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S.1 Recursive formula for computing the profile likelihood

We take the derivative of the log-likelihood in (4) with respect to dkj to obtain
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Setting (S.1) to 0 for dkj and dk,j+1, we obtain
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Because the second term on the right side of (S.2) involves only the dl’s with tl < tk,j+1, this equation

indeed defines a recursive formula starting with dk1, k = 1, · · · ,K.

S.2. Proof of Theorem 1

Let Pn denote the empirical measure and P the underlying probability measure. Write Nk(t) = I(T̃ ≤
t, ξD̃ = k) (k = 0, 1, · · · ,K) and Ñ(t) = I(T̃ ≤ t, ξ = 0). The proof consists of three major steps.
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Step 1. We show that for large n, the NPMLE exists, or equivalently, Λ̂k(τ) < ∞. The log-

likelihood function is
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0
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Conditions (C2) and (C3) imply that, for large n with probability one, there exists a subject with

T̃ = τ and D̃ = 0. For this subject, if Λk(τ) = ∞ for some k, then S(T̃ ;Z,β,Λ) ≤ 0 and the

corresponding term in (S.3) is −∞. Thus, Λ̂k(τ) < ∞.

Step 2. Let Z be the support of Z equipped with the uniform norm. We show that for every

z ∈ Z, with probability one,

lim inf
n

S(τ ; z, β̂, Λ̂) > 0. (S.4)

Note that (S.4) implies that lim supn Λ̂k(τ) < ∞ almost surely for each k.

Suppose that lim infn S(τ ; z0, β̂, Λ̂) ≤ 0 for some z0. By the continuity of S in z, there exists a

small neighborhood Z0 ⊂ Z of z0 with Pr(z ∈ Z0) > 0 such that
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n
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We take a subsequence, still indexed by n, such that limn supz∈Z0
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such that supt∈[0,τ ] |βT
k z(t)| ≤ M for every βk and z ∈ Z, and choose ε0 ∈ (0,K−1). Define Λk(t) =

(Λ̂k(t) ∧ M̃k) ∨ M̃k/2, where M̃k = e−MG−1
k

{
− log(1 − K−1 + ε0)

}
> 0. Since β̂ and Λ̂ are the

NPMLEs,

ln(β̂, Λ̂) ≥ ln(β̂,Λ), (S.5)

where Λ = (Λ1. · · · ,ΛK). To derive a contradiction, we will show that the left side of (S.5) goes to

−∞ and the right side is bounded away from −∞. To this end, we will use the following inequalities
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By (C4), we can show that the right side goes to −∞. On the other hand,
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which is bounded away from −∞. Thus, we obtain a contradiction, so (S.4) holds. It then follows

from Helly’s selection lemma that, along a subsequence, Λ̂k(t) → Λ∗
k(t) weakly for some increasing

function Λ∗
k(t) and β̂ → β∗ for some vector β∗.

Step 3. We show that Λ∗
k = Λk0 and β∗ = β0. Define Λε
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0
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}
dΛk(s) as a path

through Λk indexed by ε, where hk ∈ BV1. By differentiating the log-likelihood of Λε
k for a single

subject with respect to ε at 0, we obtain the score operator for Λk as
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where Ñk(t;β,Λ) = Nk(t) + wk(β,Λ)Ñ(t), wk(β,Λ) = F ′
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By changing the order of integrations, we re-write (S.6) as
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By definition of the NPMLEs, Pn l̇2k(β̂, Λ̂)[hk] = 0 for all hk ∈ BV1. We take hk(·) = I(· ≤ t) to

obtain
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By Step 2 and the continuity of S(t;Z,β,Λ) in β and Λ, and with Λ equipped with the weak

topology, there exist a neighborhood of β∗, denoted by B, and a neighborhood of Λ∗
k, denoted by Ak,

such that S(t;Z,β,Λ) is uniformly bounded away from zero. Therefore,
{
Ψ̃k(·; z,β,Λ) : z ∈ Z,β ∈
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B,Λk ∈ Ak, k = 1, · · · ,K} is a class of functions on [0, τ ] that are uniformly bounded and with total

variation uniformly bounded and is thus Donsker (van der Vaart and Wellner (1996), chapter 2.10).

