

Supplementary Information

Supplementary Figure 1. Overlap of newly assembled IncRNAs with other IncRNA sets: MiTranscriptome (TCGA), NONCODE and RefSeq IncRNAs. The MiTranscriptome IncRNAs were downloaded from a study on TCGA poly(A)+ RNA-seq data¹. The NONCODE IncRNAs were downloaded from NONCODE database (V4)². The Refseq IncRNAs were downloaded from NCBI (Release 72) (http://www.ncbi.nlm.nih.gov/refseq)³. The numbers in **(A)** are counting on transcripts, the numbers in **(B)** are counting on genes, each of which could include multiple transcripts, because Refseq only provides IncRNA annotation in transcript format. The numbers in the upper panel of each plot are counted when the overlapping is larger or equal to 50% of the gene/transcript length. The numbers in the lower panel are counted when overlapping is larger or equal to 1bp.

Supplementary Figure 2. Saturation plots in the 60 samples we sequenced. 60 datasets were used to calculate the expression ratios of newly assembled lncRNAs, GENCODE lncRNAs and protein-coding genes, The FPKM >=0.1 is set as the expression cutoff. Each point at a given number of considered datasets corresponds to different combination of datasets. The figure depicts saturation plot for newly assembled lncRNAs (**A**), GENCODE lncRNAs (**B**) and protein-coding genes (**C**)

Supplementary Figure 3. LncRNAs' genomic positions and overlapped genomic elements. (A) Classification of newly assembled IncRNAs according to their genomic locations with respect to GENCODE v19. Antisense, overlapped with protein-coding genes (including exonic, intronic, up- and down- stream 2K regions) in the antisense strand. Intronic, located within the intronic regions of protein-coding genes in same strand. Cis-regulatory region, overlapped with cis-regulatory regions (up- and down- stream 2K regions, no exonic overlap) of protein-coding genes in the same strand. Overlap with others, overlapped with other types of annotated transcripts in either strand. Intergenic, all remaining IncRNAs. (B) Overlap with pseudogenes and transposable elements. The annotation of transposable elements is downloaded using UCSC table browser. The pseudogene annotation is from GENCODE v19. All IncRNAs overlapped these elements in either strand is counted. Coverage is calculated as the length of overlapped exonic regions to the length of IncRNAs. The ratio of all IncRNAs overlapped with TE (coverage>0) is nearly 80%, which is consistent with previous studies⁴. (C) Number of IncRNAs containing conserved domains/motifs at sequence and structure levels. Structure search to conserved RNA models in Rfam is performed using *cmscan*. Sequence search to conserved RNA models in Rfam is performed using blast.

Supplementary Figure 4. Additional characterization of IncRNAs. Additional characteristics comparison among GENCODE IncRNA, newly assembled IncRNA and protein-coding genes. (**A**) The number of exons per transcript. (**B**) Exon size distribution. (**C**) Transcript GC content.

Supplementary Figure 5. Aggregation plots for signals of active markers. We utilized ENCODE Project data sets⁵ to show the signal enrichment of different modification signals around the transcription start site (TSS) of different kinds of transcripts. The processed signals of H3K4me3, H3K27ac, DNase I hypersensitivity and Pol II binding data of XX cell lines were downloaded from the UCSC Genome Browser (https://genome.ucsc.edu/). The aggregation plots were draw around each TSS (upstream and downstream 10K nt) for each gene category (e.g. IncRNA, protein-coding gene, etc).

Supplementary Figure 6. Differentially expressed IncRNAs in individual patients defined by GFOLD. The bar plots depict the number of differentially expressed IncRNAs in each individual patient. (A) Tumorigenesis-associated, that is, differentially expression between primary tumor and adjacent normal tissue. (B) Metastasis-associated, that is, differentially expression between primary tumor and PVTT. Patient 14 is not included for PVTT because the sample was contaminated.

