Supplemental Information

Identification of novel cancer therapeutic targets using a designed and pooled shRNA library screen

David Oliver^{1,+}, Hao Ji^{1,+}, Piaomu Liu^{2,4}, Alexander Gasparian¹, Ellen Gardiner¹, Samuel Lee¹, Adrian Zenteno¹, Lillian O Perinskaya¹, Mengqian Chen¹, Phillip Buckhaults¹, Eugenia Broude¹, Michael D Wyatt¹, Homayoun Valafar³, Edsel Pe⁻na², and Michael Shtutman^{1,+}

¹University of South Carolina, College of Pharmacy, Department of Drug Discovery and Biomedical Sciences, Columbia, SC 29208, USA

²University of South Carolina, College of Arts and Sciences, Department of Statistics, Columbia, SC 29208, USA

³University of South Carolina, College of Engineering and Computing, Department of Computer Sciences and Engineering, Columbia, SC 29208, USA

⁴Bentley University, Waltham, MA 02452, USA

*shtutmanm@sccp.sc.edu

*these authors contributed equally to this work

Supplemental Figures 1 – 8 Supplemental Tables S1 – S9

Supplemetal DataSets S1,S2

Supplementary Figure 1: Genetic Suppressor Element selection procedure

(a) Genetic suppressor element-containing, Doxicyclin-inducible vectors are infected into a panel of normal and cancer cell lines. GSE-vector expression is induced by Doxicyclin (DOX) treatment and then submitted to BrdU suicide selection for 72 hrs. BrdU-containing DNA is cross-linked with the addition of Hoechst 33342 and white light. DOX and BrdU are then removed to allow cells to recover. Finally, GSEs are recovered from genomic DNA through PCR amplification and sequencing. (B) Recovered GSEs from infected (no selection) and selected cells are aligned to the reference genome and peaks are called with CLC Workbench (Qiagen). Peaks are assigned to the nearest gene and reads per gene are quantified. Genes with > 1.5 fold enrichment in selected over infected were used for focused shRNA screen.

Supplementary Figure 2: shRNA library design and recovery

(a) Designed shRNA oligonucleotides containing vector adapters, shRNA hairpin, sequencing primer, and shRNAspecific barcode are incorporated into a lentiviral vectors and amplified before being applied to 293FT cells for viral production. (b) After viral library selection (Figure 1), shRNA-specific barcodes are recovered from selected cells through 3-step PCR amplification. The resulting barcodes are then indexed with custom indexes for multiplex highthroughput sequencing.

Supplementary Figure 3: Verification of normality assumption for linear model

Quantile-quantile plots showing normality of shRNA reads after normalization. Each panel corresponds to a cell line, passage number (1-5), and biological replicate (A or B).

Supplementary Figure 4: Correlation of shRNA reads across replicates and passages

Each panel displays the correlation matrix across replicates and passages for each cell line. The lower triangle in each panel shows the scatter plot for shRNA reads. The upper triangle contains the correlation coefficient for the corresponding passage and replicate.

Supplemental Figure 5: Magnification of Figure 4

MDA-MB-231

BJ-hTERT

Disruption of Golgi structure after siRNA depletion of ARCN1 and COPZ1. Tubular structure in siControl sample indicates normal Golgi structure while ARCN1 produces dispersed vesicles in both normal and cancer cells. COPZ1 depletion produces abnormal Golgi structure in MDA-MB-231 but not in BJ-hTERT.

Supplementary Figure 6: Golgi disruption by ARCN1 depletion over time

siRNA depletion with Control (top panel), ARCN1 (middle panel), or COPZ1 (bottom panel) siRNA in both BJ-hTERT (left panel) and MDA-MB-231 (right panel) monitored at 72, 96, and 120 hours post-transfection. Nuclei and Golgi were visualized with DAPI and anti-GM130 Abs respectively. Golgi disruption is seen as dispersion of GM130 staining while intact Golgi maintain tubule-like structure.

