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PEER REVIEW FILE 

 

Reviewers’ Comments: 

 

Reviewer #1 (Remarks to the Author):  

Thanks to the authors for providing a thorough rebuttal to the issues raised in my first review. I think the 
work, including the additional analyses performed in the latest version, represent a comprehensive and 
methodologically robust investigation of the effects of psychologically mediated variables on brain 
activity and behaviour. From my perspective, I think the manuscript is suitable for publication, and 
represents a sufficiently novel advance for ncomms.  

 

Reviewer #3 (Remarks to the Author):  

The main thesis of this line of work is the notion that there exist static brain activity patterns across 
subjects that underlie perception. Here specifically the authors try to identify patterns for pain when the 
stimulus and related brain pattern are regressed out. The remaining signal and related pattern they call 
a new signature of pain independent of nociception. Thus supposedly unraveling brain elements the 
combination of which underlies pain perception independent of the stimulus, a very large claim indeed. 
Note no such similar claim exists for any other sensory modality and I strongly suspect that the present 
claim is not valid.  

Obviously the relationship between brain location and function is a well-established fact. However, 
reducing this into a static template across all humans strongly harks of phrenology, and contradicts a 
large body of science repeatedly showing that perception, pain or otherwise, is dependent on past 
experiences, memories, and on individual history of life, and also contradicts the huge body of science 
showing that cortical synaptic properties and activity are constantly changing with experience.  

The paper is very impressive regarding the massive computational technology that the authors employ. 
However the technology seems to have convinced the authors that they have discovered a new 
fundamental brain structural organization rule, where instead I think they are being misled by statistical 
tricks. There is also a loose use of semantics that creates the notion that something profound has been 
uncovered. 



The final outcome of the analyses is an optimized weighted sum of all brain voxels (around 60,000 
elements) to map the discrimination of pain levels across multiple studies. The concept is very simple. 
For example if we reduce the brain to 3 elements: visual cortex (V), pain cortex (P), and cognitive cortex 
(C). Then the solution of NPS could be something like: -1, 1, and 0 (weights for V, P, C), while after 
removing the painful stimulus it may become: -1, 0.5, 0.5. The latter becomes a crude version of their 
SIIPS1. The only difference between my toy NPS and SIIPS1 models and the one in the paper are the 
number of elements (60, 000 weighted elements). The latter provides enough degrees of freedom that 
simple tasks like discriminating between high vs. low pain can be obviously solved, even for new data 
sets. The solution is not due to the discovery of a useful pattern but relies on the vast availability of 
degrees of freedom.  

The original formulation of NPS was based on whole-brain reverse mapping for noxious stimuli. In that 
paper the authors argued that the signature was not for nociception but reflected pain as NPS better 
correlated with reported pain than the stimulus. However, in subsequent studies they have in fact 
quickly discovered that NPS fails in very simple manipulations, like cognitive modulation. Thus NPS 
cannot be considered a "pain signature". Therefore, they have now derived a new signature and the old 
one is now dubbed "nociceptive" pain signature. A more modest and more straightforward explanation 
would be that NPS itself is a mixture of pain, nociception, and most importantly somatic stimulus 
magnitude as well as other non-specific perception/stimulus correlated brain activity. This argument is 
directly relevant to the introduction of the paper where now they argue (with no direct evidence) that 
NPS or "pain matrix" are nociceptive brain activity. This is not true as in all such studies pain, 
nociception, attention, heart rate changes etc. are all entangled in the outcome. Still I would accept that 
NPS reflects some optimized weighted GLM result regarding nociception/pain, where the optimization is 
specifically enables performing reverse inference. Within this view what is SIIPS1? Here the authors 
regress out stimulus intensity and NPS and search for brain signals that capture pain after removing 
these factors. At least in their original NPS paper, pain and stimulus were more than 80-90% correlated 
with each other. In such a case, regressing the stimulus leaves residuals that have minimal power. In fact 
what is guaranteed is that such residuals are dominantly noise. The authors of this paper contend that 
since their maps show statistically significant outcomes that capture data from out of training sets, these 
cannot be noise. This is false. There is plenty of opportunity for noise to attain predictable patterns that 
can be captured across studies. The simple example is that subjects move their head more for more 
painful stimuli and although very sophisticated motion correction paradigms are now available, it is very 
clear that motion cannot be completely removed from fMRI and also that very aggressive removal of 
motion would introduce artificial new patterns in the data. Similar uncontrolled artifacts can also creep 
in in such tasks for example by changes in heart rate, respiration, extent of anxiety, attention, urge to 
move or inhibition of urge to move, or actual movement etc. all of which are factors that change with 
pain intensity. So removing the stimulus intensity per se leaves all of these effects in the brain and none 
of these should be called pain specific signatures.  

It remains unclear how much variance is available in the multiple tasks studied here, once the intensity 
of the stimulus is removed. In study 1 it seems that cognition is providing additional variance but I 
cannot discern this in the other studies. Importantly, although the authors show significant results, the 



effect sizes are tiny and one could just as well interpret that obtained results have little biological 
significance (suggesting to me that they are capturing non-specific patterns).  