Supplementary Figure 7. Recurrence of the differentially expressed IncRNAs defined by GFOLD. The bar plots depict the recurrence of differentially expressed IncRNAs. (A) Tumorigenesis associated, that is, differentially expressed IncRNAs between adjacent normal tissues and primary tumors, including normal > tumor and normal < tumor; (B) Metastasis associated, that is, differentially expressed IncRNAs between primary tumors and PVTTs, including tumor > PVTT and tumor < PVTT. The axis is the number of patients in which the IncRNAs were differentially expressed. Patient 14 is not included for PVTT because the sample was contaminated.

В

Α

Supplementary Figure 8. PCA based on the expression profile of recurrently deregulated IncRNAs. (A) Tumorigenesis-associated recurrently deregulated IncRNAs. (B) Metastasis-associated recurrently deregulated IncRNAs.

В.

Supplementary Figure 9. Molecular classification of HCC. The HCC tumors from TCGA LIHC study, our study (Yang et al.) and another published study (Zhang et al.)⁶ were clustered into three HCC subclasses (S1, S2 and S3) based on 619 signature genes^{7, 8}. (**A**) The heatmaps depict the gene expression profile of the 619 genes in each HCC subclass. High and low expression levels are represented by red and blue color in the heatmaps, respectively. Predicted subclasses are shown in the colorbar using red (S1), blue (S2), yellow (S3) and the samples with low confident prediction

(FDR \geq 0.05) were labeled in grey. (**B**) The bar plots depict GO enrichment for the upregulated protein-coding genes in each HCC subclass, which was consistent with previous study^{7, 8}.

С

	:	S1	:	S2	S3		
	upregulated	downregulated	upregulated	downregulated	upregulated	downregulated	
Total	581 236		464	114	355	1404	
Recurrently upregulated IncRNAs associated with tumorigenesis	16	0	31	1	1	74	
Recurrently downregulated IncRNAs associated with tumorigenesis	13	82	1	45	133	15	
Recurrently upregulated IncRNAs associated with Metastasis	7	3	6	1	1	16	
Recurrently downregulated IncRNAs associated with Metastasis	8	7	2	7	11	12	

Supplementary Figure 10. Significantly deregulated IncRNAs in each subclass. Significantly deregulated IncRNAs in each HCC subclass. The upregulated (**A**) and downregulated (**B**) IncRNAs were defined by Wilcoxon rank-sum tests (q-value < 0.05 and fold change > 2) on TCGA expression data, comparing one subclass with the other two. High and low expression levels are represented by red and blue color in the heat-maps, respectively. Predicted subclasses are shown in the color bar using red (S1), blue (S2), yellow (S3) and the samples with low confident prediction (FDR \geq 0.05) were labeled in grey. (**C**) Summary of total IncRNAs, recurrently deregulated IncRNAs associated with metastasis, which were deregulated in each subclass. The details were listed in Supplementary File 7.

Supplementary Figure 11. GO and Pathway enrichment heatmap for all subclusters defined by co-expression network. Function enrichment for protein-coding genes from various sub-clusters which defined by co-expression network. (A) GO enrichment; (B) KEGG pathway enrichment.

Supplementary Figure 12. Knockdown of candidate IncRNAs in three liver cancer cell lines using siRNA mixture. Knockdown of candidate IncRNAs in three liver cancer cell lines using siRNA mixtures. (A) The relative expression levels of all 10 candidate IncRNAs in three liver cancer cell lines, including HepG2 (black), SMMC-7721 (red) and HCCLM9 (blue) cell lines. (B) The relative expression levels of all candidate IncRNAs after knockdown using siRNA mixture (blue) or after treatment with control siRNA (red). Error bars represent the s.d. of three experiment replicates.