By the permanence of the Donsker property and the uniform law of large numbers,

sup
t∈[0,τ ],β∈B,Λk∈Ak,k=1,··· ,K

|φk(t;β,Λ)− φ∗
k(t;β,Λ)| → 0, (S.7)

where
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By (S.7) and the continuity of φ∗
k in β and Λ, we have φk(·; β̂, Λ̂) → φ∗

k(·;β∗,Λ∗) uniformly. We can

show that for large n, φk(t; β̂, Λ̂) is uniformly bounded away from 0. Furthermore, PndÑk(·; β̂, Λ̂) =
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is absolutely continuous with respect to the Lebesgue measure. We denote the derivatives of Λ∗
k(t)
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k(t) and λk0(t), respectively. By the uniform convergence of the log-likelihood to its

expectation and that of the function dΛ̂k/dΛ̃k to λ∗
k/λk0, together with the Kullback-Leibler criterion,
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almost surely. In the case that T̃ = t and ξD̃ = k,

λ∗
k(t) exp

[
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{∫ t

0
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]
.

We integrate both sides to obtain eβ
∗T
k Z(t)λ∗

k(t) = eβ
T
k0Z(t)λk0(t). It then follows from (C2) that

β∗ = β0 and Λ∗
k(t) = Λk0(t). Thus, with probability one, β̂ → β0 and Λ̂k(t) → Λk0(t) pointwise.

The latter can be strengthened to uniform convergence since Λk0 is continuous.

S.3. Proof of Theorem 2

We denote the empirical process by Gn =
√
n(Pn − P ). The score operator for Λk is given in (S.6).

The score function for β is l̇1 ≡ (l̇
T
11, · · · , l̇

T
1K)T, where

l̇1k(β,Λ) =
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∫ τ

0
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For δ > 0 sufficiently small, the class of functions

{
l̇1(β,Λ), l̇2k(β,Λ)[hk] : ||β − β0||+

K∑

k=1

sup
t∈[0,τ ]

|Λk(t)− Λk0(t)| < δ, hk ∈ BV1, k = 1, · · · ,K
}

is Donsker. Thus, by the consistency of (β̂, Λ̂), the continuity of the score functions in the parameters,

and the dominated convergence theorem,

Gn

{
vTl̇1(β̂, Λ̂) +

K∑

k=1

l̇2k(β̂, Λ̂)[hk]
}
= Gn

{
vTl̇1(β0,Λ0) +

K∑

k=1

l̇2k(β0,Λ0)[hk]
}
+ op(1) (S.8)

uniformly in (v,w). It remains to show that the map W : l∞(V ×W) → l∞(V ×W) given by

W (β,Λ)[v,w] = P
{
vTl̇1(β,Λ) +

K∑

k=1

l̇2k(β,Λ)[hk]
}

is Fréchet differentiable at (β0,Λ0) with a derivative that is continuously invertible.

It is straightforward to show that

∂

∂ε

∣∣∣∣
ε=0

W

(
β0 + εṽ,Λ0 + ε

∫
w̃dΛ0

)
= ṽTB1[v,w] +

K∑

k=1

∫
B2k[v,w]h̃kdΛk0, (S.9)
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where the operator (B1, B21, . . . , B2K)[v,w] can be expressed as

−




v

φ∗
1(t;β0,Λ0)h1(t)

...

φ∗
K(t;β0,Λ0)hK(t)




+




ζ1(β0,Λ0)v +
∑K

k=1

∫
hk(t)ν1k(t;β0,Λ0)dΛk0(t) + v

vTζ21(t;β0,Λ0) +
∑K

j=1

∫
hj(s)ν21j(s, t;β0,Λ0)dΛj0(s)
...

vTζ2K(t;β0,Λ0) +
∑K

j=1

∫
hj(s)ν2Kj(s, t;β0,Λ0)dΛj0(s)




,

(S.10)

ζ1(β0,Λ0) = −P{l̇1(β0,Λ0)l̇1(β0,Λ0)
T}, and ζ2k,ν1k and ν2kj are certain functions. We show that

the operator B ≡ (B1, B21, . . . , B2K) is invertible on its range.

