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Supplementary Text S1: Modeling and computational details 
 
‘Kinetic Modeling and Analysis of the Akt/Mechanistic Target of Rapamycin Complex 1 
(mTORC1) Signaling Axis Reveals Cooperative, Feedforward Regulation,’ by Anisur 
Rahman and Jason M. Haugh 
 
Kinetic model of the Akt/mTORC1 signaling axis 
 We describe in mathematical terms the biochemical mechanisms by which stimulation 
of cells with PDGF elicits activation of mTORC1 and the ensuing phosphorylation of S6K1. 
Considering the granularity and emphasis of the model we aimed to develop, we chose not to 
model the PDGF receptor dynamics (ligand binding, receptor dimerization, receptor trafficking, 
and ligand depletion) in detail. Rather, the level of activated receptors is represented by a 
dimensionless signal function, σ(t) (1, 2). 

𝜎(𝑡) = 𝑃 1− 𝑒!!!! + 𝐴(𝑒!!!! − 𝑒!!!!) 
This equation has four adjustable parameters: P representing the plateau (steady-state) value 
of σ(t), A related to the peak value of σ(t), rate constant k1 describing the decay of σ(t), and 
rate constant k2 < k1 describing the initial increase of σ(t). For each of the four PDGF doses, P 
and A are assigned different values, whereas the values of k1 and k2 were the same for all 
doses; thus, there are 10 adjustable parameters that describe the receptor dynamics. 
 Following previous work (2, 3), we assume that the reversible recruitment of PI3K 
enzyme by the receptor (fractional activation e) is relatively rapid (and therefore near 
equilibrium) and saturable. No additional parameter is needed here, because the P and A 
values in the σ function are freely adjustable; i.e., they incorporate the equilibrium constant of 
the PI3K-receptor interaction. 

𝑒 =
𝜎

1+ 𝜎 

 Next is the dynamic equation for phosphoinositide generation. Following previous work 
(4, 5), we assume that the PI3K reaction is insensitive to the availability of the substrate, 
phosphatidylinositol (4,5)-bisphosphate, and that the PI 3-phosphatase activities are 
constitutive and far from saturated. The dimensionless variable l represents the 3’ PI lipid 
density scaled by its maximum (i.e., if PI3K were fully recruited), and the rate constant k3PI 
characterizes the time scale of 3’ PI turnover (4, 5). 

𝑑𝑙
𝑑𝑡 = 𝑘!!" 𝑒 − 𝑙 ;               𝑙 0 = 0 

 The fraction of Akt in the phosphorylated (active) state, a, responds to 3’ PI. 
Phosphorylation is modeled as a bimolecular reaction with rate constant ka, and therefore the 
activities of the kinases involved are implicit. This is reasonable if one considers binding of 3’ 
PI by the pleckstrin homology domain of Akt as the rate-determining step (6). A pseudo-first-
order rate law, with rate constant k-a, describes dephosphorylation of Akt. 

𝑑𝑎
𝑑𝑡 = 𝑘!𝑙 1− 𝑎 − 𝑘!!𝑎;                     𝑎 0 = 0 

 TSC2 and PRAS40 are phosphorylated by Akt, resulting in the neutralization of these 
regulators. In the model, g and p are the fractions of TSC2 (GAP) and PRAS40, respectively, 
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in the phosphorylated state. To account for basal phosphorylation, both Akt-dependent and 
constitutive phosphorylation terms are included. Akt is assumed to be far from saturation, and 
Akt dephosphorylation is assumed constitutive. These equations thus introduce the 6 rate 
constants kg0, kg, k-g, kp0, kp, and k-p. The initial conditions are set such that the system is 
stationary for a = 0. 

𝑑𝑔
𝑑𝑡 = 𝑘!! + 𝑘!𝑎 1− 𝑔 − 𝑘!!𝑔;                     𝑔 0 = 𝑔! =

𝑘!!
𝑘!! + 𝑘!!

 

𝑑𝑝
𝑑𝑡 = 𝑘!! + 𝑘!𝑎 1− 𝑝 − 𝑘!!𝑝;                     𝑝 0 = 𝑝! =

𝑘!!
𝑘!! + 𝑘!!

 

 The model assumes that the small GTPase Rheb is converted to the active, GTP-bound 
state (fraction r) by a constitutive exchange reaction with pseudo-first-order rate constant kr. 
Control is imposed by deactivation of TSC2 GAP activity. The interaction between 
unphosphorylated GAP (fraction 1 – g) and Rheb-GTP is assumed to be far from saturation 
(catalytic efficiency k-r). The initial condition is set such that the system is stationary for g = g0. 