It is also very clear from the presented results that the GLM and the calculated signatures are in fact 
essentially the same, after all the signatures are slightly weighted and averaged beta maps. I suspect a 
voxelwise correlation between NPS, SIIPS1 and GLM will show massive covariation.  

The authors need to be far more open and frank regarding what they are doing and take a more 
objective view of these results. I have made similar comments to earlier versions of this paper but the 
authors have ignored them and simply submitted the paper to another journal. I am certain that just the 
statistical manipulations will impress enough reviewers to make this paper be published somewhere. 
However I urge the authors to seriously examine what it is they are creating and how much of the 
results are biologically meaningful. 



Ms. No.: NCOMMS-16-14853-T 
 
Response to Reviewers 
 
We would like to thank the Nature Communications editors for the opportunity to respond 
to this review. Please find below our detailed, point-by-point response to the Reviewers’ 
comments. 
 
 
Reviewer #3 
 
3-1 “The main thesis of this line of work is the notion that there exist static brain activity 
patterns across subjects that underlie perception. Here specifically the authors try to 
identify patterns for pain when the stimulus and related brain pattern are regressed out. 
The remaining signal and related pattern they call a new signature of pain independent of 
nociception. Thus supposedly unraveling brain elements the combination of which 
underlies pain perception independent of the stimulus, a very large claim indeed. Note no 
such similar claim exists for any other sensory modality and I strongly suspect that the 
present claim is not valid.   Obviously the relationship between brain location and function is 
a well-established fact. However, reducing this into a static template across all humans 
strongly harks of phrenology, and contradicts a large body of science repeatedly showing 
that perception, pain or otherwise, is dependent on past experiences, memories, and on 
individual history of life, and also contradicts the huge body of science showing that 
cortical synaptic properties and activity are constantly changing with experience.” 
 
Response: We appreciate the Reviewer’s comment. The Reviewer had four main critiques.  
 
The first critique is as follows: "Note no such similar claim exists for any other sensory 
modality and I strongly suspect that the present claim is not valid.” We appreciate the 
assessment of the paper’s novelty, but we believe that identifying brain activity that 
underlies perception independent of the stimulus has been one of the main goals of 
human brain and cognitive studies. Below, we briefly review some work with multivariate 
fMRI activity patterns used to successfully model perception independent of sensory 
stimulation in other modalities. 
 
A number of studies have used multivariate patterns of fMRI activity to 'decode' the 
contents of conscious visual perception in independent test data, holding constant 
objective sensory input. One such study1 used a binocular rivalry paradigm, in which 
conflicting stimuli are presented to each eye separately. Stimuli from both eyes reach the 
brain and are processed, but conscious perception alternates spontaneously between the 
image presented to each eye. Haynes and Rees used brain activity to 'decode' which 
percept a participant was currently conscious of1. Kamitani and Tong2 decoded the 



orientation of simple visual percepts from V1 activity, and showed that their brain model 
predicted which of two visible orientations was attended3. Harrison and Tong4 accurately 
decoded which of two orientation gratings was being maintained in working memory from 
early visual areas (V1-V4), after the stimulus had disappeared and no physical stimulus 
was present. Similar findings have since been replicated and extended by other labs5,6.  
 
Another way of dissociating perception from stimuli has been to study mental imagery.   
Imagining letters and objects produces topologically specific activity in early visual 
cortex7,8 and other brain activity patterns associated with specific percepts9,10. For 
example, imagining faces preferentially activates the 'Fusiform Face Area' whereas 
imaging houses activates the ‘Parahippocampal Place Area.’ FMRI activity patterns have 
been used to successfully ‘decode’ the content of imagined objects10-12 and even dream 
content13. 
 
A third way researchers have used multivariate pattern analysis to disentangle stimulus 
processing from perception is brain 'decoding' of unconsciously perceived stimuli.  For 
example, Haynes and Rees3 were able to decode which of two line orientations was 
presented from activity patterns in V1, even though the stimuli were masked so that 
participants were not consciously aware of the line orientation. The examples thus far 
mostly relate to visual perception, but other 'decoding' studies have successfully modeled 
brain activity related to auditory perception as well14. Our study extends this tradition to 
pain, building from previous work from our colleagues in this area15,16, using multivariate 
patterns to predict pain experience when the stimulus intensity is held constant.  
 
One difference between the current study and most of the ‘decoding’ studies mentioned 
above is the use of a single model for decoding across participants (a population-level 
model). However, there is also a strong precedent for this, and a number of research 
groups have realized that much more pattern information is conserved across participants 
than was originally thought17-23. In pain, we have compared multivariate pattern signatures 
individualized for each participant with a population-level signature24. We found modest 
gains in accuracy for personalized signatures, with most of the predictive information 
conserved across individuals, at least for moderate amounts of individual training data. We 
found similar results in the domain of negative emotion23.  
 
