SUPPLEMENTARY INFORMATION

Concerted upregulation of aldehyde/alcohol dehydrogenase (ADHE) and starch in *Chlamydomonas* reinhardtii increases survival under dark anoxia

Robert van Lis^{1,2}, Marion Popek¹, Yohann Couté^{3,4,5}, Artemis Kosta⁶, Dominique Drapier⁷, Wolfgang Nitschke¹ and Ariane Atteia^{1, †}

¹Aix Marseille Univ, CNRS, the Unité de Bioénergétique et Ingénierie des Protéines-UMR 7281, 31 Chemin Joseph Aiguier, F-13402 Marseille, France ²INRA, Laboratoire de Biotechnologie de l'Environnement, Narbonne, France

 ³Université Grenoble Alpes, BIG-BGE, F-38000 Grenoble, France
 ⁴Commissariat à l'Energie Atomique, BIG-BGE, F-38000 Grenoble, France
 ⁵INSERM, BGE, F-38000 Grenoble, France
 ⁶Microscopy core facility, FR3479 Institut de Microbiologie de la Méditerranée 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France
 ⁷UMR 7141, CNRS and Université Pierre et Marie Curie (UPMC - Paris 06), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France

Supplemental Data Set 1. Species used for the phylogenetic analysis presented in Figure 2 **Supplemental Data Set 2.** Multiple sequence alignment of ADHEs.

Supplemental Figures:

FIGURE S1. Sensitivity and specificity of the anti-ADHE serum.

FIGURE S2. Mutant RBCL of C. reinhardtii strain 10-6C: identification by mass spectrometry.

FIGURE S3. Identification of C. reinhardtii ADHE by mass spectrometry.

FIGURE S4. Immunoblot analysis of cells incubated in dark anoxia in presence of sodium hypophosphite, an inhibitor of PFL.

FIGURE S5. ADHE abundance in conditions of zinc-deficiency.

FIGURE S6. Production of antibodies to C. reinhardtii phosphotransacetylases.

FIGURE S7. Identification of C. reinhardtii PTAs by mass spectrometry.

FIGURE S1. Sensitivity and specificity of the anti-ADHE serum.

• Proteins were separated on urea/SDS-PAGE (6M urea/5-12% acrylamide) and transferred to nitrocellulose membrane. rADHE, recombinant ADHE. Left: membrane was stained with Ponceau red S; right: membrane was probed for ADHE, using the anti-ADHE antibodies at a dilution of 1:2,500.

• Proteins were separated on SDS-PAGE (5-12% acrylamide) and transferred to nitrocellulose membrane. *Lane 1*, recombinant ADHE (0.15 µg); *lane 2*, cell extract from *C*. reinhardtii wild-type strain CC-124 (40 µg proteins); lane 3, cell extract from C. reinhardtii mutant strain 10-6C (40 µg proteins). Left: membrane was stained with Ponceau red S; right: membrane was probed for ADHE, using the anti-ADHE antibodies as above.

Ponceau S stain

FIGURE S2. Mutant RBCL in C. reinhardtii strain 10-6C: identification by mass spectrometry.

• Chloroplasts from strain 10-6C were loaded on a urea/SDS-PAGE. The gel piece in the 40-kDa region was subjected to nanoLC-MS/MS analysis.

• Sequence alignment of wild-type and mutant RBCLs. Tryptic peptides that match mutated RBCL protein are indicated, including the peptide that covers the mutation (Gly -> Asp).

