	 𝜈nf = 	 𝜈f	 	 	 	 	 [A10]	
𝜈mO = 	 𝜈nO = 	 𝜈�	 	 	 	 	 [A11]	
	
therefore,	
	

𝑟 = 𝒂h𝒃hdE𝒂S𝒃S
d

ohEoS ohEoS
i.k =

𝒂h𝒃hdE𝒂S𝒃S
d

ohEoS
	.	 	 	 [A12]	

	
	
Now,	𝜈f	and	𝜈O	which	represent	the	variance	of	the	signal	and	noise	respectively	are	related	by	the	signal	to	
noise	ratio	(SNR)	
	
𝜈f = 𝑆𝑁𝑅𝜈O	 	 	 	 	 [A13]	
	
so	we	can	write	
	

𝑟 = 𝒂h𝒃hd

ohE
uh
GHI

+ 𝒂S𝒃S
d

JKLoSEoS
	 	 	 	 [A14]	

	

𝑟 = 𝒂h𝒃hd

oh 9E
F

GHI
+ 𝒂S𝒃S

d

9EJKL
.	 	 	 	 [A15]	

	
Returning	to	Equation	A4,	note	that	under	our	assumptions		
	

𝑟f =
𝒂h𝒃hd

oh
,	 	 	 	 	 [A16]	

	
similarly,	
	

𝑟O =
𝒂S𝒃S

d

oS
,	 	 	 	 	 [A17]	

	
we	finally	arrive	at	the	expression	
	
𝑟 = vh

9E F
GHI

+ vS
9EJKL

.	 	 	 	 [A18]	

	
So	 this	 is	how	 the	 signal	and	noise	adjacency	matrices	 should	be	combined.	Note	 that	 for	an	SNR	of	1,	 you	
simply	average	the	2	correlation	coefficients,	i.e	𝑟	 = 	0.5(𝑟f + 𝑟O),	and	the	value	is	always	bounded	by	-1	and	
1.	For	extremely	high	SNR,	the	term	 vS

9EJKL
→ 0	and	is	dominated	by	the	signal.	For	extremely	low	SNR	(SNR	<<	

1),	the	term	 vh
9E F

GHI
	→ 0	and	we	are	dominated	by	interference.	

	 	



Appendix	B:	Additional	Self	Paced	Motor	Results	
	
	

	
Figure	A1:	Additional	self	paced	motor	results	(1-4).	Panel	A	shows	the	3D	representation	of	each	network	derived,	with	
the	trial	averaged	timecourses	shown	in	panels	B	and	C.	Panel	B	shows	the	null	distribution	(grey	shaded	region)	based	on	
no	significant	trial-averaged	modulations	in	connectivity	and	Panel	C’s	shaded	region	is	the	null	distribution	generated	
from	the	sign-flip	analysis.	



	
Figure	A2:	Additional	self	paced	motor	results	(5-9).	Panel	A	shows	the	3D	representation	of	each	network	derived,	with	
the	trial	averaged	timecourses	shown	in	panels	B	and	C.	Panel	B	shows	the	null	distribution	(grey	shaded	region)	based	on	
no	significant	trial-averaged	modulations	in	connectivity	and	Panel	C’s	shaded	region	is	the	null	distribution	generated	
from	the	sign-flip	analysis.	
	


