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ABSTRACT The standard one-dimensional Rall cable
model assumes that the electrotonic structure of neurons does
not change in response to synaptic input. This model is used in
a great number of both theoretical and anatomical-
physiological structure-function studies. In particular, the
membrane time constant, em, the somatic input resistance, Ri.,
and the electrotonic length are used to characterize single cells.
However, these studies do not take into account that neurons
are embedded in a network of spontaneously active cells.
Synapses from these cells will contribute scantly to the
membrane conductance, especially if recent evidence of very
high specific membrane resistance, Rm = 100 kfi cm2, is taken
into account. We numerically simulated the electrical behavior
of an anatomically reconstructed layer V cortical pyramidal
cell receiving input from 4000 excitatory and 1000 inhibitory
cells firing spontaneously at 0-7 Hz. We found that, over this
range of synaptic background activity, rm and R. change by a
factor of 10 (80-7 msec, 110-14 Mfl) and the electrotonic
length of the cell changes by a factor of 3. We show that this
significantly changes the response of the cell to temporal
desynchronized versus temporal synchronized synaptic input
distributed throughout the neuron. Thus, the global activity of
the network can control how individual cells perform spatial
and temporal integration.

activity on the spatial and temporal integrative properties of
individual pyramidal cells and discuss the functional impli-
cations of our results, both for interpreting data from an in
vitro (e.g., slice or culture) preparation as well as for cortical
information processing strategies.

MODEL
A typical layer V pyramidal cell (Fig. 3) in striate cortex was
filled with horseradish peroxidase during in vivo experiments
in the anesthetized, adult cat (8). The somatic input resistance
of this neuron was Rin = 23 MU, and its time constant was Tm
= 20 msec. The three-dimensional coordinates and diameters
of the dendritic tree were measured by a computer-assisted
method, and each branch was replaced by a single equivalent
cylinder. This morphological data was fed into a modified
version of NEURON, an efficient single-cell simulator devel-
oped by Hines (9). Neocortical pyramidal cells are covered
with 5000-15,000 dendritic spines (3, 10). We assumed that
our cell receives excitatory input from 4000 synapses of the
non-N-methyl-D-aspartate type. The time course of the as-
sociated conductance increase was modeled by an a function:

g(t) = constte-t/tpk, [1]

Conventional one-dimensional cable theory studies the volt-
age behavior in active or passive, spatially extended cable
structures in response to current injections or synaptic in-
puts. These models usually assume a uniform membrane
resistance, Rm, of 5-10 kfl'cm2 and a small number of
synapses. Each synaptic input induces a transient increase in
the membrane conductance, but their total conductance is
small relative to Gm = l/Rm. However, neurons do not exist
in isolation but are embedded in a heavily interconnected
network ofneurons that are spontaneously active: in the case
of visual cortex at rates between 0 and 5 Hz (1, 2). Given that
the average cortical pyramidal cell receives input from on the
order of 10,000 synapses (3), this synaptic background ac-
tivity causes an added membrane conductance, Gsyn, com-
parable to Gm. In the light ofrecent evidence suggesting much
higher values for Rm (4, 5), Gsyn may actually constitute the
main bulk ofthe effective membrane conductance, Gmcff (the
sum of Gm and Gsyn). Since both input resistance, R.,, and
time constant, Tm, depend strongly on Gm,eff, we expect the
overall activity level of the network to determine integrative
properties of cells. Previously, a simple model was used (6)
to study the effect synaptic background activity has on the
efficiency of single synapses in a motoneurons, whereas
Holmes and Woody (7) investigated the impact of a nonho-
mogeneous synaptic distribution on synaptic efficiency. In
this paper we study the overall effect of synaptic background

