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Supplementary Methods 

 

Supplementary Methods S1. Details on the data, method, and results for the nonmetric 

multidimensional scaling (NMS) analysis looking at factors correlated with the risk of CSF spread in 

Great Britain. 

 

Data Management 

Table A1 (Supplementary Methods S1) contains a list of the six variables included in the analysis. 

Examination of the structure of the data in Table A1 (Supplementary Methods S1) required that some 

variables be categorised for the purpose of statistical analysis and others transformed. Table A1 

includes a description of how the variables were treated for the purpose of statistical analysis. To limit 

biases due to farms that underwent few incursion events, we restricted our analysis to farms that had 

at least 10 incursion events (n=5613). From those farms a random sample of 5000 farms were 

selected. This was done to reduce the computational burden. No dissimilarities were observed 
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between the reduced and full set of farms for both the distribution of the probability of epidemic take-

off and the distribution of maximum epidemic size (Fig. A1 in Supplementary Methods S1).  

 

Table A1. The six variables included in the nonmetric multidimensional scaling (NMS) analysis, 

including a description of how they were treated in the NMS analysis. 

Variable Data type Description 

Producer type of the primary case Categorical Small=1; Non-assured=2; Assured=3 

Total number of movements departing from the 

primary case 

Categorical 5 levels: 0=1; 0-1=2; 1-2=3; 2-7=4; 

>7=5 

Total number of movements sent to the primary 

case 

Categorical 4 levels: 0=1; 0-1=2; 1-2=3; >2=4  

Total number of movements sent by the primary 

case to a gathering place 

Categorical 5 levels: 0=1; 0-1=2; 1-2=3; 2-6=4; 

>6=5 

Total number of movements sent by the primary 

case to another swine producer 

Categorical 2 levels: 0=0; >0=1 

Density of commercial farms Quantitative SQRT transformed density commercial 

 

Statistical Analysis 

The data in this study were analysed using Nonmetric Multidimensional Scaling (NMS). The NMS 

method was used to identify epidemiological variables correlated with the risk of CSF spread as 

assessed in terms of probability of epidemic take-off and maximum epidemic size. NMS is a 

nonparametric ordination technique well suited to data that are non-normal or on arbitrary or 

discontinuous scales1.  The advantage of NMS is it avoids the assumption of linear relationships 

among variables. It uses the ranked distances, so tending to linearise the relationships between 

variables1. PC-ORD software version 6.08 (MJM software Design, Gleneden Beach, OR) was used. A 

main matrix consisting of an anonymised farm ID designation and the variables listed in Table A1 

(Supplementary Methods S1) was created. The final matrix consisted of six variables and 5000 farms. 

An additional second matrix was created with farm ID and the probability of an epidemic occurring 

and the maximum size of the epidemic.  

NMS was used with a Euclidian distance measure after relativizing by standard deviates of the 

columns. The dimensionality of the data set was first determined by plotting a measure of fit (“stress”) 

to the number of dimensions. Optimal dimensionality was based on the number of dimensions with 

the lowest stress (i.e. the smallest departure from monotonicity in the relationship between distance in 
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the original space and resistance in the reduced ordination space). A two-dimensional solution was 

requested of the NMS, since the inclusion of additional dimensions did not statistically improve the 

fit. Two hundred and fifty iterations were used for each NMS run, using random starting coordinates. 

Several NMS runs were performed for each analysis to ensure that the solution was stable and 

represented a configuration with the best possible fit.  

Diagnostics for the NMS ordination model are presented in Table A2 (Supplementary Methods S1). 

The final NMS solution was two dimensional and explained 90.1% (cumulative r2=0.901, Axis 1 

r2=0.705 and Axis 2 r2=0.196) of the variation in the risk of CSF spread and also explained more 

variation than expected by chance (Monte Carlo test p=0.099). Final stress for the two-dimensional 

solution was 13.7 and final instability was 0 with 130 iterations. Final stress outcomes comprised 

between 10 and 20 were determined as showing a fair ordination for ordination solutions1. Number of 

iterations is the number of steps that NMS performed to find the final solution1.  

