
Web-based Supplementary Materials for
“Modelling of Successive Cancer Risks in Lynch
Syndrome Families in the presence of competing

risks using Copulas”

By Yun-Hee Choi, Laurent Briollais, Aung K Win, John Hopper, Dan
Buchanan, Mark Jenkins, and Lajmi Lakhal-Chaieb

Web Appendix A: Testing partial independence

given by (2)

(i) Background. Consider a random intercept logistic regression

P (W = 1|b, ν, Z) = L(b+ φ−1Z>ν),

where W is a binary response variable, L(u) = eu/(1 + eu) is the inverse logit
function, b is a random intercept with mean 0, φ ∈ [0, 1] is a known scale parameter,
Z is a set of covariates including an intercept and ν is a vector of corresponding
regression coefficients. According to Parzen et al. (2011), the marginal probability
of success is

P (W = 1|ν, Z) =

∫ ∞
−∞

L(b+ φ−1Z>ν)ψφ(b)db = L(Z>ν),

when b follows a bridge distribution whose density function

ψφ(b) =
1

2π

sin(φπ)

cosh(φb) + cos(φπ)
, (−∞ < b <∞),

is indexed by φ. An interesting feature of this distribution is that b converges to 0
when φ→ 1, which corresponds to P (W = 1|b, ν, Z) = P (W = 1|ν, Z).

In our application, the conditional and marginal probabilities of success are respec-
tively

P (ε2 = 2|Y1 = y1, Y2 = y2, ε1 = 1, G,X)

and
P (ε2 = 2|Y2 = y2, ε1 = 1, G,X) = L{A(y2|G,X)}, (A.1)

1



where A(y2|G,X) = log{λ2(y2|G,X)/λ4(y2|G,X)} and these probabilities satisfy

P (ε2 = 2|Y2 = 2, ε1 = 1, G,X) =∫ ∞
0

P (ε2 = 2|Y1 = y1, Y2 = y2, ε1 = 1, G,X)f1(y1|ε1 = 1, Y2 = y2, G,X)dy1. (A.2)

(ii) Modelling partial dependence. When equation (2) does not hold, equations (A.1)
and (A.2) prompts us to assume

P (ε2 = 2|Y1 = y1, Y2 = y2, ε1 = 1, G,X) = L{b(y1, y2|G,X) + φ−1A(y2|G,X)},

where

b(y1, y2|G,X) = Ψ−1
φ [P (Y1 ≤ y1|ε1 = 1, Y2 = y2, G,X)]

= Ψ−1
φ

[
C01
γ {F11(y1|G,X)/p(G,X), S2(y2|G,X)}

]
,

and

Ψ−1
φ (u) =

1

φ
log

[
sin(φπu)

sin{φπ(1− u)}

]
is the inverse of the cumulative distribution function of a bridge distribution. The
estimation procedure for the model with the added parameter φ is obtained by
replacing equation (6) by

l2(θ2, θ4, γ|θ̂1, θ̂3, Ỹ1, Ỹ2, ε̃2, G,X) = I(ε̃2 = 0) log
[
C10
γ {F̂11(Ỹ1|G,X)/p̂(G,X), S2(Ỹ2|G,X)}

]
+
∑

k∈{2,4}

I(ε̃2 = k) log
[
C11
γ {F̂11(Ỹ1|G,X)/p̂(G,X), S2(Ỹ2|G,X)}

]
+
∑

k∈{2,4}

I(ε̃2 = k) log
[
S2(Ỹ2|G,X)h2(Ỹ2|G,X)L{b(y1, u|G,X) + φ−1A(u|G,X)}

]
.

(iii) Testing partial independence. Testing the partial independence under the model
assumed above consists of testing H0 : φ = 1 versus H1 : φ < 1 . Our test statistics
is φ̂ and its p-value is computed using a parametric bootstrap procedure that works
following these steps:

Step 1: Compute the maximum likelihood estimators {θ̂1, θ̂2, θ̂3, θ̂4, γ̂, φ̂} from the orig-
inal data.
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Step 2: Compute the maximum likelihood estimators {θ̂(0)
1 , θ̂

(0)
2 , θ̂

(0)
3 , θ̂

(0)
4 , γ̂(0)} from the

original data under the null hypothesis H0 : φ = 1.

Step 3: For m = 1, · · · ,M , generate a sample with same features as the original
dataset using the parameters {θ1 = θ̂

(0)
1 , θ2 = θ̂

(0)
2 , θ3 = θ̂

(0)
3 , θ4 = θ̂

(0)
4 , φ =

1} and compute φ̂m, the maximum likelihood estimator of φ from the mth

generated sample.

