

### Geophysical Research Letters

Supporting Information for

## Sources of Cosmic Dust in the Earth's Atmosphere

J. D. Carrillo-Sánchez<sup>1</sup>, D. Nesvorný<sup>2</sup>, P. Pokorný<sup>3,4</sup>, D. Janches<sup>4</sup>, J. M. C. Plane<sup>1</sup>

<sup>1</sup> School of Chemistry, University of Leeds, Leeds, UK, <sup>2</sup> Department of Space Studies, Southwest Research Institute, Boulder, Colorado, USA, <sup>3</sup>The Catholic University of America, 620 Michigan Ave, 20064, Washington D.C., USA, <sup>4</sup> Space Weather Laboratory, Mail Code 674, GSFC/NASA, Greenbelt, Maryland, USA

# **Contents of this file**

Figure S1 and Table S1

## Introduction

The purpose of this Supporting Information is to describe the results of fitting the three cosmic dust sources when the JFC particle size distribution with  $D_{\text{break}} = 100 \,\mu\text{m}$ , derived from IRAS observations of the Zodiacal Cloud, is used [*Nesvorný et al.*, 2011; 2010]. This provides a comparison with the main paper, where the more recent Planck satellite observations with  $D_{\text{break}} = 36 \,\mu\text{m}$  is used [*Ade et al.*, 2014; *Fixsen and Dwek*, 2002].

Figure S1 depicts the cumulative mass and size distributions inferred from the JFC-IRAS and JFC-Planck distributions. The Planck distribution has a sharp break at around radius = 18  $\mu$ m (i.e.  $D_{break} = 36 \mu$ m), and can be parameterized following a double power law with a differential index of -1.4 ± 0.3 below the break diameter, and a differential index of -4.3 ± 0.1 above the break size. In contrast, the IRAS distribution exhibits differential indices of -2.7 ± 1.8 and -4.8 ± 0.1 below and above the break diameter, respectively. Thus, as shown in Figures 1a and 1b of the main paper, the JFC-Planck particle mass distribution is shifted ~2-orders of magnitude lower than the JFC-IRAS distribution.

We have assumed the same Na enrichment factor of 2.5 for the IRAS model (termed ZCM-IRAS). Consequently,  $\alpha = 0.41 \pm 0.17$ ,  $\beta = (2.73 \pm 2.00) \times 10^{-2}$ ,  $\gamma = (6.78 \pm 1.72) \times 10^{-2}$ . In terms of the global mass input rate, the contributions of the JFC, AST and LPC particles are  $13.7 \pm 5.7$  t d<sup>-1</sup> (57%),  $2.9 \pm 2.1$  t d<sup>-1</sup> (13%) and  $7.4 \pm 1.9$  t d<sup>-1</sup> (30%), respectively. The Total Input Mass (TIM) for the ZCM-IRAS model is  $24.0 \pm 6.4$  t d<sup>-1</sup>.





**Figure S1.** Cumulative size/mass distributions of JFC particles inferred from observations of emission from the Zodiacal Cloud by the Planck (blue) and IRAS (red) satellites.

**Table S1.** Global mass input from the four cosmic dust sources for the JFC-IRAS fit. Elemental ablation inputs are italicized; the percentages in parentheses show the fraction of each element that ablates from its total atmospheric input from each source.

