
Supplementary Material S8: Model and Parameter Descriptions

The state variables (Table S2) and parameters (Table S3) for the model were derived from [1] and
satisfy the equations

dSh
dt

= ΨhH0 − λh(t)Sh − µhSh, (0.1a)

dEh

dt
= λh(t)Sh − νhEh − µhEh, (0.1b)

dIh
dt

= νhEh − γhIh − µhIh, (0.1c)

dRh

dt
= γhIh − µhRh, (0.1d)

dSv
dt

= hv(Nv)Nv − λv(t)Sv − µvSv (0.1e)

dEv

dt
= λv(t)Sv − νvEv − µvEv, (0.1f)

dIv
dt

= νvEv − µvIv. (0.1g)

The human population is divided into susceptible (Sh), exposed/incubating (Eh), infectious (Ih),
and recovered/immune (Rh) compartments. The female mosquito population is divided into sus-
ceptible (Sv), exposed/incubating (Ev), and infectious (Iv) compartments. The total population
sizes are Nh = Sh +Eh + Ih +Rh and Nv = Sv +Ev + Iv for humans and mosquitoes, respectively.
The mosquito birth rate is

hv(Nv) = Ψv −
rv
Kv

Nv,

where Ψv is the natural birth rate in the absence of density dependence, rv = Ψv−µv is the intrinsic
growth rate of mosquitoes in the absence of density dependence, and Kv is the carrying capacity
of the female mosquitoes. Then,

dNv

dt
=

(
Ψv −

rv
Kv

Nv

)
Nv − µvNv = rv

(
1− Nv

Kv

)
Nv

and the positive mosquito population equilibrium is Kv.
We extended the biting rate in [1] to include an alternate host species, properly apportioning

the total number of mosquito bites among hosts (using methods similar to [2]) so that only a
proportion, Ph, of mosquito bites per day are on humans. Following the human-mosquito contact
formulation in [3, 1], σv is the maximum rate at which a mosquito will seek a blood-meal, and σh
(σd) is the maximum number of bites that a human (alternate dead-end host) can support per unit
time. Then, σvNv is the maximum number of bites the mosquito population seeks per unit time and
σhNh + σdNd is the maximum number of host bites available per unit time. Since alternate hosts
for Aedes albopictus can vary, we will group σdNd into one parameter, Qd = σdNd that represents
biting pressure on alternate hosts in general. The total number of mosquito-host contacts is then

b =
σvNv(σhNh +Qd)

σvNv + σhNh +Qd
(0.2)

which depends on the population densities of humans, alternate hosts, and mosquitoes. The ad-
vantage of using this biting rate, as opposed to the more standard frequency-dependent contact
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rates, is that it can handle the whole range of possible vector-to-host ratios, whereas frequency or
density-dependent contact rates have limited ranges of vector-to-host ratios across which they are
applicable [4]. We define

bh =
b

Nh
· σhNh

σhNh +Qd
=

σvNvσh
σvNv + σhNh +Qd

(0.3)

as the number of bites per human per unit time, and

bv =
b

Nv
· σhNh

σhNh +Qd
=

σvσhNh

σvNv + σhNh +Qd
(0.4)

as the number of bites per mosquito per unit time on a human. Then, the forces of infection are

λh = bhβhv
Iv
Nv

, (0.5)

λv = bvβvh
Ih
Nh

. (0.6)

The fraction of bites on humans is

Ph =
σhNh

σhNh +Qd
. (0.7)

Given a known fraction of blood meals on humans, Ph, the total available bites on alternate hosts
is solved as

Qd = σhNh

(
1

Ph
− 1

)
. (0.8)

The basic reproduction number for this model is the geometric mean of Rhv and Rvh. We
defined Rhv as the expected number of secondary human cases resulting from one introduced
infected mosquito in a fully susceptible population and Rvh as the expected number of secondary
mosquito cases resulting from one introduced infected person in a fully susceptible population. So,
R0 =

√
RhvRvh where

Rhv =
νv

µv + νv

H0M

µv
βhv (0.9)

Rvh =
νh

γh + µh

KvM

νh + µh
βvh (0.10)

where
M =

σvσh
σvKv + σhH0 +Qd

. (0.11)

The first terms of Rhv and Rvh are the probability of surviving the incubation period (non-trivial for
mosquitoes). The second terms are the average number of bites on humans an infected mosquito will
make while infectious and the average number of mosquito bites a human will get while infectious,
respectively. The final terms are probability of successful transmission given an infectious contact.