The results of the NMS models are shown using 2D ordination graphs of the distance between sample 

units which approximates dissimilarity in the estimated risk of CSF spread (Supplementary Fig. 1). 

The 80% confidence ellipses further added to discriminate between groups of interest using the “car” 

package2 in the R statistical software version 3.1.13. Variables used in the NMS analysis are shown as 

vectors; the direction indicates positive and negative correlation and the length along the axis 

(continuous variables only) depends on the strength of the correlation on that axis. The strength of the 

correlation along the NMS axes for continuous variables was measured using Kendall’s τ 

nonparametric correlation coefficient. Significance of the τ correlation was determined using tables of 

critical values4. Significance of the categorical variables were assessed using Multi-response 

Permutation Procedures (MRPP) analysis, a nonparametric procedure for testing the hypothesis of no 

difference between two or more groups1. A similar approach was used to evaluate the correlation of 

the risk of CSF spread, as assessed by the probability of epidemic and the maximum epidemic size, 

with the NMS axes. The strength of the correlation along the NMS axes for both the probability of 

epidemic take-off and the maximum epidemic size are shown in Supplementary Fig. S1, with 

Kendall’s correlation coefficient τ=0.270 (P<0.001) and τ=0.274 (P<0.001), respectively. 
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Table A2. Measures of the goodness-of-fit of the Nonmetric Multidimensional Scaling (NMS) 

ordination model. 

Diagnostic NMS results 

Final stressa 13.7 

Monte Carlo testb 0.099 

Number of iterations 130 

% of variation explained  

Axis 1 70.5 

Axis 2 19.6 

Total 90.1 
a <5: excellent, no prospect of misinterpretation; 5-10  good: no real risk of drawing false inferences; 10-20 fair: 

provides a useable picture; >20 poor: dangerous to interpret; 35-40 random placement of samples1. 

 
b better-than-random solution 

 

Figure A1. Difference in distribution between the whole and the reduced data set. Plots showing 

the empirical cumulative distribution of (a) the epidemic take-off probability, and (b) maximum 

epidemic size for simulations for farms located in the low and high risk areas for CSF epidemic take-

off in GB in 2012. The reduced data set involved all farms that were randomly selected as the primary 

reported case at least ten times. Farms in high and low risk areas were defined as farms located in 

areas where the smoothed probability of epidemic take-off shown in Fig. 3a is <0.05 and >0.15, 

respectively. 
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Supplementary Methods S2. Details on the Bayesian inference method to estimate parameter values 

assessing the local between-farm spread and farm-level detection and control of CSF in Great Britain. 

 

Data 

The value of all parameters involved in both the local between-farm spread and farm-level detection 

and control of CSF in Great Britain were fitted using data from the CSF epidemic in East Anglia, UK 

that occurred in 2000 5. The data includes information regarding the spatial location and the time of 

report for all farms (n=16) for which CSF have been reported between August 8th to November 3rd 

2000 and for which mitigation procedures were carried out. All the n=16 farms were used to estimate 

the model parameters. 

 

Model framework and Likelihood 

Here, we considered a modelling framework of the spread of the epidemic between farms similar to 

that used in the simulation model described in the main text. Briefly, we considered a stochastic 

spatio-temporal SIR model where susceptible individual farms become infectious and then removed 

or recovered6. The infectious compartment corresponds to the status where the farm is infected and is 

able to transmit the disease to other sites; while the recovery state means that the infection has been 

detected in the farm, on which mitigation procedures have been enforced within a 24-hour period post 

detection. In contrast with the simulation model, we assumed that (1) no movements occurred 

between farms during the epidemic period, and (2) the infection process would only be a function of 

the Euclidean distance between farms. 