with const = gpe&e/tpeak. This conductance increase peaks at
tpeak = 1.5 msec and is over within 10 msec (Fig. 1B; refs. 11
and 12). The density of excitatory synapses per unit area is
very small at or near the soma, reaches 50%o of its peak value
40 ,um away from the soma, and levels out to a constant value
after about 70 ,tm away from the soma, in agreement with
anatomical data (13). We accounted for excitatory synapses
onto dendritic spines by absorbing them into the cable
structure (14, 15). About 20%6 of all synapses on a pyramidal
cell are believed to be inhibitory. Accordingly, our cell
received 1000 inhibitory synapses, 500 synapses of the Cl--
permeable -aminobutyric acid type A (GABAA) and 500 of
the K+-permeable GABA type B (GABAB). Their time
courses were modeled by a functions (Eq. 1), but with larger
values of tpak (see legend of Fig. 1). The density ofGABAA
synapses peaked at the soma and decayed over 200 gum,
whereas the density ofGABAB synapses peaked 50 ,m away
from the soma and decayed to a small constant value with
increasing distance from the soma. All synapses were inde-
pendently activated at random (using a Poisson distribution)
at a rate offHz. We initially ran our simulations with 5000.f
discrete, time-varying synaptic inputs per sec. However,
given the large number of synapses, we replaced gsyn(t) in
each branch by an equivalent time-averaged conductance
input. Given a compartment containing n synapses, we

Abbreviations: GABA, -t-aminobutyric acid; EPSP, excitatory
postsynaptic potential.
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FIG. 1. Somatic potential -ofour simulated layer V pyramidal cell
in response to different current inputs for f = 1 Hz. (A) Upon
injection ofa current step of0.4 nA (top trace), the cell fires an action
potential. The threshold for spike initiation is about -49 mV. The
response is delayed by more than 100 msec due to the presence ofIA.
The middle and bottom traces show the responses to 0.7- and 1.0-nA
current steps, respectively. The calcium-dependent potassium cur-
rent, IK(Ca), is primarily responsible for the adaptation of the firing
frequency. (B) Postsynaptic potential in response to a single excita-
tory synapse at three different locations (soma, middle of the basal
tree, and middle of the apical tree). Since the gp,| associated with
each synapse is constant (0.5 nS), the peak voltage decreases with
increasing distance and peaks later. Notice the small amplitude of
this "unitary" EPSP. The time course of the excitatory conductance
input g(t) is plotted at the bottom of the figure and is given by g(t) =
gp|ak(t/tpjkOe1 - 1/tP, with gpcak = 0.5 nS, tpeak = 1.5 msec, and a
synaptic reversal potential E5y. = 0 mV. (C) The somatic potential
of the cell in response to the random 1-Hz activity of all 5000
synapses atf= 1 Hz. The horizontal lines indicate the voltage when
the time-averaged synaptic input of Eq. 2 is used. The time course
ofthe inhibitory conductance changes are described by the above g(t)
function, with gpe = 1.0 nS, tp,, = 10 msec, and &y. = -70 mV
for GABAA and gp = 0.1 nS, tpk = 40 msec, and &y. = -95 mV
for the GABAB synapses. The parameters characterizing the passive
dendrites are Rm = 100 kWkcm2, Cm = 1 ,uF/cm2, Ri = 200 1l cm, and
E,.& = -66 mV (4, 14, 19, 20). The cell body contains seven
voltage-dependent ionic currents: two sodium currents (INa with a
peak conductance gNa = 200 mS/cm2 and INa-p with gNa-p = 1, ENa
= 50 mV), one calcium current (ICa with gCa = 1, ECa = 115 mV), and
four potassium currents with EK = -95 mV (IDR with gDR = 120, 'A

with kA = 1, IM with gm = 0.6, and the calcium-dependent IK(ca) with
gK(Ca) = 45 mS/cm2). Calcium buffering and diffusion was modeled
by a first-order exponential decay with a time constant of 200 msec.
Since adding an axon to our cell made little difference to its electrical

defined an equivalent membrane conductance for each syn-
aptic input type

Gmeff = ksynfn, [21

where ksyn = fg(t)dt = etpa.gp,. This decreased compu-
tation time dramatically without changing the behavior ofthe
cell (Fig. 1C). The dendrites are assumed to be passive, with
Rm = 100 kiLcm2 (4, 5, 14). The final effective membrane
conductance is obtained by adding all the different synaptic
components to the leak conductance. At f = 1 Hz, the
effective Rm varies between 6 and 35 kfvm2, depending on
the specific compartment. Notice the trade-off between the
peak conductance change, time to peak, the number of
synapses, and the spontaneous background frequency.
The cell body contains seven different ionic currents,

modeled using Hodgkin-Huxley-like kinetics with voltage-
independent time constants (ref. 16; see legend of Fig. 1),
including a fast (as well as a sustained) sodium current
underlying spike generation, a high-threshold, L type, cal-
cium current, and four potassium currents (IA, IM, IDR,
IK(Ca)). All these currents have been characterized in cortical
cells (17, 18). The dynamics offree, intracellular calcium was
approximated by a single intracellular compartment at the
soma.

