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Appendix

A Optimisation

Given the high-dimensionality of the problem (p ≈ 105 in the following experi-

ments), we use first-order proximal optimisation methods to solve the optimisa-

tion problem

min
β∈Rp

{
E(β) + Ω(β)

}
. (1)

Specifically, we employ FISTA (Beck and Teboulle, 2009), an accelerated

proximal-gradient method, that is a form of gradient-descent that can deal

with non-smooth functions and scales nicely to large problem sizes. This iter-

ative method can minimise objective functions that are composed by the sum

of a smooth term, f , and a non-smooth term g. The method consists of three

basic steps: i) computation of the gradient of the smooth term; ii) computation

of the proximity operator of the non-smooth term, and iii) an accelerated step

which updates the current estimate of the solution as a function of two previous

estimates. The pseudo-code for FISTA is reported in Algorithm 1. The proximity

operator (Moreau, 1962) associated to the convex function g : Rp → R and

evaluated at y ∈ Rp, is defined as

proxλg(y) = argmin

{
1

2
‖x− y‖2 + g(x) : x ∈ Rp

}
. (2)
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FISTA requires ∇f to be Lipschitz continuous, that is, there must exist a

constant L > 0 such that, for all x, x′ ∈ Rp, it holds

‖∇f(x)−∇f(x)‖ ≤ L‖x− x′‖ .

Algorithm 1 Accelerated Proximal-Gradient Method

x1, α1 ← 0, θ1 ← 1
while not converged do
xt+1 ← prox g

L

(
αt − 1

L∇f(αt)
)
.

θt+1 ←
1+
√

1+4θ2t
2 .

αt+1 ← xt+1 + θt−1
θt+1

(xt+1 − xt) .
end while

We stop FISTA, when the relative decrease in objective function between two

iterates is below 10−3 or we have reached 104 iterations. When computing the

solutions for different regularisation parameter values, we start by solving the

problem with the highest value and using the ‘warm restart’ strategy. That is,

we use as starting solution β0 for the next problem, the final solution obtained

for the previous value of the regularisation parameter and so on, until we solve

for the smallest regularisation parameter value.

For the GraphNet method, we have f(β) = E(β) + 1
2λ(1−α)

∑
i∼j(βi−βj)2

and L = ‖XX>‖
m + λ(1− α)‖G‖, where ‖ · ‖ is the spectral norm and G is the

graph Laplacian of the adjacency graph connecting each voxel to its neighbours.

For all the other methods, f(β) = E(β) and L = ‖XX>‖
m .

For the Lasso and the GraphNet methods, we have that g(β) = λ∗‖β‖1, with

λ∗ = λ1 for the LASSO and λ∗ = λα for the GraphNet and

prox g
L

(y) =

(
|y| − λ∗

L

)
+

sign(y)

where (y)+ = y if y > 0 and zero otherwise and both (·)+ and sign are applied

component-wise.

For the methods that employ the Total Variation penalty, we compute the

proximity operator numerically. For this purpose, we rewrite the regulariser as a

composite function

Ω(β) = ‖Bβ‖1 ,

where B = ∇, the discrete gradient operator in 3 dimensions, for the Total
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Variation method, and B =

[
∇
I

]
for the Sparse Total Variation method (I

is the p× p identity matrix). We use the fixed-point scheme in Argyriou et al.

(2011) and Micchelli et al. (2011) to compute the proximity operator of composite

functions g ◦B, in which proxg has a closed form expression.
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