The claims in our paper are valid, as we validated our new signature via prospective 
testing on new datasets (Studies 5-6) independent of our model-development process, 
with no additional model fitting or optimization. Our test accuracy values come from 
application of the model to new individuals with zero model degrees of freedom (see 3-3 
below for more discussion). Independent groups have also validated our other models by 
performing ‘zero degree of freedom’ tests on new samples, including the Neurologic Pain 
Signature25,26 and Picture-Induced Negative Emotion Signature27, and found them to be 
similarly predictive when applied to new datasets with no model optimization.  
 



The second critique is as follows: “However, reducing this into a static template across all 
humans strongly harks of phrenology" We believe this comment is based on some 
misunderstandings of our process and findings. Phrenology was a procedure in which 
personality characteristics are ‘decoded’ from examining the protrusions on a person’s 
skull. The major problem with phrenology was not in seeking to map associations between 
physical and personality measures, but in the simple fact that the putative associations 
were spurious. To be sure, neuroimaging has been related to phrenology—a 
characterization we disagree with, as fMRI activity unquestionably yields real associations 
between brain and behavioral measures. The present study, and others of its type, use 
gold-standard methods for making sure that the associations we report are not spurious 
artifacts, but are in fact real relationships that can be replicated across individuals, studies, 
and laboratories. We tested how much variance our pattern signature (SIIPS1) can 
explain in trial-by-trial pain ratings using cross-validation and also two held-out, 
independent multi-subject datasets, providing a valid assessment of the association 
between our new signature and variation in pain ratings when stimuli are matched on 
stimulus intensity. 
 
The Reviewer might object to claims that "a static template” (in other words, a spatial 
pattern map) cannot capture all the nuanced, moment-by-moment pain experience 
beyond stimulus input. We agree with that, and provide more discussion below. However, 
we do not claim that our ‘signatures’ are complete models of pain across all contexts.  
They capture some, but not all, of the variation in pain report. The use of a “static” 
population-level model does not make our study “phrenology”. The issue with “phrenology” 
is not in its static-ness, but in the spurious associations between local brain regions and 
mental functions/outcomes.   
 
The third critique is as follows: “…contradicts a large body of science repeatedly showing 
that perception, pain or otherwise, is dependent on past experiences, memories, and on 
individual history of life” We agree that pain is a complex and dynamic experience, and 
that individuals’ past experience, memories, and current physical and emotional states all 
interact to influence moment-by-moment pain perception. Nothing in our study design or 
results is incompatible with this view. In fact, we have published studies demonstrating 
that moment-by-moment pain depends in systematic ways on past experiences	  28,29, 
social context30, expectations29,31-33, and individual differences in personality and other 
factors. These various factors combine to influence present-moment pain experience, and 
we demonstrate here that some of these factors (i.e., expectation and perceived control) 
influence pain in ways that are mediated by the “SIIPS1” pattern we identified.  However, 
we do not claim that the SIIPS1 pattern is a complete explanation for all the complex 
dynamics that determine pain experience. Rather, it is one of many potential neural 
components that underlie top-down influences on pain with demonstrable predictive 
utility. Therefore, we do not believe that our findings “contradict a large body of science” 
as the Reviewer suggested, but provide a step towards building more complex models of 
pain perception and regulation. That is why we put the number “1” at the end of “stimulus 



intensity independent pain signature (SIIPS)”—more, and hopefully better, models should 
be developed as the field progresses.  
 
We have revised the manuscript to be more clear about some of the potential future 
developments that could extend this work. For example, though we aimed to identify a 
SIIPS that works across participants (i.e., population-level model), pain-predictive patterns 
could be established using idiographic models to take into account unique influences of 
each individual’s history and memories on pain. Such idiographic models could explain 
additional variance in trial-by-trial pain ratings, revealing individualized neural bases for 
pain perception. In addition, though we modeled the SIIPS1 only using spatial pattern 
information, yielding “a static template”, in future studies, patterns can be developed using 
more dynamic models (e.g., dynamic causal modeling) to include information about the 
temporal dynamics of communication among brain regions34. We believe that these could 
be great future directions, and therefore, we have added these ideas to Discussion of the 
revised manuscript (p. 18).   
 
The fourth critique is as follows: “…contradicts the huge body of science showing that 
cortical synaptic properties and activity are constantly changing with experience.” We 
would like to reiterate that we are NOT claiming that the SIIPS1 is the only signature that 
explains everything, and thus our findings do not “contradict” prior literature on 
neuroplasticity. Neuroplastic changes could modify the intensity of expression of the 
SIIPS1, depending on past experience, or introduce changes in other systems altogether 
that are not captured by the SIIPS1. Neuroplasticity could also introduce changes in 
topography at spatial scales that are not captured at the MRI voxel level of analysis. 
Because the SIIPS1 is not offered as a complete explanation for pain (and indeed most of 
the variance in trial-by-trial pain reports remains unexplained), all of these alternatives are 
possible. One of the goals in science is to identify parsimonious models that can explain 
complex phenomena, but we recognize that such models cannot explain everything. This 
does not mean that the models “contradict” the reality. By serving as a reference pattern 
map, we hope that the SIIPS1 can encourage future efforts to understand the influences of 
neuroplasticity on pain.    
 