Supplimental Figure 7: RNA expression of RPL35A, DDX24, and ARCN1

mRNA expression level of RPL35A, DDX24, and ARCN1. mRNA expression in tumor samples indicated by red box and whisker plots and corresponding notmal tissue expression level indicated in blue. Missing data indicated by gray bars. Description of samples in supplemental table 9. Data obtained from TCGA.

Description of cancer sample types for supplemental figure 7

ACC	Adrenocortical carcinoma
BLCA	Bladder Urothelial Carcinoma
BRCA	Breast invasive carcinoma
CESC	Cervical squamous cell carcinoma and endocervical adenocarcinoma
CHOL	Cholangiocarcinoma
COAD	Colon adenocarcinoma
COADREAD	Colorectal adenocarcinoma
DLBC	Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
ESCA	Esophageal carcinoma
FPPP	FFPE Pilot Phase II
GBM	Glioblastoma multiforme
GBMLGG	Glioma
HNSC	Head and Neck squamous cell carcinoma
KICH	Kidney Chromophobe
KIPAN	Pan-kidney cohort (KICH+KIRC+KIRP)
KIRC	Kidney renal clear cell carcinoma
KIRP	Kidney renal papillary cell carcinoma
LAML	Acute Myeloid Leukemia
LGG	Brain Lower Grade Glioma
LIHC	Liver hepatocellular carcinoma
LUAD	Lung adenocarcinoma
LUSC	Lung squamous cell carcinoma
MESO	Mesothelioma
OV	Ovarian serous cystadenocarcinoma
PAAD	Pancreatic adenocarcinoma
PCPG	Pheochromocytoma and Paraganglioma
PRAD	Prostate adenocarcinoma
READ	Rectum adenocarcinoma
SARC	Sarcoma
SKCM	Skin Cutaneous Melanoma
STAD	Stomach adenocarcinoma
STES	Stomach and Esophageal carcinoma
TGCT	Testicular Germ Cell Tumors
THCA	Thyroid carcinoma
THYM	Thymoma
UCEC	Uterine Corpus Endometrial Carcinoma
UCS	Uterine Carcinosarcoma
UVM	Uveal Melanoma

Supplemental Figure 8

Figure 4B, Upper panel

M –Precision Plus Protein[™] All Blue Standards #1610373, BioRad Gel: 8% Self Made Laemmli SDS Gel, Tris-Glycine

Figure 4B, Lower panel

M – SeeBluePlus2 #LC5925, Thermo Scientific

Gel: 4 – 20% precast gradient gel, MOPS, Express Plus, #M42015, Gene Script

Supplemental Figure 8

Ponseau Red staining

M – SeeBluePlus2 #LC5925, Thermo Scientific Gel: 4 – 20% precast gradient gel, MOPS, Express Plus, #M42015, Gene Script

Supplemental Figure 8

Figure 6A

Figure 6B

M – SeeBluePlus2 #LC5925, Thermo Scientific Gel: 4 – 20% precast gradient gel, MOPS, Express Plus, #M42015, Gene Script Supplemental Tables:

Supplemental Table S1: GO analysis results for hits from GSE screen

Supplemental Table S2: GO analysis identified 18 genes involved in RNA-splicing from list of GSE hits

Supplemental Table S3: GO analysis identified 21 genes involved in protein translation from GSE hits

Supplemental Table S4: Kegg Pathway search identified 8 genes from 221 GSE hits associated with PI3K-AKT signaling

Supplementary Table S5: Genes Identified with level of evidence indicated by color legend

Supplementary Table S6: Literature references for genes associated with cancer progression

Supplementary Table S7 List of primers used for amplification of the library

Supplementary Table S8: List of individual indexes

Supplemental Table S9: Results of siRNA screening with pooled siRNAs (GE Healthcare). Data represented relative to transfection with scrambled siRNA

Supplemental DataSets:

Supplemental DataSet S1. Genes targeted by GSEs enriched in BrdU-selected subsets in 2 or more tumor cell lines.