In light of Theorem 1,

φ∗
k(t;β0,Λ0) =

PdÑk(t;β0,Λ0)/dt

λk0(t)
> 0

under Conditions (C1) and (C3). Thus, the first term in (S.10) is an invertible operator. Because

the second term is a compact operator, it suffices to show that the operator B is one-to-one (Rudin

(1973), pages 99-103). Suppose that for some (v,w) ∈ V ×W, B(v,w) = 0. We then wish to show

that (v,w) = 0. By (S.9),

P

(
vTl̇1(β,Λ) +

K∑

k=1

l̇2k(β,Λ)[hk]

)2

= − ∂

∂ε

∣∣∣∣
ε=0

W

(
β0 + εv,Λ0 + ε

∫
wdΛ0

)
= 0.

Thus, with probability one,

vTl̇1(β,Λ) +

K∑

k=1

l̇2k(β,Λ)[hk] = 0. (S.11)

Let v = (vT
1 , · · · ,vT

K)T, and take dNk(t) = 1. It follows from (S.11) that

hk(t) + vT
kZ(t) = −

[∫ t

0

{
hk(s) + vT

kZ(s)
}
ev

T
kZ(s)dΛk0(s)

]
H ′

k

{∫ t

0
ev

T
kZ(s)dΛk0(s)

}
,

which is a homogeneous integral equation of hk(t) + vT
kZ(t) with 0 as the only solution. Thus,

it follows from (C2) that vk = 0 and hk(·) = 0. Therefore, B is one-to-one and thus invertible.

Consequently, the derivative of W is continuously invertible.

For (v,w) ∈ V ×W, denote (ṽ, w̃) = B−1(v,w). It follows from (S.8) that

√
n
{
vT(β̂ − β0) +

K∑

k=1

∫ τ

0
hkd(Λ̂k − Λk0)

}
= −Gn

{
ṽTl̇1(β0,Λ0) +

K∑

k=1

l̇2k(β0,Λ0)[h̃k]
}

+ op(1) (S.12)

uniformly in (v,w). Thus,
√
n(β̂−β0, Λ̂−Λ0) is asymptotically Gaussian. Take hk = 0 and v to be

the unit coordinate vectors in (S.12) to find that the influence function of β̂ lies in the tangent space,

i.e., the closed linear span of the score functions. By the semiparametric efficiency theory (Bickel et

al., 1993), β̂ is semiparametric efficient.
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S.4 Profile likelihood and information matrix

We justify the use of the negative inverse of the second derivative of the profile log-likelihood to

estimate the covariance matrix of β̂ by verifying the conditions in Theorem 1 of Murphy and van

der Vaart (2000). From the proof of Theorem 2, the invertibility of the whole information operator

implies the invertibility of the information operator for Λ. This ensures that there is a “least favorable

direction” hk, which is a vector of dimension p with components in BV1 such that the parametric

model ε →
(
ε, (Λ1ε, · · · ,ΛKε)

)
with dΛkε =

{
1 + (ε − β0)

Thk

}
dΛk0 is a least favorable submodel.

Given β̃ →p β0, let Λ̂β̃
≡
(
Λ̂
1β̃
, · · · , Λ̂

Kβ̃

)
denote the maximizer of ln(β̃, ·). We can show that

sup
t∈[0,τ ]

K∑

k=1

∣∣∣Λ̂kβ̃
(t)− Λk0(t)

∣∣∣ = Op(||β̃ − β0||+ n−1/2)

by using the arguments in the proofs of Theorems 1 and 2 and the smoothness of the likelihood in

β. Then the no-bias condition follows from the smoothness property of the score functions in the

parameters. Finally, we can verify the Donsker properties of the first and second derivatives of the

least favorable submodel log-likelihood since functions of uniformly bounded variation are Donsker.

For the use of the inverse information matrix for β and dkj ’s as an estimator of the covariance

matrix of β̂ and Λ̂, the justification is similar to Theorem 3 of Zeng and Lin (2007). We note that

the first and second derivatives of our log-likelihood are smooth on a neighborhood of (β0,Λ0).