В

IncRNA	HepG2			SMMC-7721				HCCLM9				
	mixture	siRNA-1	siRNA-2	siRNA-3	mixture	siRNA-1	siRNA-2	siRNA-3	mixture	siRNA-1	siRNA-2	siRNA-3
WDFY3-AS2	*	*	**	***		**	*	*				
RP1-153P14.5					**	**	*	*				
AC096579.7												
HAND2-AS1						**	**	**		**	**	**
LINC01018												
RP11-731F5.2												
RP11-166D19.1	*	*	**	*					*	*	*	*
XLOC_014515										*	*	*
XLOC_015969									**	*	*	*
XLOC_055355									**		*	**
Negative Control												

*** p-value<0.001 **p-value<0.01 *p-value<0.05

Supplementary Figure 13. Knockdown of candidate IncRNAs in three liver cancer cell lines using three siRNA separately. Knockdown of candidate IncRNAs in three liver cancer cell lines using three siRNA separately. (A) The relative expression levels of all candidate IncRNAs after knockdown using all three siRNA separately or after treatment with control siRNA in three liver cancer cell lines (HepG2, SMMC-7721 and HCCLM9). (B) The heatmap depicting the transwell migration assays for all candidate IncRNAs. The values in the heatmap showing the fold-change (P-value<0.05) of the migration cell numbers of knockdown cells using siRNA mixtures and three siRNAs separately over those of control cells. All results are expressed as the mean derived from three independent experiments. Student's unpaired t-test was used for comparison of knockdown cells and control cells. Details of the heatmap values are shown in Supplementary File 10. *P-value<0.05, **P-value<0.01, ***P-value<0.001, t-test, n=3. (C) The barcharts showing the CCK8 cell proliferation assays for all candidate IncRNAs. The column values represent OD450 values of three liver cancer cell lines after knockdown of candidate IncRNAs using three siRNAs separately or after treatment with control siRNA. We repeated every siRNA's experiment three times; and details of all values are shown in Supplementary File 11. Error bars represent the s.d. of three experiment replicates.

Supplementary Tables

Supplementary Table 1. Filtering steps for identifying newly assembled IncRNAs

Step		Parameters	Trans	script		
	0.Merged transcriptome	NA	393,	,479		
Filter	1.Filter by annotation ¹	No overlap	73,067			
	2.Filter by length	length > 200bp	72,0	065		
	3.Filter by strand	strandness	68,095			
	4.Annotate by		mono-exonic	multi-exonic		
	exon number	exon number	51,535	16,560		
	5.filter by distance	distance > 2000bp	46,726			
	6.filter by expression	FPKM > 0.5 in at least 1 sample	9,908			
	7.novel transcript	NA	26,468			
	8.Filter by CPC	default	10,449			
	9.Filter by COME	default	10,196			
Total newly asser	10,196 (8,	603 gene)				

¹We used protein-coding genes (exons) and lncRNAs (exons) annotated in Gencode (V19) as the known annotations.

Supplementary Table 2. Candidate IncRNAs for loss-of-function assay

IncRNAs name	ENSEMBL ID	IncRNA significantly correlated cell adhesion genes	cluster
WDFY3-AS2	ENSG00000180769	CD4, SRPX, BMX, ENG, CXCL12, STAB2, MMRN1, DPT, ITGAD ,BMP10, MFAP4, TNXB, DSCAM	25
RP1-153P14.5	ENSG00000227920	LY9, ITGA9, LAMA2	18
AC096579.7	ENSG00000231486	CD6, EPHA3 ,LAMC3, SRPX, AEBP1, ENG, CXCL12, SELPLG, CPXM2, LY9, OMD, ISLR, EMILIN1, MMRN1 ,DPT ITGA9, CD226, CD96, SVEP1, MFAP4, TNXB, SELP, LAMA2	18
HAND2-AS1	ENSG00000237125	EPHA3, LAMC3, SRPX, BMX, ENG, CXCL12, CPXM2, CLDN10, STAB2, MMRN1, DPT, ITGA9, CD226, BMP10, SVEP1, MFAP4, TNXB, SELP, LAMA2	25
LINC01018	ENSG00000250056	CDHR5, MPDZ, GNE, AZGP1, DSCAM, COL18A1	4
RP11-731F5.2	ENSG00000253364	CD6, SIGLEC6	25
RP11-166D19.1	ENSG00000255248	EPHA3, SRPX, AEBP1, PCDHB12, CPXM2, OMD, EMILIN1, COL6A2, IGFBP7, SVEP1, MFAP4, TNXB	25
XLOC_014515	-	AMBP, STAB2, GNE, AZGP1, BMP10, DSCAM, COL18A1	4
XLOC_015969	-	GP1BA, DPT, MMRN1	1
XLOC_055355	-	ITGA2B, COL19A1, LAMA1, ADAM2, IGSF11, NCAM2	25