We further considered that epidemics occurred in a population of N farms, where the geographical 

location of each individual farm is known. We then assumed that epidemics start with a single initially 

infected farm and that an individual infected farm i would make an infectious contact with a 

susceptible individual j at a rate ij such as 
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)(~0 ijijij dKh   

where 0 is the contact rate and the function ijh , together with 0 , represent the well-known spatial 

kernel transmission functions )( ijdK . Althought the expression of )( ijdK , and ultimately of ijh , can 

take various forms depending on the epidemic studied and the belief of how the disease spreads,  we 

parameterised )( ijdK as in Boender et al.7, such as: 
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where ijd denotes the Euclidean distance between farms i and   Njij ,,2,1;  . Here, the distance 
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The removal  of infected farms during an epidemic mainly depends on the quality of surveillance 

activities. In the situation of an incursion of CSF, detection of infection is partly related to the number 

of animals showing clinical signs. However, the non-specific clinical signs of CSF-infected pigs, 

partly at early stage of the infection, may increase the difficulties to detect infected farms and create 

delays in the detection and reporting of disease. To account for such a delay,  we assumed that an 

infected farm becomes detected/removed after a minimum of c (c > 0) days of being infectious, 

arbitrarily fixed to two latent periods (i.e. 2Tlat=8 days) based on 8. The infectious period of the 

epidemic is therefore assumed to follow a left-truncated gamma distribution: 

),,(~ cIR ii TG  



7 
 

where iI  and iR are respectively the infection and removal times for farm i , det~ r is a constant 

detection rate and det~ s the shape parameter of the truncated gamma distribution. The density of 

the truncated gamma distribution is parameterised as  
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whereθ is the vector of model parameters,  jiji RIIjy  : , v is the index case, and In  and Rn  

are the total number of infected and removed individual farms in the population, respectively, with 

RI nn   since the epidemic has ceased. We denote by S the total farm-to-farm infectious pressure 

during the course of the epidemic. This is the case when we consider that an infection happens only 

when the total pressure exerted on a susceptible by the infectious individuals is bigger than its 

threshold9. Therefore, we have 
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The infection process is actually a time-dependent Poisson process and S takes into account the fact 

there is no event happening between times.  
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Bayesian inference 

Data available from disease outbreaks, as it is the case here, are usually the times at which infected 

farms were detected as such and from which mitigation procedures have been carried out. The 

infection times are regularly unknown unless some diagnostic tests are available leading to some 

knowledge of when the infections might have occurred. But in general, no information is available on 

the infection times. The infection times for all infected premises during the CSF epidemic in 2000 in 

East Anglia would need to be inferred together with the set of model parametersθ using data 

augmentation techniques. The Bayesian framework was then adopted as it provides natural approach 

for handling missing data problems along with the computational tool Markov Chain Monte Carlo 

(MCMC) methods 10-12. 

The joint posterior distribution of the model parameters given the data is can be written as 

      ,|,|, θθyyθ  xx   

where  θ is the joint prior distribution on the model parameters and  θy |, x is the augmented 

likelihood function with y and 𝑥 representing the observed and unobserved data respectively.  

Here, we considered gamma prior on both 0 and . While prior and posterior conditional 

distributions are conjugate for 0 , this is not the case when assuming a left-truncated gamma 

distribution for the infectious rate parameter . We therefore updated along with the other model 

parameters contained in θ  using Metropolis-Hastings algorithms13 and following a random walk 

scheme. The infection times are updated using a simple non-centering scheme14,15. For each farm i  

and at each MCMC step, putative infection time iI   was proposed on the assumption of the removal 

process ),,(~ cIR ii TG . We accept iI   with probability 
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where I  is the vector of infection times with iI  replaced by iI  .   
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Supplementary Tables 

Supplementary Table S1. Effects of producer types, country of incursions and high risk period duration on the 

proportion of farm-level infection events due to animal movements in Great Britain. Regression coefficients and 

their standard errors were computed from a generalized linear model with binomial family and logit link 

function of factors influencing the odds (OR) of farms being infected from the movement of pigs (vs. local 

spread) are shown.  