S.5. Technical details of model checking procedures

Using the (functional) delta method, we will show that Wkn(x, t) is asymptotically equivalent to

W̃kn(x, t) = Gn

{∫ t

0
f(x, u;Z,β0,Λ0)dMk(u;β0,Λ0)

+ (l̇1, l̇2)B
−1P

(
gk11(x, t), · · · , gk1K(x, t), gk21(·,x, t), · · · , gk2K(·,x, t)

)}
(S.13)

uniformly in x and t, where l̇1 is the score function for β, l̇2 is the score operator for Λ, and B is

the information operator, all evaluated at (β0,Λ0),

gk1j(x, t) = −
∫ t

0
f(x, s;Z,β0,Λ0)Y (s)Ψ̃j(s;Z,β0,Λ0)

∫ s

0
Z(u)eβ

T
j0Z(u)dΛj0(u)

×Ψk(s;Z,β0,Λ0)dΛk0(s)− I(j = k)

∫ t

0
f(x, s;Z,β0,Λ0)

[
Z(s)+

×H ′
k

{∫ s

0
eβ

T
k0Z(u)dΛk0(u)

}∫ s

0
Z(u)eβ

T
k0Z(u)dΛk0(u)

]
Y (s)Ψk(s;Z,β0,Λ0)dΛk0(s),
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and

gk2j(u,x, t) = −
∫ t

0
I(s ≥ u)f(x, s;Z,β0,Λ0)Y (s)Ψk(s;Z,β0,Λ0) exp{βT

k0Z(u)}

×
[
Ψ̃j(s;Z,β0,Λ0) + I(j = k)H ′

k

{∫ s

0
eβ

T
k0Z(ũ)dΛk0(ũ)

}]
dΛk0(s)

− I(j = k)I(u ≤ t)f(x, u;Z,β0,Λ0)Y (u)Ψk(u;Z,β0,Λ0).

We replace the unknown quantities in W̃kn by their empirical counterparts. Specifically, we es-

timate the functions gk1j and gk2j by replacing (β0,Λ0) with (β̂, Λ̂). Denote the resulting expres-

sions by ĝk1j and ĝk2j . Recall from Section 2.2 that t1, · · · , tm are the distinct failure times and

δ1, · · · , δm are the corresponding failure types. We treat the jump sizes of Λ at the tj ’s as Euclidean

parameters, and, along with β, we calculate the score vector for the ith subject, denoted by l̃i,

and the information matrix In. Let g̃k1n(x, t) = Pn

(
ĝk11(x, t)

T, · · · , ĝk1K(x, t)T
)T

and g̃k2n(x, t) =

Pn

(
ĝk2δ1(t1,x, t), · · · , ĝk2δm(tm,x, t)

)T
. Also, let Ŝi(x, t) = l̃

T

i I−1
n

(
g̃k1n(x, t)

T, g̃k2n(x, t)
T
)T

. Then

we obtain

Ŵkn(x, t) = n−1/2
n∑

i=1

{∫ t

0
f(x, u;Zi, β̂, Λ̂)dMki(u; β̂, Λ̂) + Ŝi(x, t)

}
Qi,

as given in Section 2.4.

Let X denote the space of x, and consider Wkn and Ŵkn as random elements in l∞(X × [0, τ ]). In

addition, let BL1 be the space of Lipschitz functions on l∞(X × [0, τ ]) that are uniformly bounded

by 1 and with Lipschitz norm bounded by 1. It is convenient to metrize the laws on l∞(X × [0, τ ])

by ρ(Z1,Z2) = suph∈BL1
|Eh(Z1)−Eh(Z2)|, where Z1 and Z2 are random elements in l∞(X × [0, τ ])

(van der Vaart and Wellner 1996). We impose the following regularity conditions on the function

f(x, t;β,Λ), whose dependence on Z is suppressed for notational simplicity.

(D1) For some δ > 0, the class of functions
{
f(x, t;β,Λ) : x ∈ X , t ∈ [0, τ ], ||β − β0||+

K∑

k=1

sup
s∈[0,τ ]

|Λk(s)− Λk0(s)| < δ

}

is a uniformly bounded P -Donsker class.

(D2) There exists a constantM > 0 such that, with probability one, the total variation of f(x, ·;β0,Λ0)

is bounded by M for all x ∈ X .