𝑑𝑟
𝑑𝑡 = 𝑘! 1− 𝑟 − 𝑘!! 1− 𝑔 𝑟;                   𝑟 0 = 𝑟! =

𝑘!
𝑘! + 𝑘!!(1− 𝑔!)

 

 The dimensionless mTORC1 activity, m, is affected positively by Rheb-GTP and 
negatively by unphosphorylated PRAS40 (dimensionless r and 1 – p, respectively). To model 
this regulation in a compact manner, we consider mTOR to be in pseudo-equilibrium with 
those two entities, noting that the ‘interaction’ with Rheb-GTP could represent physical binding 
of Rheb-GTP or an indirect yet proportional effect of Rheb exerted on the complex, e.g. by 
affecting substrate binding. Taking M0, Mr, Mp, and Mrp as the fractions of mTORC1 in the 
‘free’, Rheb-associated, PRAS40-bound, and both Rheb- and PRAS40-associated states, and 
assuming that Rheb-GTP and PRAS40 are in excess, the governing equations are as follows. 

𝑀! = 𝐾!𝑟𝑀!;                   𝑀! = 𝐾! 1− 𝑝 𝑀!; 
𝑀!" = 𝛽𝐾!𝑟𝑀! = 𝛽𝐾! 1− 𝑝 𝑀! = 𝛽𝐾!𝐾!𝑟 1− 𝑝 𝑀! 

𝑀! +𝑀! +𝑀! +𝑀!" = 1 

The parameters Kr and Kp are the associated equilibrium constants, and β is a parameter 
characterizing the cooperativity of the two interactions. Thus, the model allows for the nature of 
these interactions to range from mutually exclusive (β = 0) to completely independent (β = 1) to 
positively cooperative (β > 1). Finally, assuming different contributions to the mTOR activity, 
with 𝑚 = 𝛼𝑀! + 1− 𝛼 𝑀!" (constant parameter 0 ≤ α ≤ 1), we obtain the following expression. 

𝑚 =
𝛼𝐾!𝑟 + 1− 𝛼 𝛽𝐾!𝐾!𝑟(1− 𝑝)

1+ 𝐾!𝑟 + 𝐾! 1− 𝑝 + 𝛽𝐾!𝐾!𝑟(1− 𝑝)
 

 Lastly, the kinetic equation for S6K1 phosphorylation, fraction s, is as follows, 
introducing the rate constants ks and k-s. The initial condition is such that the equation is 
stationary for m = m0, where m0 is the value of m calculated with r = r0 and p = p0. 

𝑑𝑠
𝑑𝑡 = 𝑘!𝑚 1− 𝑠 − 𝑘!!𝑠;                   𝑠 0 =

𝑘!𝑚!

𝑘!𝑚! + 𝑘!!
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Acquisition of model parameter set ensembles 
 We implemented a Monte Carlo routine based on the Metropolis algorithm (7, 8) to align 
the model to our data and thus identify sets of model parameter values that fit the data almost 
optimally. The algorithm was implemented in MATLAB (MathWorks), adapted from code 
described in detail previously (2). A summary of the method follows. 
 
1. An initial set of parameters ki is chosen. For the results shown in the paper, the initial 

values were all 0.1 (we confirmed that initial values of 1, or random initial values, yielded 
approximately the same results). Using these initial values, the dimensionless model output 
is computed. 

2. The model output is aligned to the means of the experimental data by scaling the model 
output by alignment factors for each readout j (phospho-Akt, phospho-TSC2, phospho-
PRAS40 and phospho-S6K1). For each parameter set i, the value of each alignment factor 
j is chosen to minimize the sum of squared deviations, SSDij. This is achieved via a branch-
and-bound subroutine. In calculating the SSD, we weighted the data for different PDGF 
doses by the following factors, to offset differences in the magnitudes of the data values: 1 
for 0.3 and 1 nM PDGF, 2 for 0.03 nM PDGF, and 5 for 0.01 nM PDGF. 

3. The cumulative sum of squared deviations, cSSDi, is calculated as follows. 
𝑐𝑆𝑆𝐷! = 𝑆𝑆𝐷!"

!

 

4. Each parameter ki is updated according to the following equation. 
𝑘!!! = 𝑘!(1+ Δ𝜇  randn) 

where randn is a random number drawn form a standard normal distribution. For this study, 
the value of the parameter Δµ was 0.03. The step is redone if ki+1 is chosen to be less than 
10-4 or greater than 104. 