Variables Estimate (SE) P OR (95% CI) PLRT %Dev. 

Intercept -0.104 (0.012) <0.001 
   

High risk period duration    <0.001 3% 

2 weeks -0.109 (0.014) <0.001 0.90 (0.87 – 0.92)   

4 weeks Ref.  1.0   

6 weeks -0.013 (0.011) 0.270 0.99 (0.97 – 1.01)   

8 weeks 0.035 (0.011) 0.001 1.03 (1.01 – 1.06)   

Producer types of incursion 
   

<0.001 78% 

Assured producers Ref. 
 

1.00 
  

Non-assured producers -0.607 (0.013) <0.001 0.54 (0.53 – 0.56) 
  

Small producers -1.500 (0.011) <0.001 0.22 (0.22 – 0.23) 
  

Country of incursion 
   

<0.001 19% 

England/Wales Ref. 
 

1.00 
  

Scotland 1.509 (0.027) <0.001 4.52a (4.29 – 4.77) 
  

Country x Producer types 
   

0.002 <1% 

Scotland x Assured producers Ref. 
 

1.00 
  

Scotland x Non-assured producers 0.127 (0.047) 0.007 1.14 (1.03 – 1.25) 
  

Scotland x Small producers -0.054 (0.044) 0.215 0.95 (0.87 – 1.03) 
  

Ref.: reference category; P: Ward’s P-value; PLRT: likelihood  ratio test statistics P-value; CI: confidence 

interval; %Dev: percent of the null deviance explained. 

Pseudo-R2 = 0.99 

a Interpretation: the odds of pig producers to be infected from the movement of pigs in epidemics generated 

from incursions in assured commercial farms from Scotland was 4.52 (95% CI 4.29 – 4.77) times higher than 

from incursions in assured commercial farms from England/Wales.   



10 
 

Supplementary Table S2. Comparison of variable influence on the risk of CSF spread in GB between 

epidemics generated by a single incursions event  in low and high risk areas. 

  Low risk areas High risk areas 

Parameters DTk Dk/DTk Rank DTk Dk/DTk Rank 

Probability of epidemic take-off       

R0 0.014 7% 6 0.032 3% 5 

Tinf 0.079 68% 4 0.065 31% 4 

Tlat 0.018 17% 5 0.026 8% 6 

k1 0.396 78% 2 0.272 72% 2 

k2 0.675 87% 1 0.626 86% 1 

k3 0.135 69% 3 0.121 42% 3 

rdet 0.005 <0.1% 9 0.018 6% 8 

sdet 0.006 <0.1% 7 0.02 <0.1% 7 

cM 0.006 <0.1% 7 0.018 <0.1% 8 

Maximum epidemic size       

R0 0.018 6% 8 0.021 5% 7 

Tinf 0.047 38% 6 0.044 41% 5 

Tlat 0.019 21% 7 0.016 19% 8 

k1 0.451 66% 2 0.417 72% 2 

k2 0.634 70% 1 0.615 76% 1 

k3 0.186 49% 3 0.145 57% 3 

rdet 0.052 37% 4 0.047 45% 4 

sdet 0.049 49% 5 0.041 51% 6 

cM 0.006 <0.1% 9 0.002 <0.1% 9 

Median epidemic size       

R0 0.063 2% 8 0.043 21% 7 

Tinf 0.401 13% 3 0.054 37% 6 

Tlat 0.142 15% 7 0.027 15% 8 

k1 0.595 25% 2 0.402 58% 2 

k2 0.745 33% 1 0.573 63% 1 

k3 0.327 22% 4 0.175 55% 3 

rdet 0.302 24% 6 0.123 46% 5 

sdet 0.319 17% 5 0.154 51% 4 

cM 0.042 5% 9 0.006 <0.1% 9 

Proportion of infection due to animal movements    

R0 0.172 1% 6 0.09 13% 6 

Tinf 0.115 19% 8 0.111 14% 4 

Tlat 0.034 12% 9 0.092 10% 5 

k1 0.136 35% 7 0.432 64% 2 

k2 0.548 49% 1 0.854 78% 1 

k3 0.416 13% 2 0.264 33% 3 

rdet 0.232 7% 5 0.041 7% 8 

sdet 0.358 8% 3 0.043 19% 7 

cM 0.294 9% 4 0.036 8% 9 

Variable’s influence was measured using global sensitivity analysis. 