- Cell adhesion gene list were derived from gene ontology annotation (GO:0007155) (<u>http://geneontology.org/</u>);
- 2. IncRNAs in bold are metastasis-associated recurrently deregulated IncRNAs.

Supplementary Table 3. siRNA sequence used for candidate IncRNAs

IncRNA Name	GENCODE ID	siRNA No.	siRNA sense sequences	siRNA antisense sequences
		siRNA-1	GCCUAGAAAUGGCAUGCAUTT	AUGCAUGCCAUUUCUAGGCTT
WDFY3-AS2	ENSG00000180769	siRNA-2	GCCAUACCCUUGACCAGAATT	UUCUGGUCAAGGGUAUGGCTT
		siRNA-3	GCUGUUUGAAUCAGGAAUATT	UAUUCCUGAUUCAAACAGCTT
		siRNA-1	GCAUGCAUGUUAGCAUGACTT	GUCAUGCUAACAUGCAUGCTT
RP1-153P14.5	ENSG00000227920	siRNA-2	GGGCAUUCCUGAAUGAGUGTT	CACUCAUUCAGGAAUGCCCTT
		siRNA-3	GACAGAGAGGUUGACACAATT	UUGUGUCAACCUCUCUGUCTT
		siRNA-1	CCGGACAAAGGACUUUGCUTT	AGCAAAGUCCUUUGUCCGGTT
AC096579.7	ENSG00000231486	siRNA-2	GGCAAAGAAGCAGCUCUUUTT	AAAGAGCUGCUUCUUUGCCTT
		siRNA-3	GGGAAUCCAGGACAGAUAUTT	AUAUCUGUCCUGGAUUCCCTT
		siRNA-1	GCCAAGGUACAUCUCAGAUTT	AUCUGAGAUGUACCUUGGCTT
HAND2-AS1	ENSG00000237125	siRNA-2	CCUCUUGACUUGCCAGUAUTT	AUACUGGCAAGUCAAGAGGTT
		siRNA-3	GCUGGUACUGUCACUUAUATT	UAUAAGUGACAGUACCAGCTT
		siRNA-1	CCAUCAAUAACCUCAUCAATT	UUGAUGAGGUUAUUGAUGGTT
LINC01018	ENSG00000250056	siRNA-2	GGUGACUGAUUUGCGGCAATT	UUGCCGCAAAUCAGUCACCTT
		siRNA-3	CCUAAUGCCUCUGCAUUAATT	UUAAUGCAGAGGCAUUAGGTT
		siRNA-1	CGCCGGUUUCAAUCCUGUUTT	AACAGGAUUGAAACCGGCGTT
RP11-731F5.2	ENSG00000253364	siRNA-2	GGAAGACAAAUAGCAGCUGTT	CAGCUGCUAUUUGUCUUCCTT
		siRNA-3	GCAAGUCUGCCCACAUGUATT	UACAUGUGGGCAGACUUGCTT
		siRNA-1	CCACCAGCCUACUGAGAUUTT	AAUCUCAGUAGGCUGGUGGTT
RP11-166D19.1	ENSG00000255248	siRNA-2	GCAUAAGUUGACCUUGCUUTT	AAGCAAGGUCAACUUAUGCTT
		siRNA-3	GCCCUUUCCAUCAAGAUAGTT	CUAUCUUGAUGGAAAGGGCTT
		siRNA-1	CCAUGGACACAGAAACCAATT	UUGGUUUCUGUGUCCAUGGTT
XLOC_014515	XLOC_014515	siRNA-2	GGAGGUCUUCUACUUAGAUTT	AUCUAAGUAGAAGACCUCCTT
		siRNA-3	CCAGGCACGUUGCACUAUUTT	AAUAGUGCAACGUGCCUGGTT
		siRNA-1	GGAAAGACCUGGGAGUCUUTT	AAGACUCCCAGGUCUUUCCTT
XLOC_015969	XLOC_015969	siRNA-2	GCACUCAAAUCGGCCCUUUTT	AAAGGGCCGAUUUGAGUGCTT
		siRNA-3	GCCAGUUCUCGCAUGAGAUTT	AUCUCAUGCGAGAACUGGCTT
		siRNA-1	GCACGCAAGCAUAAUAUAATT	UUAUAUUAUGCUUGCGUGCTT
XLOC_055355	XLOC_055355	siRNA-2	GCAAGAACUUAUGGGCUUATT	UAAGCCCAUAAGUUCUUGCTT
		siRNA-3	GCAUUCUUCUUAACCACAATT	UUGUGGUUAAGAAGAAUGCTT
	Negative control		UUCUCCGAACGUGUCACGUTT	ACGUGACACGUUCGGAGAATT

