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1 Absolute quantification of mean number of exogenous
molecules per cell

In the following we describe step by step the procedure we followed to obtain the
estimate of the mean number of exogenous RNA molecules per cell in the cases with
and without pre-miR20a. The entire procedure was repeated three times, for three
different biological replicates (that is, three different cotransfection experiments with
and without pre-miR20a). In Table 1 in the main text we reported the means and
errors over these biological replicates.

1.1 Cell sorting

We sorted the cotransfected cells into three groups depending on the level of eYFP
fluorescence. To define the three intervals of fluorescence we identified the threshold
at the cell sorter plotting mCherry vs eYFP for the cells cotransfected with the pre-
miR20a. We then sorted the cells for eYFP below threshold (i.e. eYFP-low sample),
around threshold (i.e. eYFP-medium sample) and above threshold (eYFP-high sam-
ple), see Figure S5 for an example. For the same eYFP intervals, we sorted as well the
cells without pre-miR20a.

1.2 RNA extraction and qRT-PCR

Total RNA was extracted from each sorted cell subpopulation using Trizol reagent
(Ambion Life Technologies, USA) in combination with Pure Link RNA Mini Kit (Am-
bion). 1µg of total RNA was treated with RQ1 DNAse (Promega) and reverse tran-
scribed, after heat-inactivation of the enzyme, using M-MLV reverse transcriptase
and random primers (Life Technologies). Quantitative RT-PCR was performed on a
7300 Real Time PCR System (Applied Biosystems) using specific primers for eYFP,
mCherry, mCerulean and mKOrange. 18S probe (Life Technologies) was used as inter-
nal loading control. In particular, qRT-PCR was performed (i) on cDNA of the sorted
cotransfected cells with primers for the exogenous targets and for the endogenous ri-
bosomal RNA 18S and (ii) on DNA standards spiked into untransfected cell cDNAs
(same protocol used in [1]). The DNA standards were different dilutions of amplicons
for the exogenous targets (eYFP, mCherry, etc...), each with its corresponding pair of
primers. The use of these standards allowed the definition of a calibration curve for
each fluorophore, directly linking threshold cycles and mean number of molecules per
cell [2].

1.3 Standard curves

DNA standards were used at amounts ranging from 0.5 pg to 0.005 fg per reaction.
For each pair of primers (and cDNA sample) we had three technical replicates (so,
three technical replicates for the eYFP-low cDNA sample with mCherry primers, three
technical replicates for the eYFP-low cDNA sample with eYFP primers, etc...). The
different dilutions of amplicons allowed the definition of a standard curve for each
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amplicon that directly links the mass pre-PCR of the amplicon and the threshold
cycle (CT ) of the qRT-PCR reactions [2]. The CT were in the exponential phase of
PCR amplification (see [2, 3]). In Figure S6 we show an example of standard curve
for the mCherry amplicon.

1.4 Internal control and CT correction

We used the 18S rRNA amplification as an internal loading control, to correct for
the possible differences in total RNA input and retro-transcription efficiency from one
cDNA sample to the other. As previously described in [3], we first checked the stability
of this control in our setting by comparing the mean 18S CT (as 2−CT ) between the
experiment without pre-miR20a (1.8719× 10−5) and the experiment with pre-miR20a
(1.7374 × 10−5). The fold-change between the internal controls is 0.93 ∼ 1, thus
confirming that the transfection of pre-miR20a does not change the expression of the
18S. For each experiment we chose the lowest 18S CT as a reference. We then evaluated
the difference between the lowest 18S CT and the other 18S CT s. Such differences are
the correction terms we add to the CT s (“corrected CT ”) of the samples we want to
quantify (with primers for mCherry, eYFP, etc...). The choice of the lowest 18S CT

is to avoid underestimating the average number of molecules/cell. However, using the
highest or the mean among all the 18S CT s did not change significantly the order
of magnitude of the results, indicating homogeneous loading and retro-transcription
efficiency across our samples.