5. Steps 2 and 3 are repeated for the new parameter set. 
6. If cSSDi+1˂ cSSDi, the new parameter set is accepted, and i is incremented. Otherwise, it 

might still be accepted, with a probability given by the following formula. 

𝑃!!! = 𝑒𝑥𝑝 −
𝑐𝑆𝑆𝐷!!! − 𝑐𝑆𝑆𝐷!

𝑇!
 

𝑇! =   𝑇!𝑐𝑆𝑆𝐷! 
The value of Ti is called the ‘temperature’, which determines how forgiving the algorithm is 
when the fit fails to improve. The parameter T0 is the ‘standard’ temperature (corresponding 
to cSSDi = 1), which was set to a value of 0.01 for this study. I.e., a parameter set with 
much greater than 1% higher cSSD than its predecessor is severely penalized. If the new 
parameter set is rejected, the procedure is repeated using the previous parameter set as 
the input. 

7. The algorithm is run for a sufficient long time, until at least 50,000 parameter sets are 
accepted. From these, we selected the 10,000 parameter sets with the lowest cSSDi to 
comprise the parameter set ensemble used to generate modeling results. 

 
 For each parameter set in the ensemble, the model was recalculated, and the relevant 
outputs were scaled by their respective alignment factors for comparison to the experimental 
data. The scaled model output for each time course is reported as the ensemble mean ± 
standard deviation, allowing visual assessment of the accuracy and precision of the fit. A 
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summary of the distributions for the 27 parameters of the main model is given in the table 
below. 

	  

Parameter Definition Min Q1 Median Q3 Max 

P (0.01)
 