Wild-type Mutant	MVPQTETKAGAGFKAGVKDYRLTYYTPDYVVR <mark>DTDILAAFR</mark> MTPQPGVPPEECGAAVAAE MVPQTETKAGAGFKAGVKDYRLTYYTPDYVVR <mark>DTDILAAFR</mark> MTPQPGVPPEECGAAVAAE *********************************
Wild-type Mutant	SSTGTWTTVWTDGLTSLDRYKGRCYDIEPVPGEDNQYIAYVAYPIDLFEEGSVTNMFTSI SSTGTWTTVWTDGLTSLDRYKGRCYDIEPVPGEDNQYIAYVAYPIDLFEEGSVTNMFTSI ************************************
Wild-type Mutant	VGNVFGFKALRALRLEDLRIPPAYVKTFVGPPHGIQVERDKLNKYGR <mark>GLLCTIKPK</mark> LGL VGNVFGFKALRALRLEDLRIPPAYVKTFVGPPHGIQVERDKLNKYGR <mark>GLLDCTIKPK</mark> LGL ***********************************
Wild-type Mutant	SAKNYGRAVYECLRGGLDFTKDDENVNSQPFMRWRDRFLFVAEAIYKAQAETGEVKGHYL SAKNYGRAVYECLRGGLDFTKDDENVNSQPFMRWRDRFLFVAEAIYKAQAETGEVKGHYL ************************************
Wild-type Mutant	NATAGTCEEMMKR <mark>AVCAKELGVPIIMHDYLTGGFTANTSLAIYCRDNGLLLHIHR</mark> AMHAV NATAGTCEEMMKRAVCAKELGVPIIMHDYLTGGFTANTSLAIYCRDNGLLLHIHRAMHAV ************************************
Wild-type Mutant	IDRQRNHGIHFRVLAKALR <mark>MSGGDHLHSGTVVGK</mark> LEGER <mark>EVTLGFVDLMR</mark> DDYVEKDRSR IDRQRNHGIHFRVLAKALR <mark>MSGGDHLHSGTVVGK</mark> LEGER <mark>EVTLGFVDLMR</mark> DDYVEKDRSR ******************
Wild-type Mutant	GIYFTQDWCSMPGVMPVASGGIHVWHMPALVEIFGDDACLQFGGGTLGHPWGNAPGAAAN GIYFTQDWCSMPGVMPVASGGIHVWHMPALVEIFGDDACLQFGGGTLGHPWGNAPGAAAN **********************************
Wild-type Mutant	R <mark>VALEACTQAR</mark> NEGRDLAREGGDVIRSACK <mark>WSPELAAACEVWK</mark> EIKFEFDTIDK R <mark>VALEACTQAR</mark> NEGRDLAREGGDVIRSACK <mark>WSPELAAACEVWK</mark> EIKFEFDTIDK *********

FIGURE S3. Identification of C. reinhardtii ADHE by mass spectrometry

•List of the tryptic peptides that match the ADHE sequence (Phytozome accession number g18056). Peptides were identified in 3 independent nanoLC-MS/MS analyses: *gel band*: chloroplast proteins in 100-kDa region; *stacking 1*, chloroplast soluble proteins; and *stacking 2*, whole cells.

	Position		gel band		stacking 1		stacking 2	
Peptide sequence	Start	Stop	Spectral Count	Highest score	Spectral Count	Highest score	Spectral Count	Highest score
AEAAAPVAAAPATPHAEVK	54	72	1	40.63	1	37.91	•	
ΑΕΑΑΑΡVAAAPATPHAEVKK	54	73	2	41.53	1	46.61	1	25.64
ERAPATDEALTELK	74	87	1	69.03	2	62.75	2	63.27
APATDEALTELK	76	87	1	77.70	1	79.12	1	53.21
RAQTAQAQYSTYTQEQVDEIFR	92	113			1	53.60		
AQTAQAQYSTYTQEQVDEIFR	93	113	1	136.06	2	104.36	2	119.00
NHFASEFIYNK	146	156	1	61.34	1	60.90	2	54.80
TCGVIEHDPAGGIQK	162	176	2	88.75	2	96.77	2	83.08
VAEPVGVIAGIVPTTNPTSTAIFK	177	200	2	71.88	2	58.46	1	32.24
NALVLCPHPR	209	218					1	44.21
AAYSSGNPSLGVGAGNTPALIDETADVAMAVSSILLSK	278	315	1	25.53	1	33.28		
TFDNGVICASEQSVVVVAK	316	334			1	98.25	1	91.52
RGAYFLTEDDKVK	346	358	1	47.37			1	40.16
GAYFLTEDDKVK	347	358	1	73.87	1	51.59	1	48.91
LNPNIVGQSIPK	369	380	1	83.04	1	69.30	1	72.70
LAALFGIK	381	388	1	55.48	1	50.57	2	43.48
VLIGEVEK	395	402					1	36.45
VLIGEVEKIGPEEALSQEK	395	413	1	39.44				
IGPEEALSQEK	403	413	1	59.36	2	40.93	3	64.23
LCPILAMYR	414	422	2	31.23				
MACELIMYGGAGHTSVLYTNPLNNAHIQQYQSAVK	432	466					3	27.58
ENMLWFR	525	531	1	35.84	1	36.86	1	26.61
GGCLEVALTDLR	540	551	1	94.51	2	95.03	2	86.84
AFIVTDKPLFDMGYADK	556	572			1	34.71	4	83.15
VTHILDSINVHHQVFYHVTPDPTLACIEAGLK	573	604					1	23.46
EILEFKPDVIIALGGGSPMDAAK	605	627					2	80.22
IMWLMYECPDTR	628	639	2	78.58	2	74.95	1	63.07
FDGLAMR	640	646	1	41.84	1	38.04		
VYEVPELGK	654	662			1	29.54		
KATMVCIPTTSGTGSEVTPFSVVTDER	663	689			1	42.89		
ATMVCIPTTSGTGSEVTPFSVVTDER	664	689	1	47.29	3	94.16	2	79.97
YPLADYALTPSMAIVDPQLVLNMPK	694	718	5	72.20	3	91.93	3	94.95
EAISLLFK	751	758	1	46.66	1	46.76	1	46.54
AYANGSNDYLAR	763	774					1	58.43
LGAAYHVPHGLANAALISHVIR	803	824	2	39.67				
YNATDMPAK	825	833	1	47.89	1	50.74	1	57.09
QAAFPQYEYPTAK	834	846	1	55.49	1	62.15	1	58.91
QDYADLANMLGLGGNTVDEK	847	866	3	117.60	4	133.25	3	100.77
LIEAVEELK	870	878					1	44.04
LIEAVEELKAK	870	880	2	62.52	1	45.87		
VDIPPTIK	881	888	1	25.51				
EIFNDPKVDADFLANVDALAEDAFDDQCTGANPR	889	922			1	48.55		
VDADFLANVDALAEDAFDDQCTGANPR	896	922	2	111.57	3	114.74	1	111.70
YPLMADLK	923	930	2	33.37			1	27.48
QLYLDAHAAPILPVK	931	945	2	64.38			2	54.53
TLEFFSK	946	952	1	29.82				