Supplementary Table 4. qPCR primer sequences used for candidate IncRNAs

IncRNA Name	GENCODE ID	Forward/Reverse	Sequence	Tm (℃)	Product size (bp)	
	ENS C00000480760	Forward primer	CTCACCCTCCTCAGTCCCA	61.2	116	
WDF 13-A32	ENSG0000180769	Reverse primer	CGTTTCTCCATCGCCTCTG	61.9	116	
		Forward primer	CACTGGGCTACACAACGGACA	62.6	110	
RP1-153P14.5	EN5G00000227920	Reverse primer	CCCCAATTTACTGACAAGGCAAC	60.3	116	
A COOCEZO 7	ENS C00000234486	Forward primer	TTCTTTCTGCTTTAGCTTGACT	55.5	120	
AC096579.7	ENSG00000231466	Reverse primer	AATCAGGTTCCAAGCACCA	59.1	130	
	ENSC00000227125	Forward primer	CTGTAAACTCTGACTTGCTG	51	75	
HANDZ-AST	EN360000237125	Reverse primer	TAATAACGGTTAAGTTGCCAT	54.2	75	
LINC01018		Forward primer	TATCGGCCATTTGTATGTCCT	59.3	120	
	EN3G0000230036	Reverse primer	TGTTAGACACCCCACATCCAT	60.1	152	
	ENSC00000252264	Forward primer	TTCTCCATCCCAGCTCGCCTT	63.6	162	
KF11-731F3.2	EN360000233304	Reverse primer	GTGTGAACTCCACGCTGCAA	61.4	105	
PD11 166D10 1	ENSC0000255248	Forward primer	CACTTCATGCTGCTATGTCG	58	108	
KP11-100D19.1	EN3G00000255248	Reverse primer	TCTTCTCAGGCACAATCCTC	57.9	190	
XI.OC. 014515	XI.OC 014515	Forward primer	CCTGGGTCCTATTACGTGCCAA	65.2	80	
XEOC_014515	XEOC_014515	Reverse primer	CGCCTGTCTTCCAGATGCT	61.5	02	
XI OC 015969		Forward primer	CACAGCCACTCACCACATGC	63.9	107	
VFOC_012363	VFOC_019909	Reverse primer	Reverse primer TCGGGATCTCTCTGCTCTCACC		127	
XI OC 055255		Forward primer	CAAAATCAGACCGTAAGGGA	57.7	105	
XLUC_055355	XLUC_055355	Reverse primer	TCACCCCTTTCATCTAAGCC	59.1	100	