1.5 Final quantification

After obtaining corrected CT s for all the samples, we use the calibration curves to
know the corresponding pre-PCR mass for the amplicons [2, 1]. This is the mass
corresponding to 1µg of RNA. Since we know the total mass of RNA extracted, the
molecular weight of the amplicons and the number of cells per sample, it is then
straightforward to evaluate the mean amount of exogenous RNA molecules per cell:

mean exogenous RNA per cell =
m× d× µ×MW ×NA

N
, (1)

where m is the RNA pre-PCR mass in 1µg, d is the dilution factor of the cDNA sample,
µ are the corrected total µg of extracted RNA, MW is the molecular weight of the
amplicon (the product of all these quantities is the number of moles of that particular
amplicon in the sample), NA is the Avogadro number and N is the number of cells
in the original sorted subpopulation of cells. µ is defined as µ = C × total RNAµg,
where C is the ratio

(total RNAµg/N)max
total RNAµg/N

.

C is thus the ratio between the mean amount of total RNA per cell in the sample
where this quantity is the highest and the other samples. This correction takes into
account possible technical pipetting errors (anyhow small, since C ∼ 1 for all the
samples). Here below in Table 1 we show as example of the estimate of the mCherry
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mean amount of molecules per cell in the “eYFP medium” sample for one biological
replicate (see also Figure S6). Consider however, that mean values and standard
deviations presented in Table 1 in the main text are computed over the different
biological replicates (that is, over different co-transfection experiments of the same
constructs). Indeed for each experiment, in which the cells have been sorted in the

Table 1: Evaluation of mCherry mean amount of molecules per cell for one biological repli-
cate (three technical replicates).

corrected CT pre-PCR mass # moles # molec. per cell
18.45 1.64 ×10−13 g 7.83 ×10−17 64
18.41 1.69 ×10−13 g 8.04 ×10−17 66
18.52 1.57 ×10−13 g 7.49 ×10−17 61
mCherry molecular weight 139260 Da
number of cells 736181
total RNA mass in the sample 6420 ×10−9 g
RNA correcting factor C 1.03

intervals “eYFP low”, “eYFP medium” and “eYFP high”, we have three technical
replicates per sample. The technical errors, as can be noticed from the small dispersion
of the three estimated number of molecules per cell in Table 1 in SI (here above), is
much smaller than the biological one (that is, the error we reported in Table 1 of the
main text). In the following we report a summary table of the exogenous transcripts
quantification for the biological replicates (mediated over the technical ones).

Table 2: Biological replicates for exogenous transcripts quantification.

eYFP high
exogenous transcripts Cotransfection Cotransfection + pre-miR-20a
eYFP high 310, 5965, 2682 365, 308
eYFP medium 125, 123, 813 114, 150, 44
eYFP low 100, 16 29, 20, 73
mCherry high 93, 821, 358 137, 34, 445
mCherry medium 64, 110, 164 8, 41, 14
mCherry low 53, 16 6, 4, 21
mCerulean high 37, 327, 259 70, 111, 602
mCerulean medium 14, 47, 120 32, 66, 9
mCerulean low 5, 7 5, 10, 9
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2 Absolute quantification of mean number of miR-20a
molecules per cell

To quantify the mean number of mature endogenous miR-20a molecules per cell we
adopted a spike-in procedure following the guidelines described in [4]. In particular,
we lysed independent samples containing a fixed amount of cells (∼ 2 × 106) with
QIAzol lysis reagent (QIAGEN) and added to lysates increasing amounts of synthetic
mature miR-20a (UAAAGUGCUUAUAGUGCAGGUAG). Total RNA was then ex-
tracted from each sample using miRNeasy mini kit (QIAGEN). Using both TaqMan
MicroRNA Assay for hsa-miR- 20a (Thermofisher) and RNU44 TaqMan MicroRNA
control Assay (Thermofisher), we reverse transcribed 10ng of total RNA per sam-
ple and performed quantitative RT-PCR on a 7300 Real Time PCR System (Applied
Biosystems). The RNU44 control was used as internal loading control to correct for
the possible differences in total RNA input and retro-transcription efficiency from one
cDNA sample to the other. This control was used exactly as we did with S18 for the
quantification of exogenous target molecules. The corrected CT s for all the 10 sam-
ples were then directly linked to the mean amount of miR-20a molecules per cell (see
Figure S7). The changing in slope of the resulting curve corresponds to the amount
of endogenous miR-20a molecules per cell (1250 molecules per cell in our case). We
performed as well qRT-PCR for two samples of cell, one transfected with 100 nM of
pre-miR20a 48 hours before the RNA extraction and the other untransfected. We then
used the untransfected sample as reference to measure the δδCT between its CT and
the CT of the pre-miR transfected sample. The pre-miR transfected sample shows a
163 fold increase in the mature miR-20a with respect to the untransfected one.