| Mass flux                             | <b>JFC</b> ( <b>t d</b> <sup>-1</sup> ) | <b>AST</b> (t d <sup>-1</sup> ) | LPC=HTC (t d <sup>-1</sup> ) | Total (t d <sup>-1</sup> ) | LPC=OCC (t d <sup>-1</sup> ) |
|---------------------------------------|-----------------------------------------|---------------------------------|------------------------------|----------------------------|------------------------------|
| Unmelted micrometeorites              | 8.5                                     | 1.0                             | 0.4                          | 9.9                        | 0.07                         |
| Cosmic spherules                      | 3.1                                     | 1.4                             | 0.6                          | 5.1                        | 0.1                          |
| Ablated atoms                         | 2.1                                     | 0.5                             | 6.4                          | 9.0                        | 6.5                          |
| Cosmic spherules <sup>†</sup>         | 2.8                                     | 1.4                             | 0.4                          | 4.6                        | 0.08                         |
| Unmelted ( $\emptyset > 50 \ \mu m$ ) | 2.4                                     | 0.9                             | 0.3                          | 3.6                        | 0.04                         |
| Na                                    | 0.1 (45%)                               | 0.02 (75%)                      | 0.1 (99%)                    | 0.2 (48%)                  | 0.1 (100%)                   |
| K                                     | 4.9×10 <sup>-3</sup> (44%)              | 1.8×10 <sup>-3</sup> (74%)      | 5.9×10 <sup>-3</sup> (97%)   | 0.01 (51%)                 | 5.6×10 <sup>-3</sup> (100%)  |
| Fe                                    | 0.8 (20%)                               | 0.2 (28%)                       | 1.9 (90%)                    | 2.9 (43%)                  | 1.9 (98%)                    |
| Si                                    | 0.3 (13%)                               | 0.08 (16%)                      | 1.0 (87%)                    | 1.4 (37%)                  | 1.0 (97%)                    |
| Mg                                    | 0.2 (11%)                               | 0.05 (11%)                      | 0.9 (85%)                    | 1.1 (31%)                  | 0.9 (97%)                    |
| Ca                                    | 6.2×10 <sup>-3</sup> (3%)               | 1.4×10 <sup>-4</sup> (0.4%)     | 0.07 (70%)                   | 0.08 (27%)                 | 0.08 (93%)                   |
| Al                                    | 3.4×10 <sup>-3</sup> (2%)               | 4.3×10 <sup>-5</sup> (0.1%)     | 0.06 (59%)                   | 0.06 (19%)                 | 0.08 (88%)                   |
| Ti                                    | 3.2×10 <sup>-5</sup> (4%)               | 1.4×10 <sup>-6</sup> (0.8%)     | 3.7×10 <sup>-4</sup> (84%)   | 4.0×10 <sup>-4</sup> (28%) | 4.5×10 <sup>-4</sup> (100%)  |
| 0                                     | 0.7 (14%)                               | 0.2 (18%)                       | 2.4 (90%)                    | 3.3 (38%)                  | 2.4 (99%)                    |
| Total                                 | 13.7                                    | 2.9                             | 7.4                          | 24.0                       | 6.7                          |
| $%Na _{87.5 \ km}^{\dagger\dagger}$   | 76%                                     | 46%                             | 99%                          | 86%                        | 100%                         |
| $\% Fe _{87.5 \ km}^{\dagger\dagger}$ | 39%                                     | 0.9%                            | 92%                          | 70%                        | 98%                          |

<sup>†</sup> Spherules in the size range 50  $\mu m \le \emptyset \le 700 \ \mu m$  corresponding to measurements at South Pole [*Taylor et al.*, 1998].

<sup>††</sup>Fraction of Na and Fe ablated above 87.5 km.

#### References

Ade, P. A. R., N. Aghanim, C. Armitage-Caplan, M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, et al. (2014), Planck 2013 results. XIV. Zodiacal emission, *Astron. Astrophys.*, *571*, art. no.: A14.

Fixsen, D. J., and E. Dwek (2002), The Zodiacal Emission Spectrum as Determined by COBE and Its Implications, *Astrophys. J.*, 578, 1009–1014.

Nesvorný, D., D. Janches, D. Vokrouhlický, P. Pokorný, W. F. Bottke, and P. Jenniskens (2011), Dynamical Model for the Zodiacal Cloud and Sporadic Meteors, *Astrophys. J.*, 743 (2), 129-144.

Nesvorný, D., P. Jenniskens, H. F. Levison, W. F. Bottke, D. Vokrouhlický, and M. Gounelle (2010), Cometary Origin of the Zodiacal Cloud and Carbonaceous Micrometeorites. Implications for Hot Debris Disks, *Astrophys. J.*, *713*, 816-836.

Taylor, S., J. H. Lever, and R. P. Harvey (1998), Accretion rate of cosmic spherules measured at the South Pole, *Nature*, *392*, 899-903.