Supplementary DataSet S2: Sequences for 1274 shRNAs targeting 216 genes from GSE screen for which unique shRNAs designed.

Supplemental Table 1: GO analysis results for hits from GSE screen									
	Reference	upload_1							
Mapped IDs:	20814	179							
Unmapped IDs:	0	4							
Export results									
Displaying only results with P<0.05; o	click here to	o display al	l results						
	Homo sap	upload_1							
GO biological process complete	#	#	expected	Fold Enric	+/-	P value			
translational initiation	232	14	2	> 5	+	1.50E-04			
RNA splicing	338	18	2.91	> 5	+	9.16E-06			
macromolecular complex disassemb	229	11	1.97	> 5	+	4.53E-02			
translation	397	19	3.41	> 5	+	1.75E-05			
peptide biosynthetic process	420	19	3.61	> 5	+	4.30E-05			
mRNA processing	396	17	3.41	4.99	+	5.99E-04			
amide biosynthetic process	480	20	4.13	4.84	+	6.52E-05			
mRNA metabolic process	564	23	4.85	4.74	+	6.83E-06			
peptide metabolic process	517	20	4.45	4.5	+	2.19E-04			
RNA processing	705	26	6.06	4.29	+	4.09E-06			
cellular component disassembly	493	17	4.24	4.01	+	1.21E-02			
cellular amide metabolic process	666	22	5.73	3.84	+	6.65E-04			
organonitrogen compound biosynthe	1007	28	8.66	3.23	+	3.70E-04			
intracellular protein transport	727	20	6.25	3.2	+	4.24E-02			
single-organism intracellular transpo	1168	30	10.04	2.99	+	6.50E-04			
intracellular transport	1353	32	11.64	2.75	+	1.45E-03			
cellular protein localization	1138	26	9.79	2.66	+	4.42E-02			
cellular macromolecule localization	1146	26	9.86	2.64	+	5.00E-02			
establishment of localization in cell	1812	39	15.58	2.5	+	6.13E-04			
protein localization	1689	35	14.53	2.41	+	7.89E-03			
cellular localization	2174	45	18.7	2.41	+	1.48E-04			
gene expression	3825	77	32.89	2.34	+	1.98E-10			
macromolecule localization	2013	40	17.31	2.31	+	3.27E-03			
cellular response to stress	1718	34	14.77	2.3	+	3.18E-02			
macromolecular complex subunit or	2074	39	17.84	2.19	+	1.84E-02			
cellular nitrogen compound metabol	5112	91	43.96	2.07	+	2.75E-10			
RNA metabolic process	3373	60	29.01	2.07	+	8.25E-05			
cellular nitrogen compound biosynth	3407	60	29.3	2.05	+	1.20E-04			
organelle organization	2912	51	25.04	2.04	+	2.75E-03			
nitrogen compound metabolic proce	5475	95	47.08	2.02	+	2.15E-10			
cellular macromolecule biosynthetic	3576	62	30.75	2.02	+	1.10E-04			
nucleic acid metabolic process	38/4	66	33.32	1.98	+	5./8E-05			
macromolecule biosynthetic process	3651	62	31.4	1.97	+	2.44E-04			
cellular component organization	5066	85	43.57	1.95	+	1.22E-07			
cellular component organization or t	5188	87	44.62	1.95	+	5.70E-08			
Inucleobase-containing compound m	43/2	/2	37.6	1.91	+	3.34E-05			
neterocycle metabolic process	45/3	/5	39.33	1.91	+	1.49E-05			
cellular aromatic compound metabo	45/5	/4	39.34	1.88	+	3.90E-05			