•Tryptic peptides that match the ADHE sequence. Peptides are highlighted in blue. Residues highlighted in black are those which differ between the phytozome sequence (here; T, V) and the sequence in PubMed (accession number: CAF04128; residues A, T). The identification of tryptic peptide "VLIGEVEK" confirms the phytozome sequence. The catalytic center in the ALDH as well as the signatures for iron-binding in the ADH domain (See Figure 1) are underlined.

1	MMSSSLVSGKRVAVPSAAKPCAAVPLPRVAGRRTAARVVCEAAPSGAAPASPK <mark>AEAAAPV</mark>
61	AAAPATPHAEVKKERAPATDEALTELK <mark>ALLKRAQTAQAQYSTYTQEQVDEIFR</mark> AAAEAAN
121	AARIPLAKMAVEETRMGVAEDKVVK <mark>NHFASEFIYNK</mark> YKHTK <mark>TCGVIEHDPAGGIQKVAEP</mark>
181	VGVIAGIVPTTNPTSTAIFK <mark>SLLSLKTRNALVLCPHPR</mark> AAKS <mark>T</mark> IAAARIVRDAAVAAGAP
241	PNIISWVETPSLPVSQALMQATEINLILATGGPAMVR <mark>AAYSSGNPSLGVGAGNTPALIDE</mark>
301	TADVAMAVSSILLSKTF DNGVICASE QSVVVVAKAYDAVRTEFVR <mark>RGAYFLTEDDKVK</mark> VR
361	AGVVVDGK <mark>LNPNIVGQSIPKLAALFGIK</mark> VPQGT <mark>K</mark> VLIGEVEKIGPEEALSQEKLCPILAM
421	YRAPDYDHGVK <mark>MACELIMYGGAGHTSVLYTNPLNNAHIQQYQSAVK</mark> TVRILINTPASQGA
481	IGDLYNFHLDPSLTLGCGTWGSTSVSTNVGPQHLLNIKTVTARR <mark>ENMLWFR</mark> VPPKIYFK <mark>G</mark>
541	GCLEVALTDLRGKSRAFIVTDKPLFDMGYADKVTHILDSINVHHQVFYHVTPDPTLACIE
601	AGLKEILEFKPDVIIALGGGSPMDAAKIMWLMYECPDTRFDGLAMR <mark>FMDIRKR</mark> VYEVPEL
661	GKKATMVCIPTTSGTGSEVTPFSVVTDER <mark>LGAK</mark> YPLADYALTPSM AIVDPQLVLNMPKKL
721	TAWGGIDALTHALE SYVSICATDYTKGLSR <mark>EAISLLFK</mark> YLPR <mark>AYANGSNDYLAR</mark> EKVHYA
781	ATIAGMAFANAFLGICHSMAHK <mark>LGAAYHVPHGLA</mark> NAALISHVIRYNATDMPAKQAAFPQY
841	EYPTAKQDYADLANMLGLGGNTVDEK <mark>VIK</mark> LIEAVEELKAKVDIPPTIKEIFNDPKVDADF
901	LANVDALAEDAFDDQCTGANPRYPLMADLKQLYLDAHAAPILPVKTLEFFSKIN

FIGURE S4. Immunoblot analysis of cells incubated in dark anoxia in presence of sodium hypophosphite, an inhibitor of PFL.

