Supporting Information

A 3'-5' exonuclease activity embedded in the helicase core domain of *Candida albicans* Pif1 helicase

Xiao-Bin WEI¹[§], Bo ZHANG¹[§], Nicolas BAZEILLE²[§], Ying YU¹, Na-Nv LIU¹, Brigitte RENE², Olivier MAUFFRET², Xu-Guang XI^{1,2, *}

¹College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China

²Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Université Paris-Saclay, Centre National de la Recherche Scientifique, 61 Avenue du Président Wilson, 94235 Cachan, France

*Corresponding authors: email: <u>xxi01@ens-cachan.fr</u> Tel: 33 01 4740 7754; Fax: 33 01 4740 7754;

[§]These authors contributed equally to this work.

Name	Length	Structure	Sequences (5'-3')
	(nt)		
S ²⁰	20	*20nt	*TTGATTTGATGTACGGATGT
Bb ⁴	40/40	*18bp 18bp	*GCAGTAGGCCTAGCATGAGTTAGGACTGACAGCTGCATGG
		4nt	CCATGCAGCTGTCAGTCCATTGTCATGCTAGGCCTACTGC
Bb ¹²	40/40	*14bp 14bp	*GCAGTAGGCCTAGCATGAGTTAGGACTGACAGCTGCATGG
		12nt	CCATGCAGCTGTCACAGGATTGAGTAGCTAGGCCTACTGC
S ¹² -5F	12	<u>* 12nt</u>	*GTACGGATGTCT
S ¹² -3F	12	12nt	GTACGGATGTCT*
S ²⁰ D ²³ -5F	43/23	20nt 23bp	*ATGTTACATTTATTTTGTAGCAAAAATAAAGTGTAAGGATGTC GACATCCTTACACTTTATTTTTG
S ²⁰ D ²³ -3F	43/23	20nt 23bp 🔹	ATGTTACATTTATTTTGTAGCAAAAATAAAGTGTAAGGATGTC*
			GACATCCTTACACTTTATTTTTG
А	23	*23nt	*GTGTAAGGATGTCACGATCATTG
В	23/23	23nt	*GTGTAAGGATGTCACGATCATTG
			CAATGATCGTGACATCCTTACAC
С	23/22	22bp 1nt	
		*	
D	22/21	2nt	*GTGTAAGGATGTCACGATCATTG
	23/21	*	ATGATCGTGACATCCTTACAC
Е	43/30	13nt	*ATGTTACATTTATTTTGTAGCAAAAATAAAGTGTAAGGATGTC
		*30nt	TTTATTTTGCTACAAAATAAATGTAACAT
F	43/25	18nt	
		*	ΤΤΤΤGCTACAAAATAAATGTAACAT
G	23/43	23bp	
		* <u> </u>	TTTTTTTTTCAATGATCGTGACATCCTTACACTTTTTTTT
н	23/43	02hn	
11	23/43	*	
-	10/01	22.55	*AIGIIACAIIIAIIIIGIAGCAAAAAIAAAGIGIAAGGAIGIC
1	43/21	*	*ATGTTACATTTATTTTGTAGCAAAAATAAAGTGTAAGGATGTC GCTACAAAATAAATGTAACAT
J	43/43	*22nt	*ATGTTACATTTATTTTGTAGCAAAAATAAAGTGTAAGGATGTC CTGTAGGAATGTGAAATAAAAGCTACAAAATAAATGTAACAT
К	43/43	21bp 22nt	*ATGTTACATTTATTTTGTAGCAAAAATAAAGTGTAAGGATGTC
			CTGTAGGAATGTGAAATAAAAAGCTACAAAATAAATGTAACAT*

*, Fluorescein

*, hexachlorofluorescein

Table S2. Primers used for mutagenesis

Name	Sequence (5'-3')
CaPif1 ^{D582V} -F	GACGACACCGCGCGTGTATTCTGCCGTCTGTCT
CaPif1 ^{D582V} -R	AGACAGACGGCAGAACTCACGCGCGGTGTCGTC
CaPif1 ^{D794V} -F	CAGTGGACCACCGAA <u>GTT</u> GAAGACGGTACCGTT
CaPif1 ^{D794V} -R	AACGGTACCGTCTTCAACTTCGGTGGTCCACTG
CaPif1 ^{E473A} -F	GTTCTGATCATCGACGCGATCTCTATGGTTGAC
CaPif1 ^{E473A} -R	GTCAACCATAGAGATCGCGTCGATGATCAGAAC

