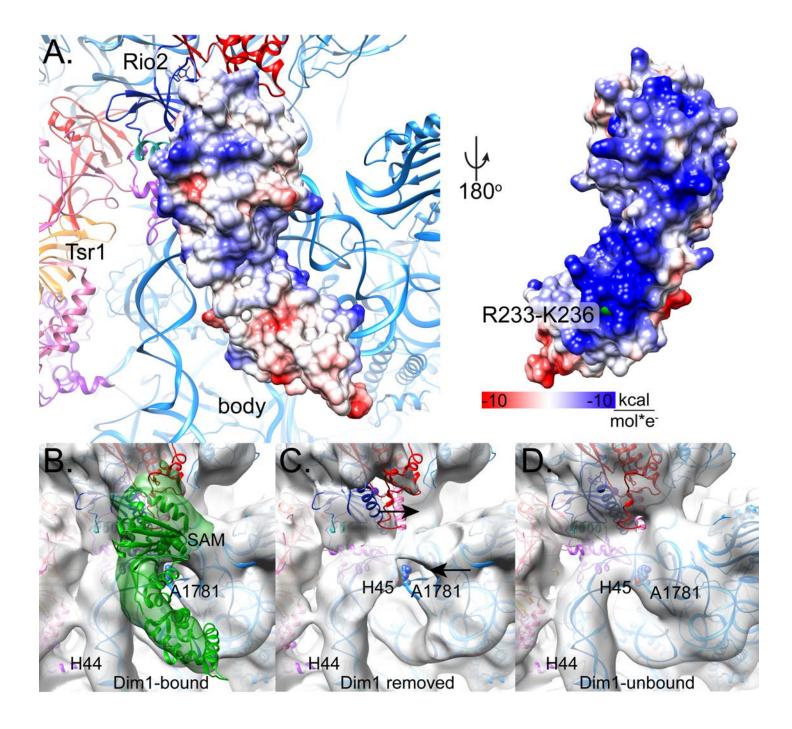
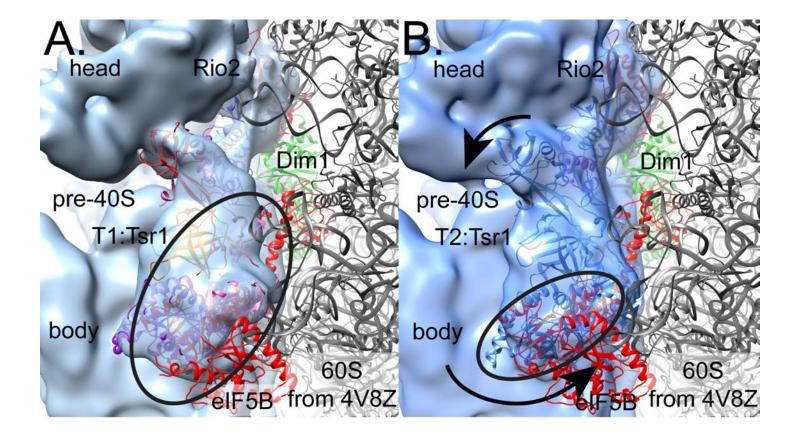

Figure S1, related to Figure 1: Cryo-EM image processing flow chart.





≥ 20 17 14 11 ≤ 8 Å

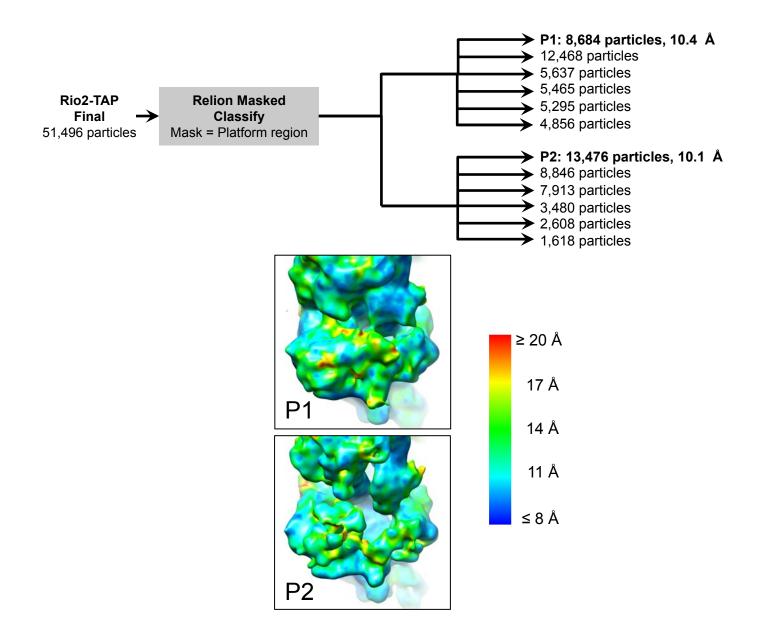

Figure S3, related to Figure 4: Dim1 Electrostatics. A. Dim1, docked into pre-40S, shows one neutral face and another highly charged face. Electrostatics were calculated with in Chimera. **B.** Dim1 was positioned according to the position of its active site and point variants shown to affect binding. The position of R233-K236 is marked with a green ball. **C.** The Dim1-containing map with the Dim1 density removed via segmentation subtraction in Chimera. **D.** The same region but from the structure that is lacking Dim1, highlighting differences in the h45 region between Dim1-bound and Dim1-minus pre-40S ribosomes.