Proteins (40 µg) from dark anoxic *C. reinhardtii* cells were separated on urea/SDS-PAGE and transferred to nitrocellulose membrane. Detection of ADHE and PDC was performed by Western blotting. *Lane 1*, incubation for 6 h in AIB; *lane 2*, incubation for 24 h in AIB; *lane 3*, incubation 6 h in AIB supplemented with 10 mM NaPO₂H₂; *lane 4*, incubation 24 h in AIB supplemented with 10 mM NaPO₂H₂.

FIGURE S5. ADHE abundance in conditions of zinc-deficiency.

Protein analysis of *C. reinhardtii* cell extracts (40 μ g). *Lane 1*, strain CC-124 grown on TAP medium; *lane 2*, strain CC-124 grown on zinc-deficient TAP medium; *lane 3*, strain 10-6C grown on TAP medium.

FIGURE S6. Production of antibodies to C. reinhardtii phosphotransacetylases.

•Protein Overexpression and Antibody Production- A partial sequence of *C. reinhardtii PTA1* cDNA (coding for His⁴⁹²-Asn⁷⁷⁸; tPTA1) was amplified by PCR using oligonucleotide primers containing the EcoRI and HindIII restriction sites (underlined) as follows: 5'-<u>GACGAATTCCACATCGTGCTGCCCGAGTC -3'</u>, and 5'-<u>GTCAAGCTTGTCGTTCACCGGCTTGAGCAG</u> -3'. The PCR product was cloned in pGEM-T Easy (Promega) and recloned in the BamHI/HindIII sites of the overexpression vector pET24a (Novagen). The resultant construct was introduced in *Escherichia coli* strain BL21 to produce the recombinant protein. His-tagged protein was purified under denaturing conditions using Ni-NTA matrix (Qiagen), as recommended by the supplier. Antibodies against tPTA1 were produced at Eurogentec (Leuven, Belgium).

•Specificity of the produced antibodies- In a fraction enriched in *C. reinhardtii* chloroplasts, the anti-PTA1 serum recognized two bands, which likely correspond to the two phosphotransacetylases PTA1 and PTA2 present in the alga.

FIGURE S7. Identification of C. reinhardtii PTAs by mass spectrometry.

• Urea/SDS-PAGE loaded with a fraction enriched in chloroplasts. Chloroplasts were isolated from strain 10-6C and loaded on a urea/SDS-PAGE. The gel piece that contained the protein detected by the anti-PTA serum (see Supplemental Fig. S6) was subjected to nanoLC-MS/MS analysis.

•Identification of PTAs by mass spectrometry

	accession	score	mass	coverage	#peptides	emPAI
PTA2	Cre09.g396650.t1.1	2215,23	85020,14	54,58	29	3,56
PTA1	Cre17.g699000.t1.1	1977,00	86071,30	50,12	28	2,24

• Tryptic peptides that match *C. reinhardtii* PTAs. Peptides that match chloroplast PTA2 protein are highlighted in green; tryptic peptides that match mitochondrial PTA1 protein are highlighted in yellow. The underlined sequence correspond to tPTA1 used for antibody production.