 
3-2 “The paper is very impressive regarding the massive computational technology that the 
authors employ. However the technology seems to have convinced the authors that they 
have discovered a new fundamental brain structural organization rule, where instead I think 
they are being misled by statistical tricks. There is also a loose use of semantics that 
creates the notion that something profound has been uncovered.  ” 
 
Response: We do not claim that we “discovered a new fundamental brain structural 
organization rule” or we uncovered something “profound” in this study. The significance of 
our study should be evaluated based on the empirical evidence (e.g., predictive 



performance in held-out testing datasets). We applied a fixed, pre-identified pattern of 
weights to test data from independent participants, including data from two studies 
completely separate from the training data used to develop the model. There are no 
“statistical tricks” in these tests – we tested the model only once on these independent 
data, without changing the model or optimizing any of its parameters. This is basically 
identical to the type of procedure that has been used in psychometric studies for nearly a 
century. Researchers collect data on a number of test items—say, individual questions in 
a personality measure—and then perform a factor analysis to derive a set of weights on 
the individual items. The test is scored in future studies by applying the same weights to 
data from new samples, deriving one composite score (a weighted average) for each 
participant. The measurement properties of those scores are validated by comparing their 
performance to measures from other scales and outcomes. Here, test items are brain 
voxels. We derived a set of weights (the SIIPS1) from one set of studies (Studies 1-4), and 
applied that same combination of weights to new test data (Studies 5-6), where we can 
see how well those composite scores (SIIPS1 response values) predict pain. The cross-
validation procedure we employed to test data in Studies 1-4 is somewhat more complex, 
but is well-validated and standard both in our laboratory and the field of machine 
learning/statistical learning as a whole 35,36. Importantly, the estimates of pain-predictive 
performance we get from cross-validation are very similar to those we get when applying 
the SIIPS1 to new studies. This, among other tests we did, suggests that the cross-
validation procedure is unbiased36. 
 
We are not sure why the Reviewer thinks that “there is also a loose use of semantics that 
creates the notion that something profound has been uncovered.” We identified patterns 
of activity that have been shown to be pain-related in other human and animal studies, as 
we note in the paper, and do not claim that we are the first to discover the relevance of 
these areas. The added value here is in identifying precise patterns that are maximally 
pain-predictive, and integrating them into a model that accurately predicts trial-by-trial 
pain experience and mediates the influences of some psychological manipulations. If this 
is about the term ‘signature’ (as Reviewer #1 commented in the previous revision), we 
provided a detailed explanation about the reason that we used the term ‘signature' in our 
previous response to the Reviewer #1 (see 1-8 in our previous response). Briefly, there 
were two main reasons for using the term ‘signature’. First, we follow conventions used in 
other sub-fields of the biology. The term ‘signature’ has been commonly used across 
different fields in biology, for example, to refer to particular patterns of gene expression37, 
mutations38, molecules39, and we are using the term in a similar sense for neuroimaging. 
The second reason is consistency. We have used the term ‘signature’ since 
201322,23,40 because the editors of our 2013 paper strongly suggested that the term 
‘signature’ was appropriate for the multivariate pattern model. Since then, we have used 
the term ‘signature’ for consistency. However, we of course welcome input and feedback 
and are open to alternative terms.   
 
 



3-3 “The final outcome of the analyses is an optimized weighted sum of all brain voxels 
(around 60,000 elements) to map the discrimination of pain levels across multiple studies. 
The concept is very simple. For example if we reduce the brain to 3 elements: visual cortex 
(V), pain cortex (P), and cognitive cortex (C). Then the solution of NPS could be something 
like: -1, 1, and 0 (weights for V, P, C), while after removing the painful stimulus it may 
become: -1, 0.5, 0.5. The latter becomes a crude version of their SIIPS1. The only 
difference between my toy NPS and SIIPS1 models and the one in the paper are the 
number of elements (60, 000 weighted elements). The latter provides enough degrees of 
freedom that simple tasks like discriminating between high vs. low pain can be obviously 
solved, even for new data sets. The solution is not due to the discovery of a useful pattern 
but relies on the vast availability of degrees of freedom.  ” 
 
Response: There is a statistical misunderstanding in this comment. When our model was 
tested on novel test data, the degree of freedom was zero, regardless of the number of the 
model elements. This is because there was no additional parameter tuning, and therefore 
no flexibility, in the model testing procedure. To be sure, simpler models based on region 
averages could be developed, but in our other work, we found that the type of multivariate 
signature we developed here dramatically outperformed region of interest averages23.  
 
The prospective testing with no additional parameter tuning that we employ actually 
provides much stronger tests than traditional univariate mapping approaches. In traditional 
mapping, hypotheses are generated and tested based on anatomical regions (e.g., 
‘amygdala activity’). In this case, the hypothesis ‘amygdala activity’ is poorly specified as 
the amygdala contains hundreds of voxels, and a virtually uncountable number of unique 
activation ‘blobs’ (combinations of voxels) that fall within the amygdala. Therefore, testing 
for activation in a region of interest like the amygdala has many model degrees of freedom 
to find positive results. In contrast, we avoid this issue entirely by reducing high 
dimensional information into one single test measure. We precisely specify the exact 
combination of voxels and their relative weights in advance, and test the model on new, 
unseen test data with zero degrees of freedom. 
 