(D3) For all (β,Λ) such that β → β0 and Λ → Λ0,

sup
x,t

E|f(x, t;β,Λ)− f(x, t;β0,Λ0)| → 0.
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Remark S.1. Conditions (D1) and (D2) are satisfied by all processes considered in the main text.

Condition (D3) is satisfied by Wkc, Wkp, and Wko and is also satisfied by Wkl and Wktr if there is at

least one continuous covariate.

Theorem S.1. Under Conditions (C1)-(C4) and (D1)-(D3),

sup
h∈BL1

|EQh(Ŵkn)− Eh(Wkn)| −→ 0

almost surely, where EQ denotes expectation with respect to Q.

Proof. Our main task is to show that

Wkn = W̃kn + op(1) in l∞(X × [0, τ ]). (S.14)

Then the conditional distribution of Ŵkn can be shown to be asymptotically the same as the distri-

bution of W̃kn by using the uniform central limit theorem (van der Vaart and Wellner 1996, Thm

2.11.1).

To show (S.14), we define

Λkc(t;β,Λ) =

∫ t

0
Ψk(s;Z,β,Λ)dΛk(s).

Then Mk(t;β,Λ) = Nk(t)−
∫ t
0 Y (s)dΛkc(s;β,Λ). Clearly,

Wkn = Gn

∫ t

0
f(x, s; β̂, Λ̂)dMk(s; β̂, Λ̂)

+
√
nP

[∫ t

0
f(x, s;β0,Λ0)Y (s)d{Λkc(s; β̂, Λ̂)− Λkc(s;β0,Λ0)}

]

+
√
nP

[∫ t

0
{f(x, s;β0,Λ0)− f(x, s; β̂, Λ̂)}Y (s)d{Λkc(s; β̂, Λ̂)− Λkc(s;β0,Λ0)}

]
. (S.15)

Because Λkc(·;β,Λ) is a Hadamard differentiable function of (β,Λ), for almost everyZ,
√
n{Λkc(·; β̂, Λ̂)−

Λkc(·;β0,Λ0)} converges to a zero-mean Gaussian process on [0, τ ]. Then, by Conditions (D2) and

(D3), the third term on the right side of (S.15) is op(1). By the delta method and the linearization

result on (β̂, Λ̂) given in the proof of Theorem 2, the second term is asymptotically linear in the

second term on the right side of (S.13). The proof is complete if we can show that

Gn

∫ t

0
f(x, s; β̂, Λ̂)dMk(s; β̂, Λ̂) = Gn

∫ t

0
f(x, s;β0,Λ0)dMk(s;β0,Λ0) + op(1)

uniformly in x and t. By Conditions (D1) and (D2), together with the permanence of the Donsker

property, the class of functions
{∫ t

0
f(x, s;β,Λ)dMk(s;β,Λ) : x ∈ X , t ∈ [0, τ ], ||β − β0||+

K∑

k=1

sup
s∈[0,τ ]

|Λk(s)− Λk0(s)| < δ

}
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is Donsker. Thus, it suffices to show that

sup
x,t

P

(∫ t

0
f(x, s; β̂, Λ̂)dMk(s; β̂, Λ̂)−

∫ t

0
f(x, s;β0,Λ0)dMk(s;β0,Λ0)

)2

→ 0 (S.16)

in probability. Note that

P

∣∣∣∣
∫ t

0
f(x, s; β̂, Λ̂)dMk(s; β̂, Λ̂)−

∫ t

0
f(x, s;β0,Λ0)dMk(s;β0,Λ0)

∣∣∣∣

≤
∫ t

0
P |f(x, s; β̂, Λ̂)− f(x, s;β0,Λ0)||dMk(s; β̂, Λ̂)|

+ P

∣∣∣∣
∫ t

0
f(x, s;β0,Λ0)d{Λkc(s; β̂, Λ̂)− Λkc(s;β0,Λ0)}

∣∣∣∣ . (S.17)

The second term on the right side of (S.17) is uniformly op(1). For the first term, note that from

Step 2 in the proof of Theorem 1, for every Z, Ψk(s;Z, β̂, Λ̂) is uniformly bounded as n → ∞. Thus,

the total variation of Mk(·; β̂, Λ̂) is uniformly bounded in n for every Z. Therefore, Condition (D3)

implies that the first term is uniformly op(1). Hence, (S.16) follows from the uniform boundedness of

f . This completes the proof of (S.14).