Cotransfection experiments in HeLa TeT-ON cell line

To show that our results are unbiased with respect to the cell line we repeated part
of the experiments in HeLa cells. We performed cotransfection experiments with and
without 100 nM of pre-miR20a for the unregulated case (0 MRE on both mCherry
and mCerulean) and for reporter with 4 MRE on mCherry combined with mCerulean
with 0,1,4,7 MRE.

Cells were plated in 6 well multiwells and induced with doxicycline 24 hours before
transfection. We used Effectene (QIAGEN) as transfection reagent and measured the
florescence on a CyanADP (Beckman Coulter) flow cytometer.

Results, shown in Figure S8 and S9, summarize what we found in HEK 293 Tet-OFF
cell line. That is, microRNA-mediated crossregulation is context dependent but there
is an optimal range of parameters for which crossregulation is maximal among targets.
In particular, it arises (i) at the level of mean protein concentrations (see the threshold
effect in Figure S8a, the modulation of the threshold when increasing the miR20a pool
via premiR transfection in Figure S8b and the fold repression in both cases in Figure
S8c); (ii) at the level of fluctuations (see Figure S9ab, where the mCherry total noise
is modulated via the expression of mCerulean with an increasing number of MRE)
and correlations (the ratio between the Pearson correlation coefficient in presence of
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miRNA mediated regulation and the unregulated case is maximal for eYFP values
close to the threshold, see Figure S9c).

3 Stochastic model of molecular titration and crosstalk

3.1 Model definition

We describe with a stochastic model the miRNA-target interactions. The system can
be described by 5 interacting variables (1 miRNA, 2 mRNAs, 2 proteins) indicated
respectively as s, r1, r2, p1, p2, which represent the (integer) copy number of molecules
present in the cell at any given time t. Using this notation, the probability P of finding
in a cell exactly s, r1, r2, p1, p2 molecules at any time t is governed by the following
master equation:

∂tP =

2∑
i=1

[kri(Pri−1 − P ) + kpiri(Ppi−1 − P )] + ks(Ps−1 − P )

+

2∑
i=1

{gri [(ri + 1)Pri+1 − riP ] + gpi
[(pi + 1)Ppi+1 − piP ]}+ gs[(s+ 1)Ps+1 − sP ]

+ α

2∑
i=1

gi[(ri + 1)(s+ 1)Pri+1,s+1 − risP ]

+ (1− α)

2∑
i=1

gis[(ri + 1)Pri+1 − riP ] (2)

where P := Pr1,r2,p1,p2,s and, for example Pp2+1 is a short hand notation for Pr1,r2,p1,p2+1,s.
In Eq. (2) kri , ks and kpi (with i = 1, 2) are the transcription rates of mRNAs ri and
miRNA s and the translation rates for proteins pi respectively. gri , gs and gpi (with
i = 1, 2) are their degradation rates. gi (with i = 1, 2) are the effective association
rates for the miRNA s and the mRNA ri. Finally the parameter α measures the
catalyticity of the interaction, i.e. the fraction of miRNA molecules that are recycled
after the interaction with their targets. This master equation is not amenable for ana-
lytic solutions and approximate methods have been proposed [5, 6] to obtain accurate
quantitative predictions. Following previous work [6] we obtained the approximated
expression for mean values, standard deviations and Pearson correlation coefficients
(sketched in Figure 1b-d in the main text), which we describe in the next paragraphs.

The model can be easily generalized for a system of M miRNAs s1, . . . , sM , N
mRNAs r1, . . . , rN , and N proteins p1, . . . , pN . In the following, we will assume that
each mRNA is coding for a distinct protein. However, within this framework, we could
easily describe, for instance, non-coding RNAs. In other terms we are not bounded
to have the number of proteins N equal to that of the different mRNA species. This
generalized model reads:
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∂tP =

N∑
i=1

[kri(Pri−1 − P ) + kpi
ri(Ppi−1 − P )] +

M∑
i=1

ksi(Psi−1 − P )

+

N∑
i=1

{gri [(ri + 1)Pri+1 − riP ] + gpi
[(pi + 1)Ppi+1 − piP ]}

+

M∑
i=1

gsi [(si + 1)Psi+1 − siP ]