Figure S4, related to Figures 2 and 4: Model of 80S-like ribosomes. By superimposing Rps21, which is far from the interface, eIF5B-containing 80S ribosome fits over Rio2 and three of Tsr1's four domains. Dim1 conflicts with the rRNA. At least Rio2 and Tsr1 are found together with eIF5B in 80S-like ribosomes that represent an assembly intermediate that appears involved in proofreading. Rotation of Tsr1 away from the large subunit, towards the platform, akin to the movement from T1 (**A**.) to T2 (**B**.), would allow both Tsr1 and eIF5B to bind simultaneously.

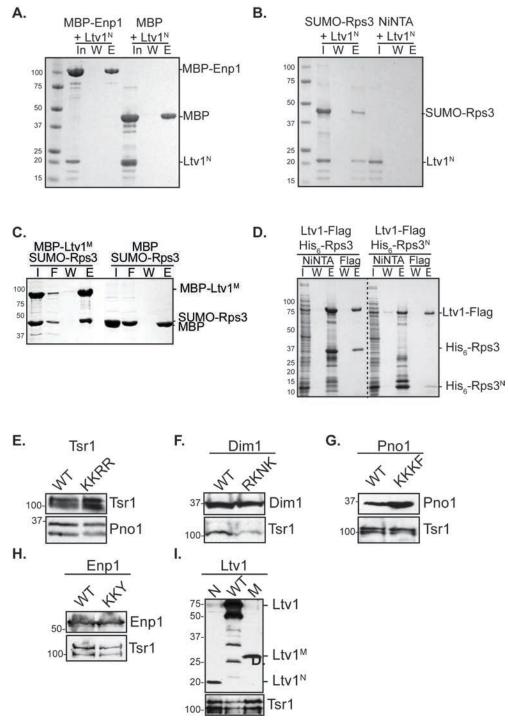


Figure S5, related to Figure 5: Focused classification of Ltv1-TAP platform <u>AFs</u>

Legend: From the final Ltv1-TAP refinement, focused classification identified classes where the putative Nob1 density was either present or absent. A second generation of focused classification revealed several classes in which both Pno1 and Dim1 were present (P1), as well as several classes in which only Pno1, but not Nob1, was present (P2).

Figure S6, related to Figure 6: Coomassie-stained SDS-PAGEs of protein binding assays and Western blot analyses of AFs and their variants. The pulled down fractions shown are: I, input; F, flow-through; W, final wash; and E, eluted. **A.** The N-terminal fragment of Ltv1 (Ltv1^N) does not bind to Enp1 or MBP (control). **B.** Ltv1^N binds to SUMO-Rps3 but not to the Ni-NTA resin. **C.** The Ltv1 core fragment (Ltv1^M) is sufficient for binding to SUMO-Rps3. **D.** Double-affinity purification of His₆-Rps3/Ltv1-Flag complex over Ni-NTA and Flag resins. The N-terminal KH domain of Rps3 interacts with Ltv1. The dotted line represents a lane of the gel that was irrelevant to the experiment and was, thus, digitally deleted. **For E-I:** Numbers on the right indicate the molecular weight markers. Pno1 is used as loading control in A and Tsr1 in B-E. Western blot analyses of total cell lysates from **E.** Tsr1 (WT) and its mutant (KKRR). **F.** Dim1 (WT) and its mutant (RKNK). **G.** Pno1 (WT) and its mutant (KKKF). **H.** Enp1 (WT) and its mutant (KKY). **I.** Ltv1 (WT) and its truncations N- Ltv11-180, M- Ltv1185-394.

Table S1. Protein structure models used in this study, related to Figures 2-6

Each AF was modeled in our cryo-EM map using one of the following X-ray crystal or computational models.

AF	PDB	Model	Species	
Tsr1	5IW7	n/a	S. cerevisciae	
Rio2	4GYG	n/a	C. thermophilum	
Dim1	1ZA9	n/a	H. sapien	
Nob1	2LCQ	n/a	P. horikoshii	
Pno1	3AEV	n/a	P. horikoshii	
Rps3	4V88	n/a	S. cerevisciae	
Enp1- TPR	n/a	Phyre	n/a	

Table S2. Yeast strains used in this study, related to Figures 2, 4, 5, and 6

Some biochemical experiments were performed using recombinant yeast strains, summarized here.