cellular biosynthetic process	4493	72	38.64	1.86	+	1.11E-04
organic cyclic compound metabolic p	4818	76	41.43	1.83	+	6.49E-05
organic substance biosynthetic proce	4587	72	39.45	1.83	+	2.69E-04
biosynthetic process	4673	72	40.19	1.79	+	5.91E-04
cellular macromolecule metabolic pr	6753	103	58.08	1.77	+	3.58E-08
macromolecule metabolic process	7438	111	63.97	1.74	+	6.46E-09
localization	4683	67	40.27	1.66	+	3.58E-02
organic substance metabolic process	9008	124	77.47	1.6	+	1.53E-08
cellular metabolic process	8573	118	73.73	1.6	+	1.71E-07
primary metabolic process	8697	118	74.79	1.58	+	5.07E-07
metabolic process	9928	132	85.38	1.55	+	9.47E-09
cellular process	14147	156	121.66	1.28	+	1.90E-05
biological_process	16542	170	142.26	1.19	+	2.91E-05
Unclassified	4272	9	36.74	0.24	-	0.00E+00

			PANTHER	PANTHER
Gene ID	Mapped IDs	Gene Name	Family/Subfamily	Protein Clas
			NUCLEASE-SENSITIVE	
		Nuclease-sensitive	ELEMENT-BINDING	
HUMAN HGNC=8014	Un	element-binding	PROTEIN 1	
iProtKB=P67809	YBX1	protein 1	(PTHR11544:SF68)	-
			APOPTOTIC	
			CHROMATIN	
			CONDENSATION	
		Apoptotic chromatin	INDUCER IN THE	
HUMAN HGNC=17066	ΙU	condensation inducer	NUCLEUS	
niProtKB=Q9UKV3	ACIN1	in the nucleus	(PTHR10799:SF637)	DNA helicas
· · · · · · · · · · · · · · · · · · ·			SMALL NUCLEAR	
HUMAN HGNC=11161	IU	Small nuclear	RIBONUCLEOPROTEIN E	mRNA splic
niProtKB=P62304	SNRPE	ribonucleoprotein E	(PTHR11193:SF2)	factor
			SODIUM CHANNEL	
HUMAN HGNC=23136	IU	Sodium channel	MODIFIER 1	
niProtKB=O9BWG6	SCNM1	modifier 1	(PTHR32297:SF1)	-
			DNA-DIRECTED RNA	
		DNA-directed RNA	POLYMERASE II	
HUMAN HGNC=9188	Un	polymerase II subunit	SUBUNIT RPB2	nucleotidylt
iProtKB=P30876	POLR2B	RPB2	(PTHR20856:SE7)	sferase
				STETUSE
			U2 SMALL NUCLEAR	
HUMAN HGNC=11155	10	U2 small nuclear	RIBONI ICI FOPROTEIN	mRNA splic
niProtKB=P08579	SNRPR2	ribonucleoprotein B"	B'' (PTHR10501·SF21)	factor
	SINIT D2		LIPE0568 PROTEIN	
HUMAN HGNC=23169	111	LIPE0568 protein	C1408E166	
niProtKB=09V224	C14orf166	C14orf166	(PTHR15924·SE9)	_
niProtKR-0051/0		Snurportin_1		
	SNOFN		SPLICING EACTOR 3B	-
		Splicing factor 2B		mPNA solic
niDrot/P=075522		splicing factor 3D		factor
	31301			Tactor
		Bro mPNA splicing		mPNA colic
nolviAn nolviC=10333		factor SLU7		factor
111PT01KB-095591	3LU7			Tactor
		Drohoble ATD		
		dependent PNA		
				DNA halles
IPTOLKB=P1/844	געט		(PTHK24U31:SF219)	KINA NEIICAS
			PROCESSING FACTOR	
		Fre-mkinA-processing		
πιργοτκβ=075400	ΓΓΚΡΓ40Α	Tactor 40 nomolog A	[(FIHK11864:SF20)	1-