Nonetheless, we understand the Reviewer’s concern about the high dimensionality of our 
model, because there is well-known phenomenon called the ‘curse of dimensionality’. This 
refers to the fact that high dimensional data, where there are many more predictors than 
observations (p >> n), often causes problems in model optimization because models are 
normally under-constrained in the high dimensional space41. For example, modeling high 
dimensional data often results in overfitting, where a model that perfectly fits all the data 
points of the training data often shows poor predictive performance in new testing 
datasets. Fortunately, machine learning (or statistical learning) has developed many 
efficient algorithms to solve this problem (e.g., margin-based algorithms such as support 
vector machines, or regularization methods such as lasso or ridge). The current study is 
using one of such algorithms, principal component regression (PCR), which reduces the 



dimensionality of features using principal component analysis first, and then does model 
fitting in the component space35. Thus, even if the training data in any given cross-
validation fold is over-fit, the data reduction and regularization helps ensure model 
parameters are estimated reasonably well (i.e., the procedures reduce variance in these 
estimates), and the performance on test data is unbiased and not over-fit (because it is 
independent). In addition, we introduced smoothness into the model by fitting model 
parameters across participants in the training datasets. This procedure enhances 
generalizability, a property referred to as “the blessing of smoothness”41. Most importantly, 
we tested our model on two independent unseen test datasets to assess its predictive 
performance (with zero degree of freedom as explained above).   
 
 
3-4 “The original formulation of NPS was based on whole-brain reverse mapping for 
noxious stimuli. In that paper the authors argued that the signature was not for nociception 
but reflected pain as NPS better correlated with reported pain than the stimulus. However, 
in subsequent studies they have in fact quickly discovered that NPS fails in very simple 
manipulations, like cognitive modulation. Thus NPS cannot be considered a "pain 
signature". Therefore, they have now derived a new signature and the old one is now 
dubbed "nociceptive" pain signature.”  
 
Response: Respectfully, the Reviewer seems to be repeating the same points and 
critiques that have been made in the previous review without advancing our discussion 
based on our previous response (see 3-1 in our previous response). As with the SIIPS1, 
we never claimed that the NPS was a complete model for pain. In fact, the title of our first 
grant in this area, in 2009, was “Neuroimaging-Based Biomarkers For Two Components 
Of Pain” (RC1DA028608). The idea has always been to identify neurophysiological 
component processes that capture some (as much as possible, to be sure) of the variation 
within and across individuals in pain experience. In addition, pain is a subjective 
experience by definition, and no brain pattern can be a measure of “Pain” by definition. 
Brain patterns can only reflect neurophysiological correlates of and contributors to pain, 
and these are likely to vary across contexts. We regarded the test of whether cognitive 
modulation would influence pain via the NPS or via some other brain processes (other 
components) as an interesting empirical question. Finding that cognitive modulation was 
not mediated by the NPS provided leverage to try to search for and identify different 
components. The development of the SIIPS1 is a natural extension of that work. In 
addition to this basic point, we have thoughts on several other, related issues:  
 
First, the Reviewer repeatedly criticizes that this study is a product of ad-hoc revision of 
our original claim, as the Reviewer previously wrote “Although the original claim, NPS, was 
dubbed specific for pain, now the authors seem to back away and attempt to show that 
there are subsystems that capture different components of pain.” As we wrote above, we 
are not “backing away” or revising our view about the NPS, and the current study is not a 



product of any efforts towards ad-hoc revision of our claims. We had a plan to develop a 
new signature for extra-nociceptive pain before we developed the NPS, in our 2009 
grant ‘Neuroimaging-Based Biomarkers For Two Components Of Pain’.  
 
Second, the Reviewer seems to have a misunderstanding of our “original claim”, which 
they think is inconsistent with the findings of our “subsequent studies” that show “NPS 
fails in very simple manipulations, like cognitive modulation”42. The Reviewer commented 
that “NPS cannot be considered a pain signature” based on this assessment. The “original 
claim” is, we believe, a straw man that seems to represent an extreme view of pain and 
pain signatures, which is the idea that there must be the ‘one’ pain signature or brain 
system that captures all aspects of pain, and if a signature does not capture all the 
aspects and modulation effects, it cannot be a “pain signature.” An alternative view of pain 
and pain signature, which is more consistent with our intended original claim, is that pain 
is comprised of multiple sub-components, and there could exist multiple pain signatures 
that capture different sub-components of pain and pain in different contexts. In this 
alternative view, the NPS can be considered a pain signature even if it does not capture 
the effects of cognitive modulation. Our lab has supported this alternative view from early 
studies, including the 2013 NPS study40, in which Study 4 showed that the NPS did 
not respond to a placebo manipulation, but did respond to drug-induced pain 
modulation. We never claimed that the NPS is the only pain signature that captures all 
aspects of pain. What we have claimed instead is that the NPS is ‘a’ pain signature that 
tracks pain experience largely (but not entirely) driven by noxious stimuli, which 
is ‘nociceptive pain’ by definition according to the International Association for the Study 
of Pain (http://www.iasp-pain.org/Taxonomy). In addition, as shown in Fig. R1 (which was 
Fig. R4 in our previous response), the NPS has demonstrated to be sensitive and specific 
to somatic pain induced by different types of noxious stimuli across multiple datasets from 
multiple laboratories 22,23,25,26. Therefore, we can arguably say that the NPS can serve as a 
proxy measure for nociceptive pain-related neural processes.  
 