Signal plateau, 0.01nM PDGF 0.0001 0.00261 0.00347 0.00423 0.00915 

A (0.01) Signal amplitude, 0.01nM PDGF 0.0658 0.162 0.209 0.317 0.674 

P (0.03) Signal plateau, 0.03nM PDGF 0.00168 0.00653 0.00833 0.0104 0.0188 

A (0.03) Signal amplitude, 0.03nM PDGF 0.695 1.51 1.86 2.86 6.96 

P (0.3) Signal plateau, 0.3nM PDGF 0.108 0.245 0.303 0.347 0.560 

A (0.3) Signal amplitude, 0.3nM PDGF 3.01 7.20 9.07 13.6 32.9 

P (1) Signal plateau, 1nM PDGF 0.116 0.262 0.325 0.375 0.587 

A (1) Signal amplitude, 1nM PDGF 7.38 24.9 31.7 55.9 143 

k1 Rate constant, receptor activity decay 0.0657 0.0876 0.0954 0.106 0.170 

k2 Rate constant, receptor activity onset 0.0910 0.122 0.137 0.155 0.288 

k3PI Rate constant, 3' PI turnover 0.0768 0.193 0.238 0.300 0.489 

ka Rate constant, Akt phosphorylation 0.00319 0.0146 0.0256 0.0969 0.209 

k–a Rate constant, Akt dephosphorylation 0.110 0.279 0.332 0.415 1.06 

kg0 Rate constant, basal TSC2 phosph. 0.0133 0.0225 0.0262 0.0314 0.0595 

kg Rate constant, TSC2 phosph. by Akt 3.44 16.8 32.3 52.1 143 

k–g Rate constant, TSC2 dephosph. 0.114 0.199 0.231 0.276 0.509 

kp0 Rate constant, basal PRAS40 phosph. 0.0111 0.0294 0.0379 0.0498 0.146 

kp Rate constant, PRAS40 phosph. by Akt 7.57 47.7 107 162 395 

k–p Rate constant, PRAS40 dephosph. 0.0350 0.104 0.137 0.184 0.432 

kr Rate constant, Rheb-GDP à -GTP 0.0007 0.00422 0.00604 0.00903 0.0401 

k–r Rate constant, Rheb-GTP hydrolysis 0.039 0.189 0.304 0.427 1.08 

Kr Equilibrium constant, Rheb/mTOR 1.51 12.6 16.8 38.4 99.2 

Kp Equilibrium constant, PRAS40/mTOR 108 520 781 2.78e3 5.27e3 

ks Rate constant, S6K1 phosph. 0.612 3.32 4.79 6.37 14.6 

k–s Rate constant, pS6K1 dephosph. 0.0245 0.0473 0.0582 0.0706 0.143 

β mTORC1 cooperativity parameter 0.0001 0.000197 0.000292 0.000818 0.00779 

α mTORC1 activity parameter 0.235 0.784 0.888 0.951 0.999 

 
Statistics of the parameter set ensemble for the main model of the Akt/mTORC1 signaling axis. 
All parameters labeled as rate constants have units of min-1; all others are dimensionless. For each 
parameter, the minimum (Min), first quartile (Q1), median, third quartile (Q3), and maximum (Max) of 
the 10,000 values in the ensemble are listed. 
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Variations of the model tested 
 Along with the main model described in the previous section, two variations were tested; 
we refer to these ‘control’ models as Rheb only and PRAS40 only. In these variations, the 
equation describing the regulation of mTOR (species m) is replaced by a differential equation 
as follows. 

!"
!"
= 𝑘!𝑟 1−𝑚 − 𝑘!!𝑚;                   𝑚 0 = !!!!

!!!!!!!!
 (Rheb only) 

!"
!"
= 𝑘! 1−𝑚 − 𝑘!! 1− 𝑝 𝑚;                   𝑚 0 = !!

!!!!!! !!!!
 (PRAS40 only) 

Thus, in the Rheb only model it is assumed that mTOR is simply activated by Rheb; 
modulation of PRAS40 is neglected. Conversely, in the PRAS40 only model, mTOR is simply 
activated through neutralization of PRAS40. The table below shows a comparison of how well 
the main model and these two model variations fit the data. Cumulative SSD values of each 
readout (Akt, TSC2, PRAS40 and S6K1), reported as mean ± s.d. for the ensemble, are 
reported; a lower cSSD indicates a closer overall fit. The main model consistently outperforms 
the two variations in terms of the cSSD values for each readout. Finally, a comparison index 
that penalizes models having more adjustable parameters, the Akaike Information Criterion 
(AIC) (9), was calculated for each model (lower AIC is better). The main model and PRAS40 
only model have approximately the same mean AIC values, despite the main model having 4 
more adjustable parameters. That said, the subsequent measurements in Rheb- and TSC2-
depleted cells show that the underlying assumption of the PRAS40 only model is false. 
 Also shown in the table are the results of an alternative fit of the main model, with the 
parameter constraints α = 1, β = 1 (as discussed in the main text). This corresponds to the 
scenario where Rheb-GTP and PRAS40 engage mTORC1 independently, with PRAS40 
canceling the Rheb-induced activation of mTORC1. 
 

 Main model Rheb only PRAS40 only α = 1, β = 1 

cSSDAkt 2.93 ± 0.40 4.34 ± 0.39 3.23 ± 0.40 3.93 ± 0.37 

cSSDTSC2 2.48 ± 0.26 3.74 ± 0.44 2.46 ± 0.25 2.34 ± 0.23 

cSSDPRAS40 1.17 ± 0.15 1.01 ± 0.15 1.52 ± 0.17 1.32 ± 0.21 

cSSDS6K1 2.56 ± 0.24 3.84 ± 0.41 2.77 ± 0.27 3.57 ± 0.36 

AIC (N=84) 106.2 131.1 105.5 118.9 

# of parameters (k) 27 25 23 25 
 
Table S2: Model comparisons. Cumulative SSD values for each readout (ensemble mean ± s.d.) and 
the Akaike Information Criterion (AIC) value is listed for each model. The formula for AIC is AIC = N [1+ 
ln(2π) + ln(cSSD/N)] + 2k, where N is the number of observations and k is the number of parameters. 
 
 
Predictions based on shRNA-mediated depletion of regulatory proteins 
 To predict how system dynamics are affected by depletion of regulatory proteins, certain 
parameters were adjusted across the ensemble. For example, to represent 80% knockdown of 
Rheb, the parameter Kr was reduced by 80%; i.e., the value of Kr in each parameter set was 
multiplied by 0.2. Likewise, for TSC2 and PRAS40 knockdown, the parameters adjusted are k-r 
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and Kp, respectively. Then the estimated pS6K1 time course was computed for each 
parameter set (with the previously determined alignment factor applied), and the ensemble 
mean constitutes the model prediction. To allow the model prediction to be compared to the 
corresponding experiment, both were normalized so that the mean of the control (for the same 
time points) equals 1. 
 
Steady-state analysis based on fixed Akt activity 
 In this analysis, the Akt activity fraction, a, was fixed at various values from 0 to 1 and 
was considered as the input. The corresponding steady-state values of g, p, r, and m were 
derived by setting the right-hand sides of the differential equations equal to zero and 
simplifying the resulting algebraic equations. These equations were solved for each parameter 
set to generate ensemble predictions. 
 