 Table S3. Proteins accession numbers for sequence alignment

Orgnism	Strain	Accession numbers
Naumovozyma dairenensis	CBS421	XP_003670036.1
Naumovozyma castellii	CBS4309	XP_003673236.1
Saccharomyces cerevisiae	S288c	NP_013650.1
Kazachstania africana	CBS2517	XP_003958958.1
Candida glabrata	CBS138	XP_449255.1
Zygosaccharomyces rouxii	CBS732	XP_002495556.1
Torulaspora delbrueckii	CBS1146	XP_003680891.1
Vanderwaltozyma polyspora	DSM70294	XP_001643959.1
Tetrapisispora phaffii	CBS4417	XP_003684156.1
Tetrapisispora blattae	CBS6284	XP_004181037.1
Ashbya gossypii	ATCC10895	NP_984987.1
Eremothecium cymbalariae	DBVPG#7215	XP_003644227.1
Kluyveromyces lactis	NRRL Y-1140	XP_451763.1
Lachancea thermotolerans	CBS6340	XP_002553410.1
Millerozyma farinosa	CBS7064	XP_004197165.1
Debaryomyces hansenii	CBS767	XP_459513.2
Meyerozyma guilliermondii	ATCC6260	XP_001484923.1
Lodderomyces elongisporus	NRRL YB-4239	XP_001523552.1
Candida orthopsilosis	Co90-125	XP_003870993.1
Candida tropicalis	MYA-3404	XP_002548760.1
Candida albicans	SC5314	XP_712376.1
Candida dubliniensis	CD36	XP_002422246.1
Komagataella pastoris	GS115	XP_002491346.1
Emiliania huxleyi virus	86	YP_293894.1
Homo sapiens		NP_079325.2

Figure S1. CaPifl exnoclease activity was inhibited by nucleotide monophosphates. The experiments were performed under the standard exonuclease assay conditions with substrate S12-5F.

Strains

Conserved E/D

Conserved E/D

C.albicans	SC5314	572	DGNVPDDTARDFCRLSRPLKC	592	785 VVEPEQWTTEDEDGT-VLVSR 80	4
C.dubliniensis	CD36	573	DGNVPDDTVRDFCRLSRPLKC	593	786 VVEPEQWTTEDDEGK-VLVSR 80	5
C.tropicalis	MYA-3404	512	DGMINKESIVRFQQLERPLKC	532	685 IVDVESWSTEDVETESILAKR 70	5
L.elongisporus NRRL YB-4239			DGRISDRTVREFQRLSRPLSC	735	927 LVEPEEWTVEDEDGH-VLVSR 94	6
C.orthopsilosis	Co90-125	622	DGRISESTIQEFRRLSRPLEC	642	821 LVEPEQWTIEDEDGR-ALVSR 84	0
M.farinosa	CBS7064	428	SGKVTSDTIAEFNKLTRPLET	448	654 LVEPEEWTVEDEHEN-VLVRR 67	3
D.hansenii	CBS767	480	NGKVNNETIAEFKRLSRKLDN	500	707 LVEPEQWTIEDENEN-VLARR 72	6
M.guilliermondii	ATCC6260	368	SGQIGPDTEME FKKLARKLEC	388	596 LVEPETWIVEDEHQQ-VLASR 61	5
N.dairenensis	CBS421	473	LGKIDENTEREFKKLTRPLA-	492	706 LVEPENWAIEDENEK-PIVSR 72	:5
N.castellii	CBS4309	475	LGKIDDETEREFRKLSRSLP-	494	709 LVEPECWEIEDENSK-PIVSR 72	8
Z.rouxii	CBS732	441	LGQIDEDTEMEFKRLNRPLP-	460	678 LVEPEDWAIEDENEK-PLVSR 69	7
T.delbrueckii	CBS1146	526	LGQIDAETEREFKKLNRPLP-	545	764 LVEPESWAIEDDNEK-SLVSR 78	3
K.africana	CBS2517	418	LGQIDEDTEREFKKLSRPLP-	437	654 LVEPEDWAIEDEHEK-PIVSR 67	3
S.cerevisiae	S288c	433	LGNIDDETEREFKKLSRPLP-	452	672 LVEPEDWAIEDENEK-PLVSR 69	1
V.polyspora	DSM70294	553	LGEIDIETETEFKKLSRELE-	572	791 LVEPEDWSIEDENEK-PIVSR 81	0
C.glabrata	CBS138	455	LGKIDMETEMEFKKLNRPLP-	474	690 LVEPEDWAIEDENEK-PLVSR 70	9
T.phaffii	CBS4417	547	VGNVDSDTEMEFKKLSRPLP-	566	787 LVEPEDWAIEDEDEK-PIVSR 80	6
T.blattae	CBS6284	442	LGKLDFKME IEFKKLQRPLP-	461	678 LVEPEDWSVEDENEK-PIVSR 69	7
A.gossypii	ATCC10895	393	LGKISEETEAEFRKLSRPLV-	412	634 LVREEAWAIEDENEK-PLVTR 65	3
E.cymbalariae	DBVPG#7215	474	LGKISPETELEFRKLSRPLE-	493	715 LVREEAWAVEDENEK-PLVTR 73	4
K.lactis	NRRL Y-1140	454	MGVISDRTLKEFAELSRPLP-	473	696 LVRPETWAMEDEKDV-PLVSR 71	.5
L.thermotolerans	CBS6340	488	MGKISLETELEFKKLSRPLP-	507	723 LVQPEDWAVEDELQK-PIVSR 74	2
K.pastoris	GS115	427	NGRISPRVEAEFQKLNRPLPV	447	655 LVEPEQFSINDIDEK-PLASR 67	4
<i>E.huxleyi</i> virus	86	196	IGKCATETENALAKCHVSVKP	216	327 VMQMERAETEQKFMN-SKCTR 34	6
H.sapiens		396	LGRCSDEVTRQLQATASHKVG	416	523 VIHADRWTVQATGGQLLSR 54	2