+ α

M∑
i=1

N∑
j=1

gij [(ri + 1)(sj + 1)Pri+1,sj+1 − risjP ]

+ (1− α)

N∑
i=1

M∑
j=1

gijsj [(ri + 1)Pri+1 − riP ] (3)

Provided that the values of all parameters of the model (e.g. rates of transcription,
degradation, etc.) are known, it is in principle possible to deal with a large number
of chemical species, both in terms of stochastic simulation a la Gillespie, or in term of
controlled mathematical approximations, that we are going to outline in the following.
A proof of the principle of how the model behaves in the more realistic case of 10
mRNA targets regulated by 10 microRNa in blocks overlapping blocks, has been al-
ready extensively discussed (see in particular Figure 4 in [6] and the related discussion
in the main text). In the following we will also give a network about the competitive
titration mechanism at large scale.

In the following analysis, unless otherwise stated, we will just consider the specific
case N = 2,M = 1 which provides a reasonable model for experimental setup, but,
again, more complicated mRNA-microRNA interaction architectures could be ana-
lyzed using the same techniques.

3.2 Independent molecular-species approximation

As long as one is interested in mean values of the observables at steady state, a
good approximation is the so-called independent molecular species approximation, also
known as mean-field approximation which amounts to assume that the multivariate
probability distribution P is factorized among the different chemical species:

P ind(r1, r2, p1, p2, s) := Pr1(r1)Pr2(r2)Pp1(p1)Pp2(p1)Ps(s) . (4)

Plugging this factorized functional form into Eq. (2), and computing the first moments
at steady state (i.e. in the limit t→∞), one obtains a system of second order equations
in the five variables which is easily solved numerically for any value of the model
parameters. The main limitation of the factorized ansatz in Eq. (4) is that, although
giving a fairly accurate prediction of the mean values of the different chemical species
across a wide range of parameters, the very simple structural form of Eq. (4) cannot
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predict their statistical correlations. For example the Pearson correlation coefficients
under the independent chemical species approximation are always zero by definition.
We used the independent chemical species approximation to fit the model parameters
through the following functional law:

f(x|λ, θ,m) = m[(x− λ− θ) +
√

(x− λ− θ)2 + 4λx] (5)

where x is the transcriptional activity (in terms of eYFP fluorescent value), θ = kS/α
and λ = gRgS/(αg), as it can be deduced by the detailed derivation in [6]. The
further parameter m is introduced here to take into account the fact that the intrinsic
brightness depends on the fluorescent protein type in such a way that, for instance,
even for the construct with no miRNA binding sites the straight line (c.f. Figure
2 in the main text) has a slope different than one. It can be shown perturbatively
that in the limit of interaction strengths of the same order of magnitude, the same
functional form displayed in equation (5) holds also in the multiple target case. From
the functional form of Eq. (5), it is also clear that f(0|λ, θ,m) = 0 for all value of
the parameters. We thus manually rescaled the fluorescent values so that each curve
passes through the origin. Interestingly the same constant values for the rescaling hold
for any combination of the constructs.

Of the three fit parameters defined in Eq. (5), the last parameter m has no biological
interpretation, and accounts only for the different intrinsic brightness of the different
fluorescent proteins. The parameter θ = kS/α is the ratio between miR20a transcrip-
tion rate and the turnover α. Unfortunately for both parameters very little is known
in the context of our experiment (293-HEK cell line) and the result of our fit is given
in terms of rescaled fluorescent units, rather than in terms of rate of transcription
activity. The second parameter λ = gRgS/(αg), with g = k+γ/(k− + γ), involves a
combination of biochemical parameters for miRNA/mRNA complex formation (asso-
ciation and dissociation rates k+, k− and degradation rate γ) which are known only
for some miRNAs in-vitro. Moreover, the validity of these estimates in-vivo is often
debated.