To show that the conditional distribution of Ŵkn is asymptotically equivalent to the distribution

of W̃kn, we appeal to Theorem 2.11.1 of van der Vaart and Wellner (1996). With Ŵkn playing the

role of
∑mn

i=1 Zni in that theorem, where the Qi are the random quantities, it suffices to show that

Ŵkn converges to a Gaussian process indexed by (x, t,β,Λ). The ρ function in that theorem can be

chosen to be the sum of the distances of the four components of the index. Then, the first and second

displays of that theorem follow from the continuity of the influence function of W̃kn in the index. The

entropy integral condition (2.11.2) and the (almost sure) convergence of the covariance function are

direct consequences of Ŵkn being a multiplier Gaussian process.

We state below the consistency results on the supremum tests. We omit the proofs, which can be

obtained by extending the arguments of Chen et al. (2012). As in Chen et al. (2012), we assume

that covariates are time-independent.

(a) Omnibus tests. The results in (i) and (ii) pertain to the goodness-of-fit tests for a particular

risk and all risks, respectively.

(i) The test supz,t |Wko(z, t)| is consistent against any alternative hypothesis such that there

do not exist βk and c > 0 such that Λ′
k(0;Z) = c exp(βT

kZ).

(ii) The test max1≤k≤K supz,t |Wko(z, t)| is consistent against any alternative hypothesis such

that there do not exist β and Λ such that Λk(t;Z) = Gk(exp(β
T
kZ) Λk(t)) for all k, t, and

Z.
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(b) Functional form of covariates. Assume that the components of Z are independent. The test

supz,t |W
(j)
kc (z, t)| is consistent against any alternative such that Λk(t;Z) = Gk(exp(β

T
k0Z

(−j))

g(Zj)Λk0(t)) for some βk0 and Λk0, where Z(−j) is the covariate vector with Zj removed, and g

is not an exponential function.

(c) Link function. Assume that for any β1 and β2, E{g(exp(βT
1 Z))| exp(βT

2 Z)} = c0 exp(β
T
2 Z) for

some c0 > 0 implies that g(x) = cxa for some constants a and c. Then the test supx,t |Wkl(x, t)|
is consistent against any alternative that Λk(t;Z) = Gk(g(exp(β

T
k0Z)) Λk0(t)) for some βk0 and

Λk0, where g(x) is not a mononomial function in the form of cxa.

(d) Proportionality. Assume that Z is binary and that xG′′
k(x)/G

′
k(x) 6= −1. Then the test

supt |Wkp(t)| is consistent against any alternative such that Λk(t;Z) = Gk(exp(βk(t)Z) Λk(t))

with β′
k(0) 6= 0.

(e) Transformation function. Assume that for any β1 and β2, E{g(exp(βT
1 Z))| exp(βT

2 Z)} =

exp(βT
2 Z) implies that β1 = β2. Then the supremum test supx,t |Wktr(x, t)| is consistent against

any alternative such that Λk(t;Z) = Gk0(exp(β
T
k0Z)Λk0(t)) for some βk0, Λk0, and Gk0, where

Gk0 is different from the adopted transformation Gk.
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Fig. S.1. Log-likelihood surface for pairs of transformation functions Gk(x) = r−1 log(1 + rx) (k = 1, 2) in the

analysis of the bone marrow transplantation data.
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Table S.1. Simulation results on the NPMLE for the regression parameters under transformation models†
β11 β12