RESULTS
The basic performance of the neuron for a synaptic back-
ground activity of 1 Hz is illustrated in Fig. 1. The response
of the cell to a long-lasting current input (Fig. 1A) shows the
spike adaptation typical of regular-spiking pyramidal cells
(21). Adaptation was usually complete after 100-150 msec.
The cell could discharge at rates up to 300Hzfor large current
injections (3 nA). Somatic excitatory postsynaptic potentials
(EPSPs) caused by a single excitatory synapse are shown in
Fig. 1B for three different input locations. The size and width
of these EPSPs are in good agreement with those recorded in
pyramidal cells when intracellularly stimulating a neighbor-
ing pyramidal cell (22). Fig. 1C illustrates the somatic poten-
tial in the presence of the spontaneous background firing. For

f= 0.5 Hz, the resting potential stabilizes at around Vr..t =
-65 mV, with Tm = 22 msec and Rim = 21 Mfl, describing the
behavior of some of our intracellularly recorded in vivo cat
pyramidal cells in response to electrical stimuli quite well (8,
18).

Figs. 2 and 3 illustrate what happens if the synaptic
background activity is varied. In the absence of any synaptic
input, Rim = 110 Mfl and Tm = 80 msec, while the resting
potential stabilizes between El,,k, the reversal potential ofthe
membrane leak, and EK, the reversal potential of K+. In the
absence of any synaptic activity, the leak conductance ofthe
dendritic tree contributes about 59%o (i.e., 5.3 nS) toward the
somatic input conductance, Gin = 1/Rim; the remainder
comes from the two potassium currents, IM and IA. At 1 Hz
background activity, on average five synaptic events are
impinging on the cell every msec, contributing a total of24 nS
(34%) to the somatic input conductance Gin. Because of the
reversal potential of the excitatory synapses (0 mV), the
membrane potential throughout the cell is pulled toward more
depolarizing potentials, activating additional IA and IM cur-
rents. Although these trends continue asf is increased, the
largest change can be observed between 0 and 2 Hz.

behavior, we left it out. Simulations usually involved between 164
and 820 spatial compartments. The simulator (discussed in ref. 9)
uses a second-order Crank-Nicholson integration method and typ-
ically runs 60 sec on aSUN Sparc II workstation to simulate 100 msec
of the complete model.
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FIG. 2. Impact of synaptic background frequency on cell parameters. (A) Somatic input resistance, Rm,, in the absence of any active currents
(top curve; passive neuron) and in our standard model (bottom curve). The former case is analogous to using a Cs'-filled electrode to block
the potassium currents. Rim was measured by computing the amplitude of a current step necessary to hyperpolarize the cell body by 1 mV. (B)
Membrane time constant, Tm. Since in principle no simple exponential can be fitted to the voltage trajectory in the presence of voltage-dependent
currents, we replaced the different currents (in particular, IM and IA) by their steady-state values at the resting potential. The somatic potential
in response to a small current step was then fitted by two exponentials. We identified the slower component with Tm. (C) Resting potential, Vr".t,
at the cell body. Because active synapses are spread throughout the cell at locations with different input resistances, the resting potential will
vary throughout the cell. (D) Electrotonic distance, L, from the soma to three different locations (the distal end ofa basal dendrite, a point halfway
up the apical tree, and the most distal point in layer I). L was computed as the sum of all branch segments on the path between the location
and the soma.