				COREPRESSOR	
				INTERACTING WITH	
	HUMAN HGNC=24217 U		Corepressor interacting	RBPJ 1	
13	niProtKB=Q86X95	CIR1	with RBPJ 1	(PTHR13151:SF2)	-
				HETEROGENEOUS	
				NUCLEAR	
	HUMAN HGNC=5041 Un		Heterogeneous nuclear	RIBONUCLEOPROTEIN	ribosomal
14	iProtKB=P31943	HNRNPH1	ribonucleoprotein H	H (PTHR13976:SF34)	protein
				ZINC FINGER RAN-	
			Zinc finger Ran-binding	BINDING DOMAIN-	
	HUMAN HGNC=13058 U		domain-containing	CONTAINING PROTEIN	
15	niProtKB=O95218	ZRANB2	protein 2	2 (PTHR12999:SF7)	-
				U6 SNRNA-ASSOCIATED	
	HUMAN HGNC=17162 U		U6 snRNA-associated	SM-LIKE PROTEIN LSM5	mRNA splicing
16	niProtKB=Q9Y4Y9	LSM5	Sm-like protein LSm5	(PTHR20971:SF0)	factor
	HUMAN HGNC=23244 U			RNA-BINDING PROTEIN	RNA binding
17	niProtKB=P49756	RBM25	RNA-binding protein 25	25 (PTHR18806:SF4)	protein
				HISTONE DEACETYLASE	
				COMPLEX SUBUNIT	chromatin/chro
	HUMAN HGNC=10530 U		Histone deacetylase	SAP18	matin-binding
18	niProtKB=O00422	SAP18	complex subunit SAP18	(PTHR13082:SF0)	protein

Supplemetal Tabl	e 3: GO analys	sis identified 21 genes involve	ed in protein translation from	GSE hits
Gene ID	Mapped IDs	Gene Name	PANTHER Family/Subfamily	PANTHER Protein Class
HUMAN HGNC=			SIGNAL PEPTIDASE	
17718 UniProtK		Signal peptidase complex	COMPLEX CATALYTIC	
B=P67812	SEC11A	catalytic subunit SEC11A	SUBUNIT SEC11A	-
HUMAN HGNC=			EUKARYOTIC TRANSLATION	
3285 UniProtKB		Eukaryotic translation	INITIATION FACTOR 4B	translation initiation
- P23588	EIF4B	initiation factor 4B	(PTHR23236:SF2)	factor
HUMAN HGNC=				
10316 UniProtK			60S RIBOSOMAL PROTEIN	
B=P62829	RPL23	60S ribosomal protein L23	L23 (PTHR11761:SF8)	ribosomal protein
HUMAN HGNC=			TRANSLOCON-ASSOCIATED	
11325 UniProtK		Translocon-associated	PROTEIN SUBUNIT GAMMA	
B=Q9UNL2	SSR3	protein subunit gamma	(PTHR13399:SF2)	-
HUMAN HGNC=			39S RIBOSOMAL PROTEIN	
14480 UniProtK		39S ribosomal protein L22,	L22, MITOCHONDRIAL	
B=Q9NWU5	MRPL22	mitochondrial	(PTHR13501:SF2)	ribosomal protein
HUMAN HGNC=			TRANSCRIPTION	
26121 UniProtK		Transcription elongation	ELONGATION FACTOR A	
B=Q96EI5	TCEAL4	factor A protein-like 4	PROTEIN-LIKE 4	transcription factor
HUMAN HGNC=				
11330 UniProtK		Somatostatin receptor type	SOMATOSTATIN RECEPTOR	G-protein coupled
B=P30872	SSR1	1	TYPE 1 (PTHR24229:SF38)	receptor
HUMAN HGNC=			EUKARYOTIC TRANSLATION	
3254 UniProtKB		Eukaryotic translation	INITIATION FACTOR 2A	translation initiation
=Q9BY44	EIF2A	initiation factor 2A	(PTHR13227:SF0)	factor
HUMAN HGNC=			MALIGNANT T-CELL-	
23357 UniProtK		Malignant T-cell-amplified	AMPLIFIED SEQUENCE 1	
B=Q9ULC4	MCTS1	sequence 1	(PTHR22798:SF0)	receptor
HUMAN HGNC=			28S RIBOSOMAL PROTEIN	
14049 UniProtK		28S ribosomal protein S14,	S14, MITOCHONDRIAL	
B=060783	MRPS14	mitochondrial	(PTHR19836:SF19)	ribosomal protein
HUMAN HGNC=				
11332 UniProtK		Somatostatin receptor type	SOMATOSTATIN RECEPTOR	G-protein coupled
B=P32745	SSR3	3	TYPE 3 (PTHR24229:SF42)	receptor
HUMAN HGNC=				
10345 UniProtK			60S RIBOSOMAL PROTEIN	
B=P18077	RPL35A	60S ribosomal protein L35a	L35A (PTHR10902:SF2)	ribosomal protein
HUMAN HGNC=			COP9 SIGNALOSOME	
2240 UniProtKB		COP9 signalosome complex	COMPLEX SUBUNIT 5	
=Q92905	COPS5	subunit 5	(PTHR10410:SF6)	transcription factor
HUMAN HGNC=			TRANSLOCON-ASSOCIATED	
11323 UniProtK		Translocon-associated	PROTEIN SUBUNIT ALPHA	membrane traffic
B=P43307	SSR1	protein subunit alpha	(PTHR12924:SF1)	protein