n r (β11, β12) Bias SE SEE CP Bias SE SEE CP

100 0 (0, 0) 0.003 0.395 0.391 0.945 0.008 0.608 0.608 0.950

(0, 0.5) −0.008 0.398 0.393 0.945 −0.002 0.609 0.605 0.943

(0.5, 0.5) −0.001 0.401 0.397 0.945 −0.001 0.611 0.608 0.946

0.5 (0, 0) 0.004 0.403 0.401 0.948 0.008 0.620 0.626 0.957

(0, 0.5) 0.005 0.407 0.405 0.946 0.003 0.621 0.619 0.947

(0.5, 0.5) 0.000 0.412 0.417 0.956 −0.001 0.623 0.623 0.953

1 (0, 0) 0.005 0.411 0.408 0.945 −0.004 0.633 0.633 0.952

(0, 0.5) −0.007 0.414 0.408 0.944 −0.007 0.636 0.641 0.958

(0.5, 0.5) −0.007 0.417 0.418 0.951 0.004 0.639 0.633 0.942

200 0 (0, 0) −0.005 0.269 0.272 0.955 −0.006 0.464 0.464 0.950

(0, 0.5) −0.001 0.273 0.278 0.960 −0.007 0.468 0.466 0.948

(0.5, 0.5) 0.005 0.274 0.274 0.951 −0.001 0.469 0.467 0.946

0.5 (0, 0) −0.006 0.275 0.274 0.948 −0.005 0.473 0.470 0.946

(0, 0.5) −0.004 0.279 0.281 0.953 0.005 0.474 0.473 0.947

(0.5, 0.5) −0.006 0.281 0.281 0.952 0.005 0.476 0.470 0.943

1 (0, 0) −0.002 0.281 0.283 0.954 0.007 0.483 0.488 0.956

(0, 0.5) 0.002 0.286 0.288 0.954 −0.004 0.487 0.484 0.946

(0.5, 0.5) −0.002 0.289 0.285 0.943 −0.003 0.489 0.494 0.959

500 0 (0, 0) −0.003 0.163 0.165 0.953 0.002 0.285 0.283 0.947

(0, 0.5) −0.005 0.164 0.167 0.957 0.001 0.288 0.283 0.944

(0.5, 0.5) 0.003 0.167 0.164 0.946 0.005 0.293 0.288 0.941

0.5 (0, 0) −0.004 0.165 0.163 0.945 −0.002 0.291 0.294 0.954

(0, 0.5) 0.000 0.166 0.166 0.954 0.003 0.294 0.290 0.945

(0.5, 0.5) 0.003 0.166 0.166 0.949 0.004 0.295 0.290 0.945

1 (0, 0) −0.002 0.169 0.169 0.951 −0.002 0.297 0.301 0.955

(0, 0.5) −0.002 0.173 0.174 0.953 0.000 0.297 0.303 0.955

(0.5, 0.5) 0.001 0.178 0.179 0.954 −0.004 0.301 0.302 0.951

†See the note to Table 1.
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Table S.2. Simulation results on the estimation of the cumulative

hazard function under transformation models

n r t Λ1(t) Bias SE SEE CP

100 0 1 0.059 0.000 0.030 0.029 0.957

2 0.081 0.001 0.028 0.028 0.948

0.5 1 0.059 0.001 0.026 0.022 0.960

2 0.081 0.000 0.030 0.030 0.952

1 1 0.059 0.000 0.024 0.026 0.943

2 0.081 0.000 0.033 0.030 0.951

200 0 1 0.059 −0.001 0.017 0.019 0.952

2 0.081 0.000 0.022 0.021 0.950

0.5 1 0.059 −0.002 0.017 0.017 0.950

2 0.081 0.001 0.025 0.025 0.955

1 1 0.059 0.001 0.018 0.018 0.949

2 0.081 0.002 0.023 0.022 0.946

500 0 1 0.059 0.000 0.010 0.011 0.956

2 0.081 0.000 0.012 0.012 0.944

0.5 1 0.059 0.000 0.011 0.012 0.954

2 0.081 −0.001 0.015 0.015 0.948

1 1 0.059 −0.001 0.012 0.013 0.943

2 0.081 0.000 0.013 0.013 0.954

†See the note to Table 1.