However, even if the current study were an ad-hoc development, we do not see anything 
wrong with it because understanding the boundary condition of a signature (in other words, 
what a signature really measures) requires empirical evidence from testing on new studies 
and conditions in an open-ended fashion, and therefore takes time and effort. It is very 
likely that signatures we and other groups develop will fail in certain respects—i.e., either 
by not responding to something we define as “pain” or by responding to something we 
define as “non-pain”. We see these “failures” as opportunities to develop new, alternative 
models that are sensitive to particular contextual variables, more generalizable, more 
specific, etc. We believe this is how science works, and therefore efforts to revise original 
claims in light of new data should be encouraged, not criticized.   
 
 



Figure R1. The Neurologic Pain 
Signature (NPS)’s profile of 
sensitivity, specificity, and 
generalizability in tests to date. This 
visualizes which conditions activate 
(sensitivity, in orange and red) or do 
not activate (specificity, in gray and 
black) the NPS. Dark colored 
conditions (in red and black) are from 
published results, and light colored 
conditions (in orange and gray) are 
from unpublished, preliminary 
results.  

 
 
3-5. “A more modest and more straightforward explanation would be that NPS itself is a 
mixture of pain, nociception, and most importantly somatic stimulus magnitude as well as 
other non-specific perception/stimulus correlated brain activity. This argument is directly 
relevant to the introduction of the paper where now they argue (with no direct evidence) 
that NPS or "pain matrix" are nociceptive brain activity. This is not true as in all 
such studies pain, nociception, attention, heart rate changes etc. are all entangled in the 
outcome. Still I would accept that NPS reflects some optimized weighted GLM result 
regarding nociception/pain, where the optimization is specifically enables performing 
reverse inference.” 
 
Response: We agree that some parts (or sub-regions) of the NPS can be related to 
processes other than pain and nociception. However, the point of developing multivariate 
patterns like the NPS and SIIPS1 is that the combination of responses across multiple 
brain regions/systems, neither region-level information nor patterns within a local region 
can capture some pain-specific neural information. In this sense, the NPS is completely 
different from the “pain matrix”, which refers to a loosely-specified set of brain regions 
whose constituents combine in unspecified ways to create pain. The “pain matrix” is a 
general concept, whereas the NPS and SIIPS1 are precisely specified measures. The 
“pain matrix” concept provides no information about how we should combine region- or 
voxel-level fMRI signal to predict pain.   
 
In addition, we disagree with the Reviewer’s characterization that “This argument is 
directly relevant to the introduction of the paper where now they argue (with no direct 
evidence) that NPS or "pain matrix" are nociceptive brain activity.” We did not argue that 
the NPS equals nociceptive brain activity in the current manuscript. Instead, we suggested 
that the NPS is a model that provides an estimate or can be used as an imperfect proxy 
measure for nociceptive brain activity. This is true in the same sense that intelligence tests 
are imperfect measures designed to be related to intelligence, but they are not 
“intelligence.” Neither do they measure “Intelligence” in all contexts, as intelligence is a 



multifaceted rather than a unitary construct, like pain. We attempted to carefully adhere to 
this distinction in the way we worded the manuscript. For example, we wrote “nociceptive 
brain processes estimated by the NPS” on p. 5 and “the NPS response (a proxy for 
already modeled nociceptive neural processes)” on p. 6). The NPS is a model, not 
nociceptive brain activity itself.   
 
If the Reviewer is concerned about the NPS’s specificity, we see this as an empirical 
matter (as we answered in the previous response), and empirical evidence so far supports 
the NPS’s specificity, as shown in Fig. R1. However, we also agree with the Reviewer that 
“in all such studies pain, nociception, attention, heart rate changes etc. are all entangled in 
the outcome.” Some cognitive, affective, sensory, and physiological processes are 
intrinsically entangled in pain experience, and we are not claiming that the 
NPS disentangles ‘pure’ pain or nociceptive brain activity distinct from any other 
processes. But we suggest that the NPS can be used an estimate or a proxy for 
nociceptive pain-related brain activity, and therefore we agree with the Reviewer’s last 
sentence in this comment, “NPS reflects some optimized weighted GLM result regarding 
nociception/pain, where the optimization is specifically enables performing reverse 
inference.” So we hope we are in agreement at least on some points.    
 