HUMAN HGNC=			ASPARAGINETRNA LIGASE,	
26274 UniProtK		Probable asparaginetRNA	MITOCHONDRIAL-RELATED	
B=Q96159	NARS2	ligase, mitochondrial	(PTHR22594:SF34)	RNA binding protein
HUMAN HGNC=				
10301 UniProtK			60S RIBOSOMAL PROTEIN	
B=P62913	RPL11	60S ribosomal protein L11	L11 (PTHR11994:SF12)	ribosomal protein
HUMAN HGNC=		Polyadenylate-binding	POLYADENYLATE-BINDING	
16945 UniProtK		protein-interacting protein	PROTEIN-INTERACTING	
B=Q9H074	PAIP1	1	PROTEIN 1	RNA binding protein
HUMAN HGNC=			28S RIBOSOMAL PROTEIN	
14513 UniProtK		28S ribosomal protein S28,	S28, MITOCHONDRIAL	
B=Q9Y2Q9	MRPS28	mitochondrial	(PTHR13447:SF2)	-
HUMAN HGNC=			28S RIBOSOMAL PROTEIN	
14512 UniProtK		28S ribosomal protein S27,	S27, MITOCHONDRIAL	
B=Q92552	MRPS27	mitochondrial	(PTHR21393:SF0)	ribosomal protein
HUMAN HGNC=			28S RIBOSOMAL PROTEIN	
16635 UniProtK		28S ribosomal protein S35,	S35, MITOCHONDRIAL	
B=P82673	MRPS35	mitochondrial	(PTHR13490:SF0)	ribosomal protein
HUMAN HGNC=			39S RIBOSOMAL PROTEIN	
14493 UniProtK		39S ribosomal protein L42,	L42, MITOCHONDRIAL	
B=Q9Y6G3	MRPL42	mitochondrial	(PTHR13450:SF1)	ribosomal protein