Dk and DTk correspond to the first-order (direct) and total sensitivity indices for the kth variable tested in the 

global sensitivity analysis, respectively. 
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Supplementary Figures 

 

Supplementary Figure S1. Nonmetric mulitdimensional scaling (NMS) ordination of the simulation of 

CSF spread. The nonmetric multidimensional scaling (NMS) final solution was two dimensional and explained 

90.1% of the variation in the risk of CSF spread. NMS Axis 1 shows the influence of the producer type of the 

index case on the risk of CSF spread, whereas NMS Axis 2  shows the influence of showing records of moving 

at least one pig to another producer. Solid dots represent the NMS location of the 104 producers with a 

probability of epidemic take-off >0.5. Small circles represent the NM location of 100 randomly-selected 

producers with a probability of epidemic take-off ≤0.5. Crosses, triangles and squares represent the geometric 

center (or centroid) of the NMS location of farms (whether they moved pigs or not) described as small 

producers, non-assured commercial producers and assured commercial producers, respectively. Ovals indicate 

the 80% confidence ellipses around the centroid for the different producer types which sent (solid) or not 

(dashed) pigs to at least another producer. The correlation of the risk of CSF spread, as assessed by the 

probability of epidemic (prob.), with the NMS axes are shown as vectors radiating from the centroid of points; 

the direction indicates whether the correlation with each NMS axis is positive or negative but does not indicate 

the strength of the relationship. 
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Supplementary Figure S2. Spatial distribution of pigs and pig farms in Great Britain. Maps showing the 

smoothed number of (a) pigs and (b) pig farms per squared kilometers. Smoothed estimates of density values 

were computed using the kernel intensity ratio method16 and using a fixed 10km bandwidth. Maps were created 

in R version 3.2.53,17. 
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Supplement Figure S3. Proportion of producers located in a low, medium or high risk areas involved in 

epidemics of >50 infected premises generated by incursions in each risk areas. Here, rows indicate the risk 

area of the primary case (incursion), whereas columns indicate the risk area of the producers that are involved in 

each epidemics. Low, medium and high risk areas are defined as are areas in Fig. 3a where the smoothed 

probability of epidemic take-off is ≤0.05, between 0.05 and 0.15, and >0.15, respectively. The thickness of the 

shapes is proportional to the density of data points along the x-axis.  
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Supplementary Figure S4. Changes in the proportion of CSF infection due to pig movements from 

epidemics occurring throughout Great Britain. Here is shown the proportion of infections due to pig 

movements (vs. due to local spread) for epidemics generated from single incursions in each considered region of 

GB when the high risk period lasted for (a) 2 weeks, (b) 4 week, (c) 6 weeks and (d) 8 weeks. Boundaries of 

each considered regions are displayed in Fig. 5 and are ordered in order of latitude (from the Southernmost to 

the Northernmost). 
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Supplementary Figure S5. Influence of the model’s parameters. Results of the global sensitivity analysis on 

(a,b) the median epidemic size for single incursion events occurring in either (a) high or (b) low risk areas; and 

(c,d) on the proportion of infection events due to animal movement for epidemics generated from single 

incursion events occurring in either (c) high or (d) low risk areas. Influence of the model’s parameters was 

measured by the total sensitivity index (DTk), which captures the overall effect of parameter variations, including 

direct effects and interactions between model parameters. Parameters definition and range of values considered 

in the analysis are given in Table 2. Low and high risk areas are defined as are areas in Fig. 3a where the 

smoothed probability of epidemic take-off is ≤0.05 and >0.15, respectively.  
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