PTA2 PTA1	MSLNSSTMSRRQA-VAGAPAVAPFRHAGLFPRVRLCANRRVARVAP-KAAGNGNIAQ MAFASSSMAALSRPLAAVSSGLGSALSRASQLLTSGSLSSSPTASHSSTRRFISDG-TVG *:: **:*: . * *: * *: *: *: : ::: : : :
PTA2 PTA1	GEQGFDTLFLSDISLVGQR <mark>TPLLLGFFNYFERHLPHVGFFEPIAAEALASSELR</mark> IDRHVE SKGRPDSLFLSDISMSGHR <mark>APLLLGWLNYLER</mark> HLPHVGFFEPIGGR <mark>ALAGSELSVDR</mark> HVE .: *:*******: *:*:*********************
PTA2 PTA1	LVYKVFNLKGDVR <mark>AMTGVQDAEAARMIANGQHSELLDKIYSQYASYK</mark> EGQDLVLVEGP LMYRVFNMKGDATR <mark>MTGISDTEAAQLIASGK</mark> QSEVLDR <mark>IYAAYMAYK</mark> AGGELDLCLVEGP *:*:***:***. ***:.*:***::**:**:**:**:**:**:**:**:**
PTA2 PTA1	GPLMGGTELDAQIAAALNAPVLMTMTGQPNATVADYYNRAMVKRQVFLDHHVEVLGLVMN GPLMGGTELDAQIAAALNAPVLMAMSGR <mark>PNATANDYYNK</mark> AMVKRQVFADHK <mark>VDVLGVVIN</mark> ************************************

PTA2 PTA1	GLPR <mark>QSHAILSGQLRDKFAAAGLPFAGAIPTDIMLR</mark> NVR <mark>LDEVQTAMGAQRLYGDSLLTD</mark> GLPREHHAILSSQLRDKLER <mark>AGLPFAGALPEDPVLSSVR</mark> LDEVRTALGATQLYGETWLGD ****: *****.****: ******: * :* .******:**:**:**
PTA2 PTA1	VEFDDVVVASQRLEELLEILAERPMGRPLVVTSADR VEFDEVVVGSQRLEELLETLVERPMGRPLVVTSADR LDIVLGLLAAQLSVRGPSVAGVLL ****:***.****************************
PTA2 PTA1	TQAGSARSGRNYARDTIDR <mark>IFAGLSSSGLYKGSLLPVLVT TQAGASR</mark> ITRSYAK <mark>SAVDNIFAGLSNNTGASGGGPDGAAAANGSAQGSLYRGALLPVLST</mark> ****::* *.**:::*.******
PTA2 PTA1	DMPLEDAIRKLDNLDAAILPSSTEKISQCKRLFEQYVDANAVVARLQNMVRPNRMTPKMF DKHLAEALAVIGRMDASILPTSIRKVTQCKMLFDKYIDANAVVTGLQK-SRPTRVTPKMF * * :*: : .:**:***:* **::*** **::********
PTA2 PTA1	MHTLK <mark>SMCNATPQHIVLPESEDKRVLAAAADVVQR</mark> GLAK <mark>ITLLGDPTTILAEAAKLGLDL</mark> QHTMKAMCR <mark>ASPQHIVLPESVDKRVLAAAADVTAR</mark> GLAR <mark>VTLLGDPTTVQAEAK</mark> KLGLDL **:*:**.*:****************************
PTA2 PTA1	SGCNIHNPNTSDRFDKYVDMLVEAR KKKGMTREVAADTLHGDVNFFATMMIVAGDADGMV SGCHIHNPNSSDRFDK YVDMLVEAR KKKGMTREAAADTLHGDINFFGTMMVAAGDADGMV ***.*********************************
PTA2 PTA1	SGAVHTTASTVRPALQVLK <mark>SPDTPLVSSVFIMCLPDR</mark> VVVYGDCAVNVNPSAADLAQIAI SGAIHTTASTIRPALQMLK <mark>NPASSLVSSIFFMCLPDR</mark> VLVYGDCAVNVSPSAADLAAIAT ***:******:**************************
PTA2 PTA1	TSNDTAAAFGIEPR <mark>VAMLSYSTLGSGSGPDVQKVSEAVAIVK</mark> QRRPDIK <mark>VEGPIQYDAAI</mark> TSADTAAAFGIEPR <mark>VAMLSYSTLGSGAGPDVQK</mark> VTEAVALVKQQRQDIK <mark>VEGPIQYDAAI</mark> ** **********************************
PTA2 PTA1	DPKVAAVK <mark>VQGLSEVAGKATVFIFPDLNTGNNTYKAVQQSTGAIAMGPVMQGLLRPVNDL</mark> DPAVAAVKVKGGSEVAGR <mark>ATVFVFPDLNTGNNTYKAVQQSTGAIAMGPVMQGLLKPVNDL</mark> ** ******: *****:*********************
PTA2 PTA1	<pre>SRGCTVPDIINTICVTSIQASRMSSAARAAAAAAAAAAAAAA SRGCTVPDIVNTICVTSIQAMQFKQRTQAAVAAAAAPK*- ********:***************************</pre>