Step 4: The p-value is then equal to
∑M

m=1 I(φ̂m < φ̂)/M .

The procedure that generates samples under the null hypothesis H0 : φ = 1 in Step
3 is detailed below.

(iv) Algorithm to generate data under the partial independence assumption φ = 1.

For the ith family, given {(aij, Xij), j = 1, · · · , ni}, the current age and sex of each
of its members, we generate {(Gij, Ỹ1ij, ε̃1ij, Ỹ2ij, ε̃2ij), j = 1, · · · , ni}, the genotype
and the observed event times following these steps:

Step 1 - Proband:

1-a) Generate Gi1, the genotype of the proband, from a Bernoulli distribution
with a probability of success equal to P (Gi1 = 1|Ỹ1i1 < ai1, ε1i1 = 1, Xi1).
This probability is computed using Bayes rule.

1-b) Generate Y1i1 from the conditional distribution function P (Y1i1 ≤ y|Y1i1 <
ai1, ε1i1 = 1, Gi1, Xi1). This probability is also computed using Bayes rule.

1-c) Generate Y2i1 from the conditional survival function P (Y2i1 > y|Y1i1 =
y1i1, ε1i1 = 1, Gi1, Xi1). Generate ε2i1 from a Bernoulli distribution, which
equals to 2 with probability P (ε2i1 = 2|Y2i1 = y2i1, ε1i1 = 1, Gi1, Xi1) and
to 4, otherwise.

1-d) The observed data for the proband is

{Gi1, Ỹ1i1 = y1i1, ε̃1i1 = 1, Ỹ2i1 = min(y2i1, ai1−y1i1), ε̃2i1 = I(y2i1 < ai1−y1i1)×ε2i1}.

Step 2 - Other members of the family: For j = 2, · · · , ni,

2-a) Generate Gij from a Bernoulli distribution with a probability of success
equal to P (Gij=1|Gi1). This probability depends only on the relationship

between the proband and the jth member of the family and is computed
using the Mendelian inheritance rule.
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2-b) Generate Y1ij from the survival function P (Y1ij > y|Gij, Xij).

2-c) Generate ε1ij from a Bernoulli distribution, which equals to 1 with prob-
ability P (ε1ij = 1|Y1ij = y,Gij, Xij) and to 3, otherwise.

2-d) If Y1ij < aij and ε1ij = 1, generate Y2ij from the conditional survival
function P (Y2ij > y|Y1ij = y1ij, ε1ij = 1, Gij, Xij) and generate ε2ij from
a Bernoulli distribution, which equals to 2 with probability P (ε2ij =
2|Y2ij = y2ij, ε1ij = 1, Gij, Xij) and to 4, otherwise.

2-e) Generation of missing genotypes: Set G̃ij = −1 with a probability equal
to a predetermined missing rate for the genotypes. Otherwise, set G̃ij =
Gij.

2-f) The observed data for the jth member of the family is

{G̃ij, Ỹ1ij = min(y1ij, aij), ε̃1ij = ε1ij × I(y1ij < aij),

Ỹ2ij = I(ε̃1ij = 1)×min(y2ij, aij − y1ij), ε̃2ij = I(ε̃1ij = 1)× I(y2ij < aij − y1ij)× ε2ij}.

Web Appendix B: Derivation of the penetrance

function for the second cancer

The penetrance function for the second cancer is:

P2(y2; y1, G,X) = P (Y2 ≤ y2, ε2 = 2|Y1 = y1, ε1 = 1, G,X)

=

∫ y2

0

f2,ε2|1(u, ε2 = 2|Y1 = y1, ε1 = 1, G,X)du

=

∫ y2

0

P (ε2 = 2|Y1 = y1, Y2 = u, ε1 = 1, G,X)f12(y1, u|ε1 = 1, G,X)

f1(y1|ε1 = 1, G,X)
du,

where the generic notation f refers to conditional density functions. Assuming
equation (2) and employing standard manipulations of copula models yields equation
(3).
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Web Appendix C: testing the proportional hazards

assumption

A standard way to test the proportionality assumption is to fit a model with an
additional age-dependent parameter λk(y|G,X) = λ0k(y)eβ

>
k X+βgkG+βyG×log(y) and

test H0 : βy = 0. Under the Weibull baseline hazard model, one has λ0k(y) =

ρkνky
ρk−1 and therefore λk(y|G,X) = ρkνky

ρk+Gβy−1eβ
>
k X+βgkG and

Λk(y) =
ρkνky

ρk+Gβyeβ
>
k X+βgkG

ρk +Gβy
.

Appendix D: No competing risks model

The “No competing risks model” treats failure times corresponding to T3 and T4 as
independent right-censored observations. This model assumes that:

(i) The pair (T3, T4) is independent of (T1, T2) given the covariates X and G.