Supplmen AKT signal	tary Table 4: Kegg Pathway sea ling	rch identified 8 genes from 221 GSE hits associated with PI3K-
Gene		
Symbol	Gene Info	KEGG Pathway Title
EIF4B	eukaryotic translation initiation factor 4B	PI3K-Akt signaling pathway; RNA transport; mTOR signaling pathway; Proteoglycans in cancer
RHEB	Ras homolog enriched in brain	PI3K-Akt signaling pathway; mTOR signaling pathway; Thyroid hormone signaling pathway; AMPK signaling pathway; Insulin signaling pathway; Choline metabolism in cancer
GRB2	growth factor receptor-bound protein 2	PI3K-Akt signaling pathway; MAPK signaling pathway; Osteoclast differentiation; Choline metabolism in cancer; Chemokine signaling pathway; Dorso-ventral axis formation; Alcoholism; Pathways in cancer; Chronic myeloid leukemia; Focal adhesion; Fc epsilon RI signaling pathway; Insulin signaling pathway; Hepatitis C; Acute myeloid leukemia; Ras signaling pathway; Gap junction; T cell receptor signaling pathway; B cell receptor signaling pathway; Proteoglycans in cancer; Renal cell carcinoma; Non-small cell lung cancer; Jak- STAT signaling pathway; GnRH signaling pathway; Glioma; Prostate cancer; Signaling pathways regulating pluripotency of stem cells; Prolactin signaling pathway; Viral carcinogenesis; Endometrial cancer; ErbB signaling pathway; FoxO signaling pathway; Natural killer cell mediated cytotoxicity; Neurotrophin signaling pathway; Estrogen signaling pathway; Hepatitis B; MicroRNAs in cancer
IL2RG	interleukin 2 receptor, gamma	PI3K-Akt signaling pathway; Cytokine-cytokine receptor interaction; Endocytosis; Jak-STAT signaling pathway; Measles; HTLV-I infection; Inflammatory bowel disease (IBD); Primary immunodeficiency
HSP90AB 1	heat shock protein 90kDa alpha (cytosolic), class B member 1	PI3K-Akt signaling pathway; Protein processing in endoplasmic reticulum; NOD-like receptor signaling pathway; Progesterone-mediated oocyte maturation; Prostate cancer; Antigen processing and presentation; Pathways in cancer; Estrogen signaling pathway

SPP1	secreted phosphoprotein 1	PI3K-Akt signaling pathway; Toll-like receptor signaling pathway; Focal adhesion; ECM-receptor interaction
DCN	decorin	PI3K-Akt signaling pathway; Proteoglycans in cancer; TGF- beta signaling pathway
CD44	CD44 molecule (Indian blood group)	PI3K-Akt signaling pathway; ECM-receptor interaction; Hematopoietic cell lineage; Epstein-Barr virus infection; Proteoglycans in cancer; MicroRNAs in cancer; Shigellosis

Supplementary Table 5: Genes Identified with level of evidence indicated by color legend

Color Legend

Greater than 0 in all 4 cell lines Greater than 0 in 3 of 4 cell lines Greater than 0 in 2 of 4 cell lines Greater than 0.1 in 1 of 4 cell lines

		HCT116-	HCT116-	HT1080-	HT1080-	MDA-	MDA-			
Gene_ID	Gene_Name	Lrstat	Slope	Lrstat	Slope	Lrstat	Slope	PC3-Lrstat	PC3-Slope	BJ-Slope
	Coatomer									
ARCN1	subunit delta	0.12861	-81.542	0.03	-46.192	0.080138	-68.6417	0.00137	-18.1417	-10.2583
	High mobility									
HMGB1	group protein B1	0.00194	-63.017	0.0105	-76.825	0.004052	-66.75	0.906342	-244.908	54.73333
LOC64410										
0	-	0.02246	-112.82	0.0243	-118.23	8.25E-05	-67.5167	0.001175	-76.1583	-64.525
	Guanine									
	nucleotide									
D A DIE	exchange factor	0 0005	4 4 2 0 5		205 42	0 4 9 9 6 7 4	444.005		42.075	45.4
RABIF	MS54	0.2235	-143.05	0.4111	-205.42	0.128671	-111.825	0.00897	-43.975	15.4
	SAD domain									
	SAP UUIIIdill-									
SARND	ribonucleonrotein	0.01252	-62 /58	0 0003	-28 028	0 044510	-101 017	0 3006	_221 522	10 25822
JANNE		0.01252	-03.438	0.0093	-20.920	0.044515	-101.917	0.3090	-231.333	19.29035
	Sentrin-specific									
SENP7	protease 7	0.15227	-62,733	0.0308	-33.45	0.609844	-124.05	3,370883	-301.692	-0.79167
SEIT /		0.15227	02.755	0.0500	55.15	0.005011	121.05	3.370003	501.052	0.75107
	Arf-GAP domain									
	and FG repeat-									
	containing protein									
AGFG1	1	0	41.9917	0.0569	-68.042	0.002876	-31.175	0.02382	-50.5	20.075
	V-type proton									
	ATPase subunit E									
ATP6V1E1	1	0	-94.475	0.0033	-128.09	0.048077	-170.95	0.059616	-179.742	-111.725
CORO1C	Coronin-1C	0	-21.358	0.0428	-110.15	0.052586	-113.55	0.016183	-85.5083	46.21667
	Heterogeneous									
	nuclear									
	ribonucleoprotein									
HNRNPH1	Н	0	-18.25	0.1195	-169.58	0.051106	-126.225	0.398095	-245.708	60.725
	Cytokine									
	receptor common									
IL2RG	subunit gamma	0.00508	-48.35	0	15.275	1.235997	-277.542	0.022652	-67.5417	-31.9167