Mathematical analysis of mTORC1 regulation by PRAS40 and Rheb-GTP 
 The model considers two distinct ways for PRAS40 to antagonize Rheb-induced 
mTORC1 activity: through binding competition (β < 1) or through modulation of catalytic activity 
(α > 0.5).  Although combinations thereof are allowed in the model, we find it instructive to 
examine the limiting cases, β = 0 (perfectly competitive) vs. β = 1, α = 1 (non-competitive). 
 Considering the perfectly competitive case, with β = 0 and α arbitrarily set to 1, the 
mTORC1 activity is given by 

𝑚 =
𝐾!𝑟

1+ 𝐾!𝑟 + 𝐾! 1− 𝑝
 

At steady state, it is readily shown that r and p depend on Akt activity a as follows. 

𝑟 =
𝑟!𝑎!∗ + 𝑎
𝑎!∗ + 𝑎

;                   𝑎!∗ =
𝑘!! + 𝑘!! 1+ 𝑘!! 𝑘!

𝑘!
 

𝑝 =
𝑝!𝑎!∗ + 𝑎
𝑎!∗ + 𝑎

;                   𝑎!∗ =
𝑘!! + 𝑘!!

𝑘!
 

Substituting, 

𝑚 =
𝐾! 𝑟!𝑎!∗𝑎!∗ + 𝑟!𝑎!∗ + 𝑎!∗ 𝑎 + 𝑎!

1 + 𝐾!𝑟! + 𝐾! 1 − 𝑝! 𝑎!∗𝑎!∗ + 1 + 𝐾!𝑟! 𝑎!∗ + 1 + 𝐾! + 𝐾! 1 − 𝑝! 𝑎!∗ 𝑎 + 1 + 𝐾! 𝑎!
 

This equation shows that mTORC1 activity will respond to that of Akt with substantial 
ultrasensitivity (with a Hill coefficient approaching 2), provided that certain conditions are met.  
Evaluating the numerator in the equation above, one condition for ultrasensitivity is 

𝑟!𝑎!∗ + 𝑎!∗ ≪ 1 

This inequality is readily achieved, requiring only that the basal Rheb-GTP level, r0, is low and 
that PRAS40 phosphorylation is close to saturation; the latter is required for the sensitivity of 
the neutralization of a negative regulator motif (10). Another condition for ultrasensitivity is 
based on the denominator of the m(a) function above: 

1+ 𝐾!𝑟! + 𝐾! 1− 𝑝! 𝑎!∗𝑎!∗ ≫ 1+ 𝐾!𝑟! 𝑎!∗ + 1+ 𝐾! + 𝐾! 1− 𝑝! 𝑎!∗ 𝑟!𝑎!∗ + 𝑎!∗  

In the limit of r0 and p0 ≈ 0, this inequality reduces to 
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𝐾!𝑎!∗ ≫ 1+ 𝐾! + 𝐾! 𝑎!∗  

This condition is readily met if 𝐾! ≫ 1 (high affinity of unphosphorylated PRAS40 binding to 
mTORC1) and 𝑎!∗ ≫ 𝑎!∗  (again, if PRAS40 phosphorylation is highly saturable). 
 Turning to the noncompetitive case, the mTORC1 activity is given by 

𝑚 =
𝐾!𝑟

1+ 𝐾!𝑟 1+ 𝐾! 1− 𝑝
 

Substituting the steady-state expressions for r and p, and simplifying, 

𝑚 =
𝐾! 𝑟!𝑎!∗𝑎!∗ + 𝑟!𝑎!∗ + 𝑎!∗ 𝑎 + 𝑎!

1 + 𝐾!𝑟! 1 + 𝐾! 1 − 𝑝! 𝑎!∗𝑎!∗ + 1 + 𝐾!𝑟! 𝑎!∗ + 1 + 𝐾! 1 + 𝐾! 1 − 𝑝! 𝑎!∗ 𝑎 + 1 + 𝐾! 𝑎!
 

In this case, the numerator inequality is the same, but the denominator inequality (again, in the 
limit of r0 and p0 ≈ 0) is different: 

𝐾!𝑎!∗ ≫ 1+ 𝐾! 1+ 𝐾! 𝑎!∗  

This imposes a constraint on the magnitude of the parameter Kr that is more stringent than the 
competitive case, but this scenario is nonetheless capable of an ultrasensitive response. 
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