3.3 Gaussian Approximation

To overcome the above mentioned limitations and to take under control correlations
across chemical species, a very simple yet accurate approximation scheme is the so-
called Gaussian one [6]. Note that, following this approximation scheme, copy numbers
will not be bound to be integer numbers as it was for the master equation defined in
Eq. (2). As we will see in the following, and has already been extensively discussed
in [6], this does not affect the good quality of the approximation. Let us denote

with ~X the five-dimensional vector of components r1, r2, p1, p2, s respectively. We can
thus make the following multivariate Gaussian ansatz for the probability distribution
function of ~X:

PGauss( ~X) :=
1√

(2π)5detC
exp

[
− ( ~X − ~µ)TC( ~X − ~µ)

2

]
, (6)
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which in our 5−dimensional case depends on 20 parameters: 5 numbers specify the
mean ~µ and 15 the covariance matrix C (which is symmetric). The key property that
makes Eq. (2) very difficult to solve analytically is that, as shown in detail in [6], it
generates a whole hierarchy of moments such that the lower moments are expressed
in terms of higher order moments and no moment-closure scheme can be utilized.
Multivariate Gauss distributions, on the other hand, have the useful property that
all moments can be expressed as a linear combination of just the first and the second
moments. As an illustrative example, defining µi = E(Xi) and E(XiXj)−E(Xi)E(Xj)
for i 6= j, we could consider the generic third moment of the distribution defined in
Eq. (6) E(Xi, Xj , Xk) = Cijµk +Cikµj +Cjkµi for i 6= j 6= k, where Cxy is the x-row
y-column element of the covariance matrix C.

A systematic procedure to compute ~µ and C requires to define the time dependent
moment generating function:

Ft(~z) :=

5∏
i=1

zXi
i Pt( ~X) (7)

Plugging the above equation in the master equation we get the following second order
partial differential equation:

∂tFt(~z) = H(~z)Ft(~z) (8)

The moment generating function has the following properties:

F (~z = 1, q = 1) = 1 , (9)

∂ziF |~z=1,q=1 = 〈Xi〉 ,
∂2ziF |~z=1,q=1 = 〈X2

i 〉 − 〈Xi〉 ,
∂2zi,zjF |~z=1,q=1 = 〈XiXj〉 .

By inserting the previous definitions and imposing the Gaussian marginalization con-
ditions mentioned above, we obtain at the steady state a system of 20 equations in
20 unknown that we can numerically solve to get the values for ~µ and C. As already
shown in [6], this approximation turns out to reproduce fairly accurately both noise
(in terms of coefficient of variation CV) of single targets and Pearson correlation co-
efficient between targets, when compared with the numerical values obtained through
Gillespie algorithm.

3.4 A network perspective

Considering that typically a given miRNA might have hundreds endogenous targets, a
puzzling issue of miRNA mediated crosstalk is to what extent a reasonable fold change
(say a two to seven fold increase) of one of the targets could produce an observable
effect on any other target. Such a situation is observed in our experiment where the
transcripts coded by our exogenous constructs are actually competing with the rest
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of the endogenous targets. This issue was already quantitatively addressed in [6], and
here we just report the main conclusions.

Let us consider a system where one miRNA s is interacting with 100 targets t1, . . . , t100.
We are interested in the effect on the system at steady-state of a k-fold increase of
transcription rate of target t1 on a randomly chosen target, say t2. The overall sce-
nario is dictated by the relative stoichiometry of the system, and in particular on the
share of free miRNA s (i.e. number of miRNA molecules which are not bound to their
targets). Three scenarios are in principle possible:

(i) The number of free targets is larger then the total number of miRNA (s = 0, all
miRNAs are bound to a target and there is a part of the targets which is free).

(ii) All targets ti are bound to a miRNA but there is still a share of free miRNA
(s� 0).

(iii) A marginal quasi-equimolarity condition where the number of targets equals on
average the total number of miRNAs (s ∼ 0).

Without resorting to mathematical modeling, one can understand that, for different
reasons, under scenarios (i) and (ii) very little or null crosstalk between targets is to
be expected.

In the first case (excess of targets) an increase in concentration of the first target will
indeed be neutral to the second as, being all miRNAs entirely sequestered, the increase
will not able to release further miRNAs from the second one. This simple intuition
can be made more quantitative by observing Figure S10, where we display the mean
number of molecules for t1, t2 and s as a function of kr1 (i.e. the transcription rate of
target 1) obtained from direct integration of Eq.(2). One can see how the value of t2
is saturating to its constitutive expression value (i.e. the value of the transcript in the
absence of miRNAs). Given the convexity of the two curves, it is also clear that, well
above threshold, an increase δ1 on t1 will induce a much smaller δ2 on t2.