Strain	Description	Genotype	Reference	
YKK87	Rio2TAP	BY4741; Rio2TAP::His	Open Biosystems	
YKK88	Ltv1TAP	BY4741; Ltv1TAP::His	Open Biosystems	
ҮКК73	ΔLtv1	BY4741; Ltv1::KAN	Open Biosystems	
YKK352	Rio2TAP; ΔLtv1	BY4741; Rio2TAP::His; Ltv1::KAN	(Strunk et al., 2011)	
YKK427	GAL1::Enp1	BY4741; GAL1Enp1::KAN	This work	
YKK487	GAL1::Pno1	BY4741; GAL1Pno1::KAN	This work	
YKK410	GAL1::Dim1	BY4741; GAL1Dim1::KAN	This work	
YKK367	Ltv1TAP; GAL1::Tsr1	BY4741; Ltv1TAP::His; GAL1Tsr1::KAN	(Strunk et al., 2011)	

Table S3. Vectors used in this study, related to Figures 2, 4, 5 and 6

Some biochemical experiments were performed using the recombinant DNA vectors

summarized here.

Vector	Description	Vector information	Reference	
pKK193	pSV272-Ltv1	kan ^r , T7 promoter, lac	(Campbell and	
prr 195		operator	Karbstein, 2011)	
pKK1316	pSV272-Ltv1 ^M (185-394)	kan ^r , T7 promoter, lac	This work	
practore		operator		
pKK1313	pSV272-Ltv1 ^N (1-180)	kan ^r , T7 promoter, lac	This work	
practore		operator		
pKK199	pSV272-Enp1	kan ^r , T7 promoter, lac	(Campbell and	
		operator	Karbstein, 2011)	
pKK1317	pSV272-Enp1 ^{TPR} (154-483)	kan ^r , T7 promoter, lac	This work	
-		operator		
pKK1432	pETDuet-1- His6-Rps3/ Ltv1-Flag	amp ^r , T7 promoter, lac operator	This work	
	pETDuet-1-His6-Rps3 ^N (1-95)/ Ltv1-	amp ^r , T7 promoter, lac		
pKK1434	Flag	operator	This work	
		kan ^r , T7 promoter, lac	(Ghalei et al.,	
pKK1230	pET28-SUMO-Rps3	operator	2015)	
		amp ^r , CEN, Ura3, TEF		
pKK3541	pRS416- Enp1	promoter, CYC1	This work	
•		terminator		
	-D0446	amp ^r , CEN, Ura3, TEF		
pKK3797	pRS416- Enp1_K378E,K379E,Y380I	promoter, CYC1	This work	
	Ellp1_K376E,K379E,13801	terminator		
		amp ^r , CEN, Ura3, TEF		
pKK3270	pRS416- Pno1	promoter, CYC1	This work	
		terminator		
pKK3275		amp ^r , CEN, Ura3, TEF		
	pRS416- Pno1-ΔN (87-274)	promoter, CYC1	This work	
		terminator		
~KK2922	pRS416-	amp ^r , CEN, Ura3, TEF	This work	
pKK3823	Pno1_K208E,K211E,K213E, F214A	promoter, CYC1 terminator		
		amp ^r , CEN, Ura3, TEF		
pKK3295	pRS416- Tsr1	promoter, CYC1	This work	
pRR3233		terminator		
pKK3764		amp ^r , CEN, Ura3, TEF		
	pRS416-	promoter, CYC1	This work	
	Tsr1_K201E,K203E,R245E,R248E	terminator		
pKK3146		amp ^r , CEN, Ura3, TEF		
	pRS416- Dim1	promoter, CYC1	This work	
		terminator		
	pRS416-	amp ^r , CEN, Ura3, TEF		
pKK3836	Dim1_R233E,K234E,N235D,K236E	promoter, CYC1	This work	
	Dinit_1(200E,1(204E,1(200E,1(200E	terminator		

Movie 1, related to Figure 2: Conformational changes in Tsr1. Tsr1 exists in at least two discrete positions, one that does not contact h44 (T1) and another that does (T2). The two conformations are related to one another by a $\sim 28^{\circ}$ rotation. We used the "morph" command in Chimera to move between the positions to help visualize the change.

Movie 2, related to Figure 3: Conformational changes in Rio2. Rio2 exists in at least two discrete positions, one that is elongated (R1) and another that is U-shaped (R2). The two conformations are related to one another by opening at the ATP biding cleft. We used the "morph" command in Chimera to move between the positions to help visualize the change.