 
3-6. “Within this view what is SIIPS1? Here the authors regress out stimulus intensity and 
NPS and search for brain signals that capture pain after removing these factors. At least in 
their original NPS paper, pain and stimulus were more than 80-90% correlated with each 
other. In such a case, regressing the stimulus leaves residuals that have minimal power. In 
fact what is guaranteed is that such residuals are dominantly noise. The authors of this 
paper contend that since their maps show statistically significant outcomes that capture 
data from out of training sets, these cannot be noise. This is false. There is plenty of 
opportunity for noise to attain predictable patterns that can be captured across studies. 
The simple example is that subjects move their head more for more painful stimuli and 
although very sophisticated motion correction paradigms are now available, it is very clear 
that motion cannot be completely removed from fMRI and also that very aggressive 
removal of motion would introduce artificial new patterns in the data. Similar uncontrolled 
artifacts can also creep in in such tasks for example by changes in heart rate, respiration, 
extent of anxiety, attention, urge to move or inhibition of urge to move, or actual movement 
etc. all of which are factors that change with pain intensity. So removing the stimulus 
intensity per se leaves all of these effects in the brain and none of these should be called 
pain specific signatures. 
 
It remains unclear how much variance is available in the multiple tasks studied here, once 
the intensity of the stimulus is removed. In study 1 it seems that cognition is providing 
additional variance but I cannot discern this in the other studies. Importantly, although the 
authors show significant results, the effect sizes are tiny and one could just as well 



interpret that obtained results have little biological significance (suggesting to me that they 
are capturing non-specific patterns).” 
 
Response: High correlations between pain ratings and stimulus intensity certainly make 
the goal of predicting residuals challenging. However, there is still ample variance in pain 
ratings to be explained even after regressing out the stimulus intensity and the NPS 
response (~50% of the variance in single-trial pain ratings in Studies 1-4). Much of this 
variance is systematic. Some is due to expectancy and contrast effects related to the past 
stimulation history (e.g., ref. 28), and some is due to endogenous fluctuations in attention 
(e.g., ref. 43). Furthermore, the training data in our studies included manipulations that 
affected pain independent of stimulus intensity, including cue-driven expectation and 
placebo manipulations (see Supplementary Table 2). These ‘top-down’ modulating 
factors certainly provide additional variance across all studies.  
 
Second, ‘noise’ is by definition variation that cannot be systematically explained. If we can 
systematically explain fluctuations in pain report with a model (including a model based on 
brain activity), then it is not noise, but meaningful signal. Given that the new signature has 
shown to explain significant variance in pain across multiple studies, including datasets 
from test participants completely independent of the model development process, we 
believe what the new signature is capturing is not noise, but meaningful signal in the brain.  
If it were noise, it would not be systematically related to pain in new test participants. 
 
Third, we conducted an additional analysis, new in this revision, to show that SIIPS1 
responses cannot be explained by in-scanner head motion. In this analysis, for each 
individual, we predicted TR-by-TR SIIPS1 responses (the dot-products between the 
SIIPS1 and TR-by-TR images from Study 2) with a flexible combination of 24 movement 
parameters (6 movement parameters including x, y, z, roll, pitch, and yaw, their mean-
centered squares, their derivatives, and squared derivative), using the same algorithm we 
used to derive the SIIPS1 (i.e., principal component regression). The mean correlation 
between predicted and actual outcomes (using leave-one-run-out cross validation) across 
33 participants was r = 0.004, and the correlations were not statistically different from zero 
(p  = 0.14 from a t-test based on Fisher r-to-z transformation, 95% confidence interval r = 
[-.0014 .0098]). This analysis provides additional verification that the SIIPS1 does not 
reflect information from in-scanner head motion.  
 
Fourth, we used multiple strategies to show that our new model is neurobiologically and 
functionally meaningful (or interpretable). We describe three such strategies here.  
(a) We evaluated the neuroscientific plausibility of our model by linking our findings to 
prior human and animal literature. In Fig. 3, we showed that local patterns for some 
regions of interest are consistent with findings from other human and animal studies.        
(b) We assessed how much additional variance can be explained by the new signature 
across two independent test datasets. In Fig. 4, we showed that the SIIPS1 explained 



8.72% additional variance in trial-by-trial pain ratings on average. (c) We examined 
functional significance through mediation analyses, showing that SIIPS1 responses 
mediated the effects of psychological interventions on pain in independent studies (Fig. 5). 
We agree that the effect sizes in analyses (b) and (c) are modest or small, but we note that 
this is variance in pain on individual trials. As we wrote in the Discussion, “the single trial-
level data are very noisy and contain many sources of unexplained variance, such as inter-
individual, inter-study variations and measurement errors” (on p. 16). Therefore, small 
effect sizes at the single trial-level do not mean that “obtained results have little biological 
significance (suggesting to me that they are capturing non-specific patterns).” In practice, 
it is possible (and typical) to average over multiple trials in a condition (e.g., on drug and 
off drug), and test for differences in the averages for a given person. 25% of variance in 
individual-trial responses (explained variance when the SIIPS1 and the NPS were used 
together) translates to much more explained variance and high accuracy in trial-averaged 
differences. To clarify this point, in Supplementary Fig. 6 we showed that explained 
variance and predictive performance dramatically increase when multiple trials are 
combined, suggesting that the new signature can have higher functional significance at 
different levels of analysis. For example, averaging over 4 trials yielded more than 53.0% 
variance of pain ratings, which corresponded to over 94.6% accuracy.  
 