In the second case (excess of miRNAs), the system is so repressed that, well below
threshold, any fluctuations of any of the targets would be immediately down-regulated
by the excess amount of miRNAs. Note also that, in the case of our experiment, the
(unbounded) share of target t1 and t2 can be considered as a proxy for the quantity
of the fluorescent protein they code for. Under condition (ii), as shown in the leftmost
part of Figure S10, virtually no protein can be translated, and therefore no crosstalk
effect could be observed.

Things become more interesting in the quasi-equimolarity condition (iii), where due
to the strong non-linear behavior of our system at threshold, crosstalk becomes indeed
possible. As shown in [6] it turns out that a 2-fold increase in the transcription rate
of t1 causes a 1.3-fold increase on t2, whereas a 7-fold increase on t1 would cause a
4.5-fold increase on t2 (but of course the same would be true for any other target).
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4 Distribution of targets with multiple MREs

In our two reporters system, we have considered, in analogy with [1], different numbers
of MREs (0,1,4,7) for the same miRNA family as a proxy of the miRNA-target inter-
action strength (encoded in the rates g1, g2 in our model). From now on we define as
MRE multiplicity, the number of times an MRE of the same miRNA family appears
on the same transcript. A natural question is how typical is for endogenous target
molecules to host MREs with high multiplicity (e.g. with multiplicity between 4 and
7 as in our experimental setup).

To answer to this question we analyzed the database Target Scan Human (Predicted
Conserved Targets) [7] and we simply counted on a per-target base the multiplicity
of MREs. A summary of the results is displayed in Figure S11 where we show that
although a large majority of targets have multiplicity 1 (295.675 MREs out of 369.988),
MREs with with larger multiplicity are not so rare (for instance 5500 targets turn out
to show a multiplicity between 4 and 7). Note also that typically targets have MREs
with different multiplicities for different miRNA families. For instance the MRE with
the larger multiplicity in the database is hosted by transcript ONECUT2 and has 20
distinct binding sites for miR-8 and 10 distinct binding sites for miR-320/320abcd.

These results should be taken, as it is often the case with bioinformatic predictions,
cum grano salis as not all MREs might be simultaneously accessible depending on the
biological context (e.g. cell type in which the transcript is expressed) or the state of
occupancy of neighboring MREs.

5 Supplemental figures
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Figure S1: Threshold for single plasmid transfections with CaCl2. (a) mCherry
mean fluorescence is plotted against eYFP. A threshold emerges when increasing
mCherry MRE. The same holds for mCerulean with respect to mKOrange (b).
Shadowed strips around data are the error bars on the biological replicates. For
clarity of the image we are not showing the data-dispersion error bars which
are similar to those reported in Figure S4. Magenta and cyan circles in legends
represent the mCherry and mCerulean fluorophores.
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Figure S2: Threshold and noise for CaCl2 transfections. (a-b) mCherry mean fluores-
cence is plotted against eYFP. Shadowed strips around data are the error bars on
the biological replicates. A threshold emerges when increasing mCherry MREs
(a) while it disappears when increasing mCerulean MREs (b). (c-d) mCherry
coefficient of variation (CV) is plotted against eYFP. Shadowed strips around
data are the error bars on the biological replicates. The CV of mCherry glob-
ally increases when increasing mCherry MREs (a) while decreases when increas-
ing mCerulean MREs (b). Magenta and cyan circles in legends represent the
mCherry and mCerulean fluorophores. Black arrows point to the threshold.

13



Figure S3: Strong miRNA-target interaction engenders bimodality. Rough
mCherry cytofluorimetry data scattered against eYFP. Soon after the thresh-
old two clear phenotypes appear.

14



Figure S4: Binned averages for two different constructs. Black and yellow circles
are mean values over three experimental replicates for cotransfections with con-
structs with 0 and 4 miRNA regulatory elements (MRE) on mCherry, respec-
tively (and 0 MRE on mCerulean). Continuous lines are fit of the theoretical
model. Magenta and cyan circles represent the two constructs. Data-dispersion
(thinner bars) and fluctuation of the mean (thicker bars of almost the symbol
size) are superimposed to appreciate the difference between the two error-bar
estimates.
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Figure S5: Example of cell sorting for cells co-transfected with pre-miR20a. The
scatter plot (eYFP on the x-axis and mCherry on the y-axis) shows how the cells
were sorted chosing three intervals based on the eYFP fluorescence level. Each
dot is a single cell. The three eYFP intervals (low, medium and high) have been
chosen on the basis of the threshold location (below threshold, around threshold
and above threshold respectively).