The EIP (extrinsic incubation period) is the time it takes for a mosquito to become infectious
after exposure via a viremic bloodmeal. The average EIP for chikungunya in Ae. albopictus most
likely ranges between 5.9 and 8.2 days based on a recent meta-analysis of lab and field studies
(Christofferson at el. 2014 [28] and references therein). We computed the EIP of Zika virus by fitting
a cumulative exponential distribution to the data in [15] and the resulting value was supported by
[29, 30], who found that the EIP was most likely > 7 days and between 9 and 11 days. However,
those studies did not provide the necessary data to use explicitly in our computation of the EIP.
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Table S2: State variables for the model (0.1).

Sh: Number of susceptible humans
Eh: Number of exposed humans
Ih: Number of infectious humans
Rh: Number of recovered humans
Sv: Number of susceptible mosquitoes
Ev: Number of exposed mosquitoes
Iv: Number of infectious mosquitoes
Nh: Total human population size
Nv: Total mosquito population size

Table S3: Parameters for the model (0.1) and their dimensions.

H0: Stable population size of humans. Humans.
Ψh: Per capita birth rate of humans. We assume that Ψh = µh and the human population

is at equilibrium. Time−1.
Ψv: Per capita recruitment rate of mosquitoes. Time−1.
σv: Number of times one mosquito would bite a human per unit time, if humans were

freely available. This is a function of the mosquito’s gonotrophic cycle (the amount
of time a mosquito requires to produce eggs) and its preference for human blood.
Time−1.

σh: The maximum number of mosquito bites a human can sustain per unit time. This is
a function of the human’s exposed surface area and any vector control interventions
in place to reduce exposure to mosquitoes. Time−1.

βhv: Probability of pathogen transmission from an infectious mosquito to a susceptible
human given that a contact between the two occurs. Dimensionless.

βvh: Probability of pathogen transmission from an infectious human to a susceptible
mosquito given that a contact between the two occurs. Dimensionless.

νh: Per capita rate of progression of humans from the exposed state to the infectious
state. 1/νh is the average duration of the latent period. Time−1.

νv: Per capita rate of progression of mosquitoes from the exposed state to the infectious
state. 1/νv is the average duration of the extrinsic incubation period. Time−1.

γh: Per capita recovery rate for humans from the infectious state to the recovered state.
1/γh is the average duration of the infectious period. Time−1.

µh: Per capita death (and emigration) rate for humans. Time−1.
µv: Density-independent death rate for mosquitoes. Time−1.
Kv: Carrying capacity of mosquitoes. Mosquitoes.
rv: Natural growth rate of mosquitoes with no density dependence. Time−1

Ph: Fraction of bloodmeals that are human. Dimensionless.
Qd: Total number of bites available from dead-end hosts (σdNd). Animal · Time−1

Day post-exposure and percent infectious data for all mosquitoes sampled would be needed. Our
estimate based on [15] was a mean of 10.2 with a range of 4.5-17. We used information from the
World Health Organization and literature describing outbreaks, introductions of Zika by travelers,
or sexual transmission of Zika with enough detail to inform human incubation and infectious period
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Table S4: The parameters for Zika virus (left) and chikungunya (right) with baseline, range
and references. Time is in days unless otherwise specified. All mosquito-related parameters are for
Ae. albopictus. We varied the parameters as uniform distributions with given ranges. Parameters
marked with a * were not varied, but set at the baseline value.