Activating the synaptic input has two distinct effects: the
conductance ofthe postsynaptic membrane increases and-the
membrane potential is pulled toward the synaptic reversal
potential. The system can, at least in principle, independently
control these two effects by differentially varying the spon-
taneous firing frequencies of excitatory versus inhibitory
inputs. Thus, increasingf only for the GABAB inhibition will
further increase the membrane conductance but move the
resting potential toward more hyperpolarizing potentials.
Varying the synaptic background activity can have a

significant impact on the electrotonic structure of the cell
(Fig. 3). We plot the electrotonic distance of any particular
point from the cell body-that is, the sum of the electrotonic
lengths Li = >jljk/Aj) associated with each dendritic segment
i, where Aj is the electrotonic length constant ofcompartment
j, 1j is its anatomical length, and the sum is taken over all
compartments between the soma and compartment i (24).
Increasing the synaptic background activity fromf= 0 tof=
2 Hz has the effect of stretching the "distance" of any
particular synapse to the soma by a factor of about 3, on
average. Thus, while a synapse in layer I has an associated
L value of about 2.6 at 2 Hz, it shrinks to 1.2 if all network
activity is shut off, while for a synapse at the tip of a basal
dendrite, L shrinks from 0.7 to 0.2. In fact, the EPSP induced
by a single excitatory synapse at that location goes from 151
to 39 ,LV, a decrease of about 4. Thus, when the overall
network activity is low, synapses in the superficial layer of

the cortex could have a significant effect on somatic dis-
charge, while having only a weak modulatory effect on the
soma if the overall network activity is high. Note that basal
dendrites, which receive a larger number of synapses, stretch
more than apical dendrites.
That the synaptic background activity can also modify the

temporal integration behavior of the cell is demonstrated in
Fig. 4. At any particular background frequency f, we com-
pute the minimal number ofadditional excitatory synapses (at
gPCA = 0.5 nS) necessary to generate at least one action
potential. These synapses were distributed randomly
throughout the cell according to the distribution described
above. We compare the case in which all synapses are
activated simultaneously with the case in which the inputs
arrive-asynchronously, smeared out over 25 msec (Fig. 4A).
Iff = 0, it requires 115 synapses firing simultaneously to
generate a single action potential, whereas 145 are needed if
the input is desynchronized. This small difference between
inputs arriving synchronized and at random is due to the long
integration period of the cell. If the background activity
increases to f = 1 Hz, 113 synchronized synaptic inputs-
spread out all over the cell-are sufficient to fire the cell. If,
however, the synaptic input is spread out over 25 msec, 202
synapses are now needed in order to trigger a response from
the cell. This is mainly due to the much smaller value of Tm
relative to the period over which the synaptic input is spread
out. Note that the difference in number of simultaneous

Neurobiology: Bemander et al.
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length for each branch was calculated and summed up to compute the
electrotonic distance of each point to the soma (in dimensionless
units). (A) In the absence of any background activity (i.e.,f= 0), the
cell is electrically very compact. This approximates the condition in a
slice.-(B) Atf = 2 Hz, the effective membrane conductance Gm,,ff is
much larger, decoupling the distal upper part of the apical tree from
the cell body. Notice that this manner of plotting the functional
geometry ofcells, introduced by Zador et aL (23), emphasizes thin and
long dendrites. The scale bar corresponds to 1 length constant, A.

synaptic inputs needed to Aire the cell forf = 0 compared to
f- 1 is small (i.e., 113 vs. 115), in spite ofthe niore than 5-fold
decrease in somatic input resistance. The effect ofthe smaller
size of the individual EPSP at higher values off is compen-
sated for by the fact that the resting potential of the cell has
been shifted toward the firing threshold ofthe cell(about -49
mV). Finally, Fig. 4B compares the case ofiSl0 synchronized
versus unsynchronized synaptic inputs arriving repetitively
with a 25-msec periodicity for f = 1 Hz. If the input is
synchronized in time, seven out of eight cycles produce an
action potential, whereas for the unsynchronized input, only
a single spike is triggered-a-compelling demonstration ofthe
effect of synchronized input.