(ii) The marginal distributions of T1 and T2 follow standard proportional haz-
ard models so that P (Tk > tk|G,X) = e−ΛT

k (t|G,X), where ΛT
k (t|G,X) =∫ t

0
λTk (u|G,X)du is the conditional cumulative hazard function of Tk, given

the covariates k = 1, 2.

(iii) The joint distribution of (T1, T2) follows a semi-survival copula Cγ.

Under these assumptions, one has

P (T1 ≤ t1, T2 > t2|G,X) = Cγ
{

1− e−ΛT
1 (t1|G,X), e−ΛT

2 (t2|G,X)
}

The penetrance functions for the first and second CRC cancers are then P (T1 ≤
t1|G,X) and

P (T2 ≤ t2|T1 = t1, G,X) = 1− C10
γ

{
1− e−ΛT

1 (t1|G,X), e−ΛT
2 (t2|G,X)

}
,

respectively. Note that unlike the penetrance functions defined in Section (2.3),
which are (conditional) cause-specific cumulative incidence functions, those specified
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above are (conditional) survival functions. Therefore, extreme care must be taken
by practitioners while estimating, comparing and interpreting these quantities. The
estimation procedure for the parameters of the no-competing-risks model is obtained
by replacing equations (4), (5) and (6) respectively by

l1(θ1, θ3|Ỹ1, δ1G,X) = I(ε̃1 = 1) log{λT1 (Ỹ1|G,X)} − ΛT
1 (Ỹ1|G,X),

lc(θ1, θ3|a,G,X) = log{1− e−ΛT
1 (a|G,X)},

and

l2(θ2, θ4, γ|θ̂1, θ̂3, Ỹ1, Ỹ2, δ2, G,X) = I(ε̃2 6= 2) log
[
C10
γ

{
1− e−ΛT

1 (Ỹ1|G,X), e−ΛT
2 (Ỹ2|G,X)

}]
+I(ε̃2 = 2) log

[
C11
γ

{
1− e−ΛT

1 (Ỹ1|G,X), e−ΛT
2 (Ỹ2|G,X)

}
λT2 (Ỹ2|G,X)e−ΛT

2 (Ỹ2|G,X)
]
.

Web Appendix E: Descriptive statistics and addi-

tional analysis results for the Lynch syndrome fam-

ilies data

All individuals (n=7703) CRC1 (n=1501) CRC2 (n=276)

Death (n=89) Death (n=163)

Figure 1: Successive cancers and competing events observed in 781 Lynch syndrome
families identified from the Colon CFR
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Table 1: Summary of data for 781 Lynch syndrome families

Carrier CRC1 CRC2 DEATH1† DEATH2‡ No Events

Gene status M F M F M F M F M F

MLH1 + 180 167 46 34 1 6 6 7 66 138

− 3 3 0 0 0 0 0 0 120 158

NA 138 103 23 19 11 11 31 17 787 760

MSH2 + 185 199 42 52 3 4 9 10 129 207

− 3 8 0 0 0 0 0 0 164 218

NA 164 134 23 22 14 24 39 24 1039 936

MSH6 + 46 31 5 2 0 2 3 2 41 72

− 2 0 0 0 0 0 2 0 40 44

NA 31 26 1 5 1 6 7 2 343 313

PMS2 + 31 26 0 0 1 0 2 0 19 26

− 1 2 0 0 0 0 0 1 16 28

NA 2 6 0 0 3 2 0 0 228 173

EPCAM + 3 2 1 0 0 0 0 70 1 3

− 0 0 0 0 0 0 0 0 5 3

NA 2 3 1 0 0 0 0 1 23 13

Any∗ + 445 425 94 88 5 12 20 19 256 446

− 9 13 0 0 0 0 2 1 345 451

NA 337 272 48 46 29 43 77 44 2420 2195

Total 1501 276 89 163 6113

† death before CRC1 due to other LS related cancers, a competing event for CRC1
‡ death after CRC1 due to other LS related cancers, a competing event for CRC2
∗ any mutation in MLH1, MSH2, MSH6, PMS2, EPCAM genes
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Figure 2: LS Cancer data: Penetrance estimates for first CRC among male and
female mutation carriers, assuming different baseline hazard functions

8



Bibliography

1. Parzen, M. and Ghosh, S. and Lipsitz, S. and Sinha, D. and Fitzmaurice, G.
M. and Mallick, B.K. and Ibrahim, J. G. (2011). A generalized linear mixed
model for longitudinal binary data with a marginal logit link function. The
Annals of Applied Statistics 5, 449–467.

9