Table S.3. Comparison of the semiparametric and parametric MLEs of β11†
Semiparametric Parametric

n r Bias SE SEE CP Bias SE SEE CP

100 0 0.004 0.391 0.388 0.943 −0.007 0.365 0.365 0.956

0.5 0.004 0.400 0.399 0.953 −0.002 0.372 0.371 0.957

1 0.006 0.412 0.406 0.945 0.008 0.387 0.385 0.945

200 0 −0.002 0.277 0.276 0.955 −0.007 0.261 0.262 0.950

0.5 −0.003 0.296 0.292 0.946 −0.010 0.274 0.276 0.957

1 −0.003 0.309 0.305 0.943 −0.002 0.287 0.288 0.944

500 0 0.004 0.169 0.173 0.959 0.006 0.164 0.159 0.947

0.5 0.008 0.175 0.172 0.950 −0.005 0.160 0.160 0.958

1 −0.004 0.173 0.180 0.940 −0.007 0.171 0.172 0.944

†See the note to Table 1.
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Table S.4. Comparison of the semiparametric and parametric MLEs under mild mis-specification of the para-

metric distribution for Λk†
Semiparametric Parametric

n Parameter Value Bias SE SEE CP Bias SE SEE CP

100 β11 0.500 0.003 0.225 0.221 0.958 0.007 0.220 0.205 0.940

Λ1(0.5) 0.047 0.009 0.024 0.024 0.944 0.057 0.020 0.018 0.141

Λ1(1.5) 0.346 0.003 0.055 0.054 0.956 −0.106 0.048 0.037 0.279

200 β11 0.500 0.006 0.146 0.147 0.956 0.001 0.135 0.131 0.958

Λ1(0.5) 0.047 −0.003 0.017 0.016 0.956 0.059 0.016 0.014 0.041

Λ1(1.5) 0.346 −0.008 0.037 0.038 0.944 −0.101 0.034 0.029 0.076

500 β11 0.500 −0.001 0.095 0.096 0.947 0.000 0.092 0.087 0.959

Λ1(0.5) 0.047 0.005 0.013 0.013 0.947 0.058 0.012 0.009 < .001

Λ1(1.5) 0.346 −0.005 0.024 0.025 0.951 −0.105 0.020 0.016 < .001

†See the note to Table 1.

Table S.5. Comparison of the semiparametric and parametric MLEs of β11 under severe

mis-specification of the parametric distribution for Λk†
Semiparametric Parametric

n Bias SE SEE CP Bias SE SEE CP

100 0.008 0.228 0.232 0.952 −0.043 0.223 0.215 0.945

200 0.005 0.151 0.152 0.947 −0.041 0.143 0.136 0.937

500 −0.003 0.103 0.101 0.951 −0.039 0.098 0.083 0.930

†See the note to Table 1.
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Table S.6. Simulation results on the regression parameters of one risk under mis-specification

of the other risk†
β11 β12

n (β11, β12) Bias SE SEE CP Bias SE SEE CP

100 (0, 0) 0.001 0.384 0.384 0.936 0.002 0.606 0.606 0.949

(0, 0.5) 0.010 0.373 0.371 0.963 0.004 0.667 0.669 0.952

(0.5, 0.5) 0.010 0.432 0.434 0.961 0.000 0.638 0.640 0.955

200 (0, 0) 0.005 0.280 0.277 0.958 0.012 0.465 0.467 0.956

(0, 0.5) 0.001 0.271 0.271 0.944 0.003 0.465 0.463 0.933

(0.5, 0.5) 0.006 0.294 0.293 0.961 0.010 0.454 0.451 0.963

500 (0, 0) 0.009 0.171 0.170 0.939 0.005 0.281 0.284 0.935

(0, 0.5) 0.006 0.170 0.169 0.948 0.011 0.280 0.278 0.955

(0.5, 0.5) 0.002 0.173 0.175 0.954 0.002 0.266 0.264 0.951

†See the note to Table 1.

Table S.7. Proportional cause-specific hazards analysis of the bone

marrow transplantation data

Est SE p-value

TRM

Years 2001-2005 −0.461 0.133 <0.001

Unrelated donor 0.743 0.128 <0.001

Prior auto-HCT −0.362 0.148 0.014

TX > 24 months 0.316 0.133 0.017

Relapse

Years 2001-2005 0.348 0.134 0.009

Unrelated donor 0.770 0.120 <0.001

Prior auto-HCT 0.309 0.137 0.024

TX > 24 months 0.425 0.122 <0.001
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