Supplementary Table 5. Transwell migration assays in all three liver cancer cell lines for candidate IncRNAs

la s DNA			#Migration cell								
In	CRNA	SIRNA NO.	HepG2			SMMC-7721			HCCLM9		
Negat	ive control	-	548	510	522	281	299	328	385	362	321
		siRNA-1	352	348	426	187	195	223	390	334	409
WDFY3-AS2	ENSG00000180769	siRNA-2	304	347	308	206	219	222	417	398	435
		siRNA-3	334	351	379	223	201	221	357	429	409
		siRNA-1	557	628	598	191	186	230	331	356	359
RP1-153P14.5	ENSG00000227920	siRNA-2	626	647	558	229	258	236	351	366	379
		siRNA-3	558	564	527	234	256	225	365	334	354
		siRNA-1	501	487	463	279	305	340	383	337	338
AC096579.7	ENSG00000231486	siRNA-2	457	493	496	272	263	317	366	364	339
		siRNA-3	495	499	463	292	316	263	295	325	313
		siRNA-1	578	513	580	167	148	183	179	186	207
HAND2-AS1	ENSG00000237125	siRNA-2	491	508	563	188	203	189	166	177	190
		siRNA-3	554	512	583	146	150	206	165	151	166
LINC01018		siRNA-1	434	501	455	227	254	309	330	329	272
	ENSG00000250056	siRNA-2	499	522	512	292	307	235	297	324	339
		siRNA-3	588	536	558	239	283	253	291	340	389
		siRNA-1	602	643	546	331	344	353	314	281	245
RP11-731F5.2	ENSG00000253364	siRNA-2	599	606	544	335	327	331	318	319	342
		siRNA-3	594	585	512	292	273	336	342	331	296
		siRNA-1	624	606	564	245	261	255	426	433	443
RP11-166D19.1	ENSG00000255248	siRNA-2	705	686	765	241	311	316	439	426	409
		siRNA-3	596	656	645	260	267	291	441	430	398
		siRNA-1	495	468	516	375	325	385	398	433	437
XLOC_014515	XLOC_014515	siRNA-2	493	496	473	356	343	316	405	428	468
		siRNA-3	459	504	486	295	289	351	406	414	451
		siRNA-1	544	509	605	289	273	306	445	419	417
XLOC_015969	XLOC_015969	siRNA-2	558	531	485	261	293	295	477	414	475
		siRNA-3	564	515	528	257	329	337	441	478	499
		siRNA-1	450	487	506	310	322	300	187	186	171
XLOC_055355	XLOC_055355	siRNA-2	480	466	526	337	295	345	195	183	187
		siRNA-3	401	408	530	299	307	280	209	201	182

Supplementary Table 6. CCK8 cell proliferation assays in all three liver cancer cell lines for candidate IncRNAs