Par Base Range Reference Par Base Range Reference

Zika Chikungunya

1/νh 6d 3− 12 [5, 6, 7, 8, 9, 10, 11] 1/νh 3d 2− 4 [1]
1/γh 7d 3− 14 [5, 6, 7, 8, 9, 10, 11, 12] 1/γh 6d 3− 7 [1]
*1/µh 70 yrs 68− 76 [1] *1/µh 70 yrs 68− 76 [1]
βhv 0.35 0.1− 0.75 [1, 8] βhv 0.33 0.001− .54 [1]
βvh 0.31 0.1− 0.75 [1, 8] βvh 0.33 0.3− 0.75 [1]
*Ψv 0.24 0.22− 0.26 [1] *Ψv 0.24 0.22− 0.26 [1]
1/σv 3.8d 2.0− 5.26 [13, 14] 1/σv 3.8d 2.0− 5.26 [13, 14]
1/νv 10.2d 4.5− 17 [8, 15] 1/νv 7.2d 3.2− 12.6 [1, 16]
1/µv 18d 10− 35 [1, 17, 18, 19, 20, 21] 1/µv 18d 10− 35 [1, 17, 18, 19, 20, 21]
σh 19 0.1− 50 [1, 22] σh 19 0.1− 50 [1, 22]
Ph 0.5 0− 1 [23, 24, 25, 26, 27] Ph 0.5 0− 1 [23, 24, 25, 26, 27]
Kv/H0 2 0.5− 10 [1, 8] Kv/H0 2 0.5− 10 [1, 8]

NYC (high human density) PA (medium human density)

H0 25000/mi2 H0 11000/mi2

DC (medium human density) ATL (low human density)

H0 8000/mi2 H0 3000/mi2

estimates.
Ae. albopictus have bimodal daily feeding activities which peak in the morning at twilight and 2

hours before sunset [18, 17]. The survival of mosquitoes are key factors in their effective control and
disease prevention; the daily survival probability of male and female Ae. albopictus mosquitoes in
La Reunion Island have been estimated to be approximately 0.95 [19] which is substantially higher
than the value of 0.77 reported in for Ae. albopictus by [20] and in field studies for Ae. aegypti
[31].

In Gabon, researchers found that the newly invaded Ae. albopictus were most likely the vec-
tor primarily responsible for outbreaks of chikungunya, dengue and Zika viruses. Of all sampled
mosquito species in their study, only Ae. albopictus pools tested positive for all three pathogens
[32, 33, 34]. [33] also used human landing studies to estimate the number of bites per person per
hour during peak Ae. albopictus activity times (morning and early evening). Number of bites per
hour ranged from 0.2 to 15.7 with a higher mean (4.58) in the suburbs than in downtown Libreville
(0.65). Our model used number of bites per person per day ranging from 0 to 4, which is reason-
able based on these studies and the presumed lower biting rates in cities with high screen and AC
use. [35, 36] performed a risk assessment for Italy and Ae. albopictus and found minimal risk for
transmission there. They did, however, use low Ae. albopictus-human biting rates corresponding
to each mosquito biting a human once every 11 days (range from 6-20 days between human bites).
With higher human usage, this number will rise significantly. [25] found that in Lebanon 47% of
Ae. albopictus bloodmeals were on humans while other studies showed >50% or even 100% of blood
meals on humans (e.g., [37]).

Researchers have recently computed R0 for Zika using a range of methods and assumptions. It
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is important to note that while some define R0 for vector-borne disease as we have here, (method A
R0 =

√
RhvRvh) or the number of secondary infections in one generation (i.e. human to mosquito

or mosquito to human), others define it as (method B R0 = RhvRvh) or the number of secondary
cases in two generations (i.e. human to human or mosquito to mosquito). Thus, R0 for method B
is the square of R0 for method A. [12] estimated a mean basic reproduction number of 3.1 on Yap
island with a 95% confidence interval of (0.7,8.7) (method B). [38] computed an R0 mean value of
4.5-5.8 in Yap Island with ranges from 2.8-12.5 (method A). In French Polynesia, [8] predicted mean
R0 values ranging from 1.9-3.1 with confidence ranges from (1.4-7.9) (method A). [38] predicted
an R0 mean of 1.8-2.0 in French Polynesia with ranges from 1.5-3.1 (method A). [39] computed
an R0 of 4.4 with ranges from (3.0-6.2) in Colombia (method B), while [40] predicted an R0 value
of 1.6-2.2 in Antioquia, Colombia (method B). [41] predicted R0 mean of 4.82 (2.34,8.32) with
traditional data sources in Colombia and mean of 2.56 (1.42,3.83) for their nontraditional internet
data sources (method B). [42] estimated R0 values ranging from <1 to 11.62 for different regions
of South America (method B). In summary, our mean R0 value (method A) for Zika in the eastern
United States of 1.1 is reasonable in the context of past and current outbreaks in other regions.
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