DISCUSSION

The principal phenomenon reported here is the dramatic
effect the overall network activity can have on the spatiotem-
poral integration behavior of single neurons. The large de-
crease in R Tm, and other cellular parameters upon increas-
ing f is contingent upon two assumptions: (i) that the input
resistance in the absence of any afferent activity (f = 0) is
high and (ii) that on the order of several thousand or more
synaptic events occur per second. The decrease in these
parameters does not depend on the particular details of the
synaptic density, synaptic time course, reversal potential,
and cellular geometry. Our results show that the large values
of Rin and Tm recently reported by several groups using
patch-clamp techniques for cortical or hippocampal pyrami-
dal cells under in vitro conditions (4, 5, 25) may simply reflect
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FIG. 4. Coincidence detection. A number of excitatory synapses
were fired either simultaneously or spread out in time and' were
superimposed onto the synaptic background activity. Tihe synapses
were distributed throughout the cell. For the unsynchronized case,
a Poisson process determined their activation times. (A) We plot here
n, the minimum number of synapses (at gp,, = 0.5 nS) necessary to
trigger a single action potential as a function of the background
frequencyjf The lower curve (-) is for the case when all n synapses
are activated simultaneously, while the upper curve (- .)shows n
when the activation times of the synapses are spread over 25 msec.
On the abscissa,f= 0, 0.5, 1, 2, 3, 5, and 7 Hz correspouds to a G.,
of 9.1, 49, 71, M4, 91, 123, and 151 nS, respectively. (B) TiKsomatic
potential when 150 excitatory synapses distributed thrbghtibut the
cell are repeatedly activated at 40 Hz for eight cycles. If the input is
synchronized (---) in time (that is, all 150 -inputs are activated every
25 msec simultaneously), seven spikes are triggered, while only a
single one is generated if the input is dispersed thiouhout the
25-msec interval (-). If the activation times of the 150isynapses are
spread over the first 12.5 msec of every cycle, only two spikes are
generated on average (not shown). The synaptic background fre-
quency isf= 1 Hz.

the lack of general synaptic background activity typically
observed in slice preparations. This also explains .the more
negatives values of Vest seen in slices as compared to in vivo
intracellular recordings.
That a large difference between in vivo and in vitro record-

ings has not been observed earlier appears to be partially.due
to the impalement damage, of the microelectrode recording
technique used. In a careful study of this problem using the
perforated patch-clamp technique, Spruston and Johnston (5)
report 3-4 times higher values of R.n and 2-3 times higher
values of Tm in CA1 and CA3 pyramidal cells than measured
with conventional microelectrodes. They explain this dis-
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crepancy within a numerical model by introducing a somatic
shunt caused by the electrode damage (see also ref. 26).
As pointed out previously by Holmes and Woody (7),

synaptic activity can significantly change the effectiveness of
individual' inputs as well as the electrotonic structure of the
cell." Thus, atf = 0, even the distal part of the apical tree in
layer I has an equivalent electrotonic distance of no more
than 1.2', while the distance increases by a factor of 2.5 forf
= 2. In other words, input to the superficial layers of the tree
becomes more and more decoupled from the soma as the
overall network activity increases, with possibly interesting
functional consequences for the feedback pathway from
higher cortical areas preferentially terminating in the upper
layers (27). However, as the coupling between individual
synaptic input sites and the soma decreases asfis increased,
a confounding effect is that the cell is pulled toward more
positive potentials, bringing the cell closer to threshold. The
extent to which one effect dominates the other depends on
the details of the model.

In the temporal domain, the effect of varying f is quite
clear. As f increases' the cell discriminates better between
synaptic input arriving simultaneously than the same input
spread out in time. As witnessed by Fig. 4, ifbetween 100 and
200 synaptic inputs excite the cell, synchronized inputs,
whether occurring only once or repetitively every 25 msec,
lead to a response, 'whereas desynchronized input fails to
trigger a spike. Thus, the cell acts as a coincidence detector
whose tuning is enhanced as the general network activity
increases. Note that we have here only considered the case
in which the synaptic input is spread throughout the cell.
Furthermore, the presence ofmassive synaptic input, such as
during visual stimulation, will further briefly increase the
dendritic input conductance, thereby reducing the effective
time constant and increasing the sensitivity of the cell to
temporal phase (see figure 11 in ref.' 28). Our prediction is
simple to test experimentally, by recording from one cell and
varying the overall network activity with the help of sensory
afferents or neurochemical substances. These results may
have important implications for the relevance of temporal
patterning of neuronal firing in cortex' (29, 30) or for'gain
control in the face of varying visual contrast (T. Poggio,
personal communication). Finally, our study illustrates how
the overall activity of a neuronal network can alter the
properties of the basic computational units underlying the
network behavior.

Note. We recently learned that Rapp et al. (31) have independently
studied this problem in the case of cerebellar Purkinje cells and have
arrived at very similar conclusions.
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