Figure S2. Sequence alignment of selected fungal species using BLAST. The accession numbers of the proteins sequences were summarized in the Supplementary Table S3.

563	FIDMLNNLRDGNVPDDTARDFCRLSRPLKC-PEG	595
124	LKMLLENKAVKKAGVGIEGDQWKLLRDFDIKLKN	157
405	LKPLLEDEKALKVGQNLKYDRGILAN-YGIELRG	437
100	LYRFFASKFVTFVGVQIEEDLD-LLRENHG-LVI	131
776	DGITFRTVVVE-PEQWTTEDEDGTVLVSRIQFPL	808
197	CSNWSKFPLTEDQKLYAATDAYAGFIIYRNLELL	230
483	QLTFNQIAL-EEAGRYAAEDADVTLQLHLKMWPD	515
	563 124 405 100 776 197 483	 563 FIDMLNNLRDGNVPDDTARDFCRLSRPLKC-PEG 124 LKMLLENKAVKKAGVGIEGDQWKLLRDFDIKLKN 405 LKPLLEDEKALKVGQNLKYDRGILAN-YGIELRG 100 LYRFFASKFVTFVGVQIEEDLD-LLRENHG-LVI 776 DGITFRTVVVE-PEQWTTEDEDGTVLVSRIQFPL 197 CSNWSKFPLTEDQKLYAATDAYAGFIIYRNLELL 483 QLTFNQIAL-EEAGRYAAEDADVTLQLHLKMWPD

Figure S3. Sequence alignment of CaPif1 with WRN-exo, Kf-exo and *A. thaliana* homolog was carried out using PHI-BLAST. The numbers between the sequences indicate the amino-acid position relative to the amino terminus of each protein and the conserved aspartic/glutamic residues were colored in red.

Figure S4. Gel electrophoresis measurements of exonuclease activity of wild-type CaPif1 , mutants CaPif1^{D582V} and CaPif1^{D794V} purified proteins. The reactions were carried out at 37°C for 5min in buffer A with 400nM 5'-fluorescein labeled 20-nt ssDNA (substrate S²⁰) at the indicated protein concentrations.

Figure S5. Selected Pif1 helicases from the constructed phylogenetic tree were used for confirming the relationship between the presence of the conserved aspartic/glutamic residues and exonuclease activities. The protein sequences accession numbers are summarized in Table S3.

Figure S6. Different kinds of pif1 protein purity. SDS-PAGE analysis of the purified 8 kinds of Pif1 protein. The gel (10% acrylamide) was stained using Coomassie brilliant blue R250. Lane 1 show protein molecular maker and all the protein (20μ g), respectively.

Figure S7. hPif1, BsPif1 and CtPif1 do not display any appreciable exonuclease activities when high concentration of protein was added. The experiments were performed under the standard exonuclease assay conditions with substrate S12-5F.

Figure S8. In accordance to the properties of RecBCD helicase, we predict the model that coupling of helicase and nuclease activity in CaPif1.