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Web Appendix A: Testing partial independence
given by (2)

1) Background. Consider a random intercept logistic regression
(i) g pt log g
PW =1|b,v,Z) = L(b+ ¢ ' Z"v),

where W is a binary response variable, L(u) = e“/(1 + €") is the inverse logit
function, b is a random intercept with mean 0, ¢ € [0, 1] is a known scale parameter,
Z is a set of covariates including an intercept and v is a vector of corresponding
regression coefficients. According to Parzen et al. (2011), the marginal probability
of success is

PW =11, 2) = /Oo Lb+ ¢ Z v)hy(b)db = L(Z ),

when b follows a bridge distribution whose density function

1 sin(¢m)
Yolb) = 2m cosh(gb) + cos(¢m)’

(—o0 < b < 0),

is indexed by ¢. An interesting feature of this distribution is that b converges to 0
when ¢ — 1, which corresponds to P(W =1|b,v, Z) = P(W = 1|v, Z).

In our application, the conditional and marginal probabilities of success are respec-
tively
P(EQ - 2|}/1 = yla}/Q =Y2,€1 = ]-7G7X)

and

P(€2:2|}/2:y2761 :17G7X):L{A(y2|GaX)}7 (Al)
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where A(ys|G, X) = log{A2(y2|G, X)/A(y2|G, X )} and these probabilities satisfy

Plea =2|Yo=2,6,=1,G, X) =

/ Plea =21Y1 =y, Yo =yo, 61 = 1,G, X) fi(nn]er = 1, Yo = 42, G, X)dy;. (A.2)
0

(ii) Modelling partial dependence. When equation (2) does not hold, equations (A.1)
and (A.2) prompts us to assume

P(EQ = 2|}/1 = yla}/Z =Y2,€61 = 17G7X) = L{b(ylay2|GaX) + ¢_1A(y2|G7X)}7
where

b(y17y2|G?X) = \Ildjl [P(Yi S y1|€1 = 173/2 - y27G7X)]
Wt [C8 {Fu(n|G, X)/p(G, X), Sa(y2|G, X)}]

and

V() = log Lin‘?;n;?lﬂﬁ)m}}

is the inverse of the cumulative distribution function of a bridge distribution. The
estimation procedure for the model with the added parameter ¢ is obtained by
replacing equation (6) by

l2<02a0477|é17é37?17?27€27 GvX) = -[(62 - 0) 1Og [C;O{Fll(}}l|G7 X)/ﬁ(GaX%SQ(i}ﬂGaX)}}

+ 3 16 = K)log [CHH{F(VG, X)/i(G, X), $:(¥aG, X)}
ke{2,4}

0 (& = k) log [ S(Va|G, X)ha(Va]G, X) L{b(yr, ulG, X) + 67 AlulG, X)}
ke{2,4}

(iii) Testing partial independence. Testing the partial independence under the model
assumed above consists of testing Hy : ¢ = 1 versus Hy : ¢ < 1. Our test statistics
is g% and its p-value is computed using a parametric bootstrap procedure that works
following these steps:

Step 1: Compute the maximum likelihood estimators {él, ég, 05, é4, A, ¢A>} from the orig-
inal data.



Step 2: Compute the maximum likelihood estimators {81 : 50)7 ééo), éi , 4O from the

original data under the null hypothesis Hy : ¢ = 1.

Step 3: For m = 1,--- M, generate a sample with same features as the orlglnal

dataset using the parameters {6, = 9(0) N «92 03 = 93 04 = 04 Lo =

1} and compute q@m, the maximum likelihood estimator of ¢ from the mth

generated sample.

Step 4: The p-value is then equal to Z (qu < gb)/

The procedure that generates samples under the null hypothesis Hy : ¢ = 1 in Step
3 is detailed below.

(iv) Algorithm to generate data under the partial independence assumption ¢ = 1.
For the ith family, given {(a;;, X;;),j = 1,--- ,n;}, the current age and sex of each
of its members, we generate {(Gij,fﬁij, €1Z»j,)~/2,»j,€2ij),j =1,--+,n;}, the genotype
and the observed event times following these steps:

Step 1 - Proband:

-a) Generate Gy, the genotype of the proband, from a Bernoulli distribution
with a probability of success equal to P(Gy = 1|Y1i1 < an, €11 = 1, Xi1).
This probability is computed using Bayes rule.

1-b) Generate Y7;; from the conditional distribution function P(Y3;1 < y|Yia <
a1, €11 = 1, Gi1, X1). This probability is also computed using Bayes rule.

1-c) Generate Yy;; from the conditional survival function P(Ys; > y|Yiq =
Y1i1, €151 = 1, Gy, Xj1). Generate €g;; from a Bernoulli distribution, which
equals to 2 with probability P(eg;1 = 2|Y2i1 = yo2i1, €151 = 1, G1, Xi1) and
to 4, otherwise.

1-d) The observed data for the proband is
{Gi, Vi =y, & = 1, Yo = min(yam, asn—y1an), €201 = (Yo < @ —Yuin) X €21}
Step 2 - Other members of the family: For j =2,---  n,,

-a) Generate G;; from a Bernoulli distribution with a probability of success
equal to P(G;j—1|G;1). This probability depends only on the relationship
between the proband and the jth member of the family and is computed
using the Mendelian inheritance rule.
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2-b) Generate Y;; from the survival function P(Y3;; > y|Gij, Xij)).

2-c) Generate €;;; from a Bernoulli distribution, which equals to 1 with prob-
ability P(e1;; = 1|Y1;; = v, Gij, Xi;) and to 3, otherwise.