			OD450									
In	CRNA	SIRNA NO.	HepG2		SI	MMC-772	21		HCCLMS)		
Negat	ive control	-	1.36	1.314	1.345	1.287	1.248	1.282	0.883	0.845	0.866	
		siRNA-1	1.48	1.41	1.487	1.139	1.184	1.362	0.907	0.822	0.872	
WDFY3-AS2	ENSG00000180769	siRNA-2	1.374	1.383	1.433	1.47	1.319	1.385	0.844	0.991	0.904	
		siRNA-3	1.347	1.319	1.319	1.215	1.395	1.401	0.982	0.84	0.927	
		siRNA-1	1.398	1.383	1.312	1.33	1.477	1.217	0.971	0.901	0.918	
RP1-153P14.5	ENSG00000227920	siRNA-2	1.458	1.365	1.336	1.33	1.263	1.326	0.878	0.8	0.899	
		siRNA-3	1.234	1.226	1.433	1.39	1.168	1.261	0.802	0.966	0.912	
		siRNA-1	1.351	1.274	1.25	1.305	1.387	1.438	0.924	0.903	0.931	
AC096579.7	ENSG00000231486	siRNA-2	1.29	1.268	1.185	1.222	1.375	1.228	0.883	0.859	0.893	
		siRNA-3	1.51	1.245	1.267	1.367	1.23	1.266	0.954	0.91	0.907	
		siRNA-1	1.423	1.442	1.338	1.372	1.363	1.136	0.912	0.846	0.842	
HAND2-AS1	ENSG00000237125	siRNA-2	1.254	1.341	1.396	1.216	1.38	1.106	0.881	0.814	0.86	
		siRNA-3	1.472	1.481	1.399	1.293	1.371	1.368	0.859	0.985	0.916	
	ENSG00000250056	siRNA-1	1.539	1.323	1.306	1.04	1.319	1.143	0.907	0.932	0.935	
LINC01018		siRNA-2	1.445	1.39	1.464	1.377	1.087	1.398	0.884	0.907	0.876	
		siRNA-3	1.401	1.559	1.382	1.217	1.417	1.239	0.87	0.821	0.898	
	ENSG00000253364	siRNA-1	1.43	1.503	1.207	1.405	1.215	1.306	0.901	0.887	0.904	
RP11-731F5.2		siRNA-2	1.503	1.419	1.456	1.198	1.326	1.259	0.854	0.92	0.946	
		siRNA-3	1.355	1.521	1.448	1.368	1.229	1.285	0.866	0.952	0.873	
		siRNA-1	1.383	1.263	1.432	1.408	1.116	1.125	0.845	0.936	0.825	
RP11-166D19.1	ENSG00000255248	siRNA-2	1.346	1.259	1.369	1.204	1.226	1.31	0.926	0.917	0.949	
		siRNA-3	1.447	1.465	1.434	1.271	1.36	1.134	0.958	0.937	0.92	
		siRNA-1	1.404	1.31	1.366	1.366	1.167	1.157	0.876	0.901	0.914	
XLOC_014515	XLOC_014515	siRNA-2	1.305	1.238	1.231	1.207	1.199	1.294	0.861	0.829	0.833	
		siRNA-3	1.31	1.503	1.376	1.474	1.252	1.412	0.828	0.836	0.852	
		siRNA-1	1.245	1.226	1.197	1.114	1.361	1.204	0.82	0.777	0.839	
XLOC_015969	XLOC_015969	siRNA-2	1.226	1.301	1.215	1.478	1.22	1.337	0.857	0.954	0.938	
		siRNA-3	1.453	1.426	1.413	1.219	1.217	1.234	0.821	0.87	0.865	
		siRNA-1	1.462	1.287	1.378	1.334	1.211	1.341	0.895	0.91	0.924	
XLOC_055355	XLOC_055355	siRNA-2	1.261	1.353	1.38	1.212	1.35	1.14	0.944	0.922	0.91	
		siRNA-3	1.422	1.51	1.425	1.21	1.272	1.237	0.883	0.871	0.825	

Supplementary References

- 1. Iyer, M.K. et al. The landscape of long noncoding RNAs in the human transcriptome. *Nature Genetics* **47**, 199-208 (2015).
- 2. Liu, C. et al. NONCODE: an integrated knowledge database of non-coding RNAs. *Nucleic acids research* **33**, D112-D115 (2005).
- 3. Pruitt, K.D. et al. RefSeq: an update on mammalian reference sequences. *Nucleic Acids Res* **42**, D756-763 (2014).
- 4. Kelley, D. & Rinn, J. Transposable elements reveal a stem cell-specific class of long noncoding RNAs. *Genome Biology* **13**, 243-253 (2012).
- 5. The ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome. *Nature* **489**, 57-74 (2012).
- 6. Zhang, H. et al. Comparative transcriptome analysis reveals that the ECM-receptor interaction contributes to the venous metastases of hepatocellular carcinoma. *Cancer Genetics* **208**, 482-491 (2015).
- 7. Hoshida, Y. et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. *Cancer Res* **69**, 7385-7392 (2009).
- 8. Kan, Z. et al. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. *Genome Res* **23**, 1422-1433 (2013).