However even after all these efforts and answers, it is still true that artifacts cannot be 
perfectly controlled or removed from any brain imaging data. We are not claiming that the 
new signature is independent from cognitive, affective, sensory, and physiological 
processes that are intrinsically entangled in pain experience, including autonomic 
functions such as heart rate and electro-dermal activity, emotions such as fear and anxiety, 
attention, and “urge to move”. Further, we are not making a strong claim that the new 
signature is pain-specific. The evaluation of specificity requires more tests on negative 
control data (things that are “not pain”), which is beyond the scope of the current study. 
For this reason, we called our test on the SIIPS1’s specificity preliminary (“a preliminary 
examination of the SIIPS1’s specificity” on p. 9).  
 
 
3-7. “It is also very clear from the presented results that the GLM and the calculated 
signatures are in fact essentially the same, after all the signatures are slightly weighted and 
averaged beta maps. I suspect a voxelwise correlation between NPS, SIIPS1 and GLM will 
show massive covariation.”  
 
Response: We respectfully disagree with the Reviewer that “the GLM and the calculated 
signatures are in fact essentially the same.” We provided detailed analyses and 
discussions about how the univariate GLM map and the SIIPS1 are similar, but different 
from each other. This issue was covered in depth in the previous response and 
manuscript (e.g., see 1-3 in the previous response, Fig. 4, Supplementary Fig. 4-5). The 
analysis we did to address the potential similarity revealed that 68% of voxels with 



significant weights in the SIIPS1 pattern (i.e., that are pain-related) were also significant, 
with the same sign, in the univariate GLM. However, 32% of voxels were not significant in 
the univariate analysis, and were identified only in the multivariate analysis. The whole-
brain spatial correlation between the weights of the GLM and SIIPS1 maps was r = .71, 
which is high (see Supplementary Fig. 5c), but not the same; they are only about 50% 
similar, as the shared variance is R2 = 0.49. We stated the following in the supplementary 
information (in the caption of Supplementary Fig. 5) in the previous revision:   
 

“Most voxels show a high degree of agreement between the univariate and 
multivariate results, indicating that they contribute positively or negatively to pain 
prediction whether tested independently (univariate) or jointly (multivariate; i.e., 
controlling for other regions). Some regions are associated with pain more strongly 
in the univariate than multivariate maps, suggesting that their association with pain 
is indirect and better explained by other brain regions. This might point to a need to 
interpret univariate findings with caution. Some regions only appear in the 
multivariate map, suggesting that controlling for other regions reduces noise or 
unmasks significant relationships with pain.”    

 
In addition, we performed an analysis comparing the predictive accuracy of the SIIPS1 
pattern with the accuracy of GLM maps, treated as a set of independent predictors and 
aggregating the predictions, as is common practice in “encoding-decoding” models. The 
GLM map explained substantially less variance than the multivariate model in each of the 
6 studies (see p.10 and Fig. 4 of the manuscript for stat values). The un-thresholded 
weight patterns of the SIIPS1 revealed differential contributions of sub-regions (e.g., NAc 
shell vs. core-like structures and superficial/central versus laterobasal subdivisions of the 
amygdala) that were not found in the univariate analyses (please compare Fig. 3 and 
Supplementary Fig. 4), suggesting that a simple GLM analysis is not as good, either in 
terms of model accuracy or identifying structure that maps onto non-human animal work.   
  
The whole-brain spatial correlations between the NPS and the SIIPS1 was r = .20 and 
between the NPS and the GLM was .04. Thus, neither signature is redundant with or can 
be adequately approximated by univariate GLM results.   
 
 
3-8. “The authors need to be far more open and frank regarding what they are doing and 
take a more objective view of these results. I have made similar comments to earlier 
versions of this paper but the authors have ignored them and simply submitted the paper 
to another journal. I am certain that just the statistical manipulations will impress enough 
reviewers to make this paper be published somewhere. However I urge the authors to 
seriously examine what it is they are creating and how much of the results are biologically 
meaningful.” 
 



Response: We appreciate the Reviewer’s comment. We are trying to be transparent and 
open about our analyses and results and their implications as much as possible. We 
disagree that “the authors have ignored them and simply submitted the paper to another 
journal” because we provided detailed responses to the previous review, including new 
analyses, using the manuscript transfer system. For that reason, our revision has 
presumably been reviewed by the same Reviewers. More specifically, in response to the 
Reviewer’s previous comments, we added a negative control dataset (N = 28; vicarious 
pain task data from Study 2), several new analyses (five new figures: Fig. 3, Fig. 4b, 4e, 
Supplementary Fig. 4 and 5), and made substantial changes in the manuscript. We hope 
that these changes, and our detailed responses, reached the Reviewer’s attention. They 
reflect honest attempts to do the best science we can, and describe our findings in the 
most open and transparent way possible, within the limits of our ability.  
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