2-d) If Yy;; < a;; and €;; = 1, generate Y5;; from the conditional survival
function P(Ya;; > y|Y1i; = y1ij, €15 = 1, Gij, X;j) and generate ey;; from
a Bernoulli distribution, which equals to 2 with probability P(ey; =
2’}/22] = Y2ij, €145 = 1, Gz’jaXij) and to 4, otherwise.

2-e) Generation of missing genotypes: Set (N;ij = —1 with a probability equal
to a predetermined missing rate for the genotypes. Otherwise, set G;; =

Gij.
2-f) The observed data for the jth member of the family is

{éijafflij = min(fl/lz‘j, aij)7 glz‘j = €145 X I(ylij < aij);

}721']' = [(glij =1) x min(ygij, Aij — ylij)a €25 = I(glij =1) x [(y2ij < Q5 — ylij) X €2ij}-

Web Appendix B: Derivation of the penetrance
function for the second cancer

The penetrance function for the second cancer is:
PQ(yQ;ybGaX) = P(Yz§927€2:2|Y1:y1>€1:1,G,X)

Y2
= / f2,62\1(u7€2 = 2D/l =Y, €61 = 17G7X)du
0

N /y2 P(€2 = 2|Y1 — y17Y'2 —ha= 1’G7X)f12(y17u’61 - 17G7X)
0

du,
filyiler =1,G, X)

where the generic notation f refers to conditional density functions. Assuming
equation (2) and employing standard manipulations of copula models yields equation

(3).



Web Appendix C: testing the proportional hazards
assumption

A standard way to test the proportionality assumption is to fit a model with an
additional age-dependent parameter A\, (y|G, X) = Aog(y)ePr X +8a.GHBuGxloaw) and
test Hy : f, = 0. Under the Weibull baseline hazard model, one has Ao (y) =
pevey? 1 and therefore Ay (y|G, X) = prupyretGPv—1efi X+50.6 and

Al ot CB,

Appendix D: No competing risks model

The “No competing risks model” treats failure times corresponding to 75 and T} as
independent right-censored observations. This model assumes that:

(i) The pair (75, T}) is independent of (77, 75) given the covariates X and G.

(77) The marginal distributions of 77 and Ty follow standard proportional haz-
ard models so that P(T, > #|G,X) = e MUY where AT(t|G,X) =
f(f M (u]G, X)du is the conditional cumulative hazard function of Ty, given
the covariates k =1, 2.

(111) The joint distribution of (73, T%) follows a semi-survival copula C,.

Under these assumptions, one has
P(Ty < 1, Ty > ]G, X) = C, {1 — e M ®mIGX), e—AaT“z'GvX)}

The penetrance functions for the first and second CRC cancers are then P(7T} <
t1|G, X) and

Pl < 6Ty =4,G,X)=1-C° {1 — M mIGX) e—AzTW'G’X’} :

respectively. Note that unlike the penetrance functions defined in Section (2.3),
which are (conditional) cause-specific cuamulative incidence functions, those specified
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above are (conditional) survival functions. Therefore, extreme care must be taken
by practitioners while estimating, comparing and interpreting these quantities. The
estimation procedure for the parameters of the no-competing-risks model is obtained
by replacing equations (4), (5) and (6) respectively by

11(61,05]Y1,0,G, X) = I(& = 1) log{\T(V1|G, X)} — AT(V1|G, X),

lc(Ql, 03'&, G, X) = lOg{l — eiA{(a‘va)}’

and

l2(927 947 7’é17 é37 }717 }727 527 G7 X) = [(€2 # 2) log [Cio {1 - eiA{(Y/l'G’X)u eiAg(f/ﬂG’X)}]

+1(& = 2)log [Cil {1 . e—/\lT(f’ﬂG,X),6—A2T(Y2|G,X)} /\g(f/ﬂG’X)e—Ag(f’ﬂG,X)] '

Web Appendix E: Descriptive statistics and addi-
tional analysis results for the Lynch syndrome fam-

ilies data

All individuals (n=7703)

CRC1 (n=1501)

CRC2 (n=276)

Death (n==89)

Death (n=163)

Figure 1: Successive cancers and competing events observed in 781 Lynch syndrome
families identified from the Colon CFR




Table 1: Summary of data for 781 Lynch syndrome families

Carrier  CRC1 CRC2 DEATH1' DEATH2? No Events
Gene status M F M F M F M F M F
MLH1 + 180 167 46 34 1 6 6 7 66 138
— 3 3 0 0 0 0 0 0 120 158
NA 138 103 23 19 1 11 31 17 787 760
MSH?2 + 185 199 42 52 3 4 9 10 129 207
— 3 8 0 0 0 0 0 0 164 218
NA 164 134 23 22 14 24 39 24 1039 936
MSHG6 + 46 31 5 2 0 2 3 2 41 72
— 2 0 0 0 0 0 2 0 40 44
NA 31 26 1 5 1 6 7 2 343 313
PMS2 + 31 26 0 0 1 0 2 0 19 26
— 1 2 0 0 0 0 0 1 16 28
NA 2 6 0 0 3 2 0 0 228 173
EPCAM + 3 2 1 0 0 0 0 70 1 3
— 0 0 0 0 0 0 0 0 5 3
NA 2 3 1 0 0 0 0 1 23 13
Any* + 445 425 94 88 5 12 20 19 256 446
— 9 13 0 0 0 0 2 1 345 451
NA 337 272 48 46 29 43 77 44 2420 2195
Total 1501 276 89 163 6113

T death before CRC1 due to other LS related cancers, a competing event for CRC1
t death after CRC1 due to other LS related cancers, a competing event for CRC2
* any mutation in MLH1, MSH2, MSH6, PMS2, EPCAM genes
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Figure 2: LS Cancer data: Penetrance estimates for first CRC among male and
female mutation carriers, assuming different baseline hazard functions
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