16



CT1
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Figure S6: mCherry standard curve obtained from different dilution of the
mCherry amplicon. DNA standards were used at amounts ranging from 0.5 pg
to 0.005 fg per reaction. The different dilutions of amplicons allowed the defi-
nition of a standard curve that directly links the mCherry mass pre-PCR and
the threshold cycle (CT ) of the qRT-PCR reactions. CT1, CT2 and CT3 are the
corrected CT s for the three technical replicates reported in Table 1 in SI together
with their corresponding pre-PCR mass m1, m2 and m3.
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Figure S7: Endogenous miR-20a quantification. Known amounts of mature miR-20a-
5p were spiked into cell subpopulations of known numbers in order to obtain
a known mean amount of mature miR-20a molecules per cell. The qRT-PCR
threshold cycles (CT s) of every sample are then directly linked to the mean
amount of miR-20a molecules per cell. The changing in slope of the resulting
curve corresponds to the amount of endogenous miR-20a molecules per cell (1250
molecules per cell in our case).
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Figure S8: Titration-induced threshold determines the optimal crosstalk. (a-b)
mCherry mean fluorescence (a proxy for p1 in the model) is plotted against eYFP
(a proxy for the constitutive expression p0 in the model) for experiments done
in HeLa cells. A threshold (or non-linear behavior) emerges for high number
of mCherry MRE, it disappears when increasing mCerulean MRE and can be
modulated increasing the pool of available miRNA (panel b corresponds to ex-
periments with 100 nM of pre-miR20a transfected together with the exogenous
targets). The intensity of crosstalk (measured in terms of fold-repression F with
respect to the unregulated fluorophores) depends on the particular combination
of MRE on both exogenous targets and on the miRNA available(c). F is the
ratio between the value of mCherry in the absence of miR-20a MRE and its value
in the presence of MRE for each eYFP bin and for each N on mCerulean. Purple
and cyan circles in legends represent the plasmids coding for the mCherry and
mCerulean fluorophores.
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Figure S9: Retroactivity increases cell-to-cell variability and causes target syn-
chronization. (a-b) mCherry total noise quantified by its coefficient of variation
CV (a proxy for CVp1 in Figure 1c in the main text) is plotted against eYFP
(a proxy for the constitutive expression p0 in the model) for experiments done
in HeLa cells. The CV shows a local maximum for the high miRNA repression
(mCherry with 4 MRE and mCerulean with 0 MRE both without (a) and with
(b) pre-miR) while decreases when increasing mCerulean MRE number (a-b).
Purple and cyan circles in legends represent the plasmids coding for mCherry
and mCerulean fluorophores, respectively. In (b) are shown experiments per-
formed with 100 nM of pre-miR-20a transfected together with the exogenous
targets. (c) The Pearson ratio is measured for three different values of eYFP
basal expression (below, around and above threshold) both in absence and pres-
ence of pre-miR. As predicted by the model, the correlation is maximal around
the threshold and in this case could be even 6 fold higher than in the unregu-
lated case. Blue-delimited areas are regions whose Pearson ratio (i.e. ratio of
Pearson coefficient between mCherry and mCerulean possessing different MRE
to the same measure in the absence of MRE) is statistically relevant (p-values
< 0.01) with respect to the corresponding unregulated case.
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Figure S10: Steady state values for targets and miRNA. Steady state values for
the mean number of molecules of targets t1, t2 and miRNA s as a function
of the target t1 transcription rate. We display the trend of the system upon
varying the transcription rate of t1 keeping fixed all remaining parameters of
the system. In right tail of t1 and t2 curves, we show that an increase δ1 on
t1 will induce a much smaller increase δ2 on t2. Curves are obtained by direct
integration of Eq.(2).
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Figure S11: Multiplicity of MREs from Target-Scan. We display the ranked mul-
tiplicity of MREs on a per-target base from Target Scan Human (Predicted
Conserved Targets). For instance, the leftmost point in the curve indicates
that there exists a target hosting up to 20 MREs of a single miRNA family
(in this specific case the target gene is ONECUT2 and the miRNA family is
miR-9). Note also the logarithmic scale on the x-axys: most of the MREs have
multiplicity 1 (295.675 MREs out of 369.988).
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