	Kelch domain-									
KUUDCQA	containing protein	0	12 0017	0.0010	F7 400	0 200127	115 467	0 011050	100 4	ГО
KLHDC8A	8A	0	12.0917	0.0618	-57.433	0.308127	-115.467	0.011858	-100.4	-5.9
	Pre-mRNA-									
	processing factor									
PRPF40A	40 homolog A	0.02839	-112.96	0.0199	-108.85	0	78.8	0.052754	-128.308	73.66667
	SET domain-									
SETDE	containing protein	0	0 0002	0 0007	121 22	0.049412	09 1017	0.015217	00 7002	
SEIDS	5 113 small	0	-0.9083	0.0997	-121.23	0.048413	-98.1917	0.015317	-80.7083	50.40007
	nucleolar RNA-									
	associated									
UTP11L	protein 11	0	19.3	0.0536	-67.25	0.006658	-30.075	0.070815	-80.1167	-8.33333
	Cytosolic									
	carboxypeptidase	0	0 10111	0 1052	120.07	0	75 64167	0 655640	207 709	24 66667
AGBLI	4 Coatomer	0	8.38333	0.1953	-128.97	0	/5.0410/	0.055049	-207.708	34.00007
COPZ1	subunit zeta-1	0.00058	-51.392	0	16.4333	0.024606	-82.2667	0	-36.95	45.69167
	ATP-dependent									
	RNA helicase									
DDX24	DDX24	0	-2.425	0	452.775	0.020173	-63.4083	0.131735	-160.733	-7.79167
	translation									
	initiation factor									
EIF4B	4B	0	-20.433	0.2248	-224.97	0.030773	-140.725	0	3.875	96.79167
	Growth factor									
	receptor-bound									
GRB2	protein 2	0	-32.317	0.0077	-59.525	0.231014	-167.85	0	-24.7	-34.8917
	BTB/PO7 domain-									
	containing protein									
KCTD1	KCTD1	0.09771	-62.683	0	47.85	0	-2.18333	0.046891	-47.8167	-8.43333
LOC10050										
5894	-	0.01508	-41.767	0	31.7083	0	4.866667	0.011925	-41.5083	-24.6167
LOC72791		0	C2 075	0	220 150	0.000121	04 275	0.00075	100.000	01 1017
9	- Omega-amidase	0	03.875	0	228.158	0.000131	-94.275	0.06875	-100.933	-91.1917
NIT2	NIT2	0	91.9167	0.2658	-123.62	0	111.25	0.001222	-9.425	-1.325
	OCIA domain-									
	containing protein									
OCIAD2	2	0	-75.775	0	-88.308	0.016999	-163.383	0.110477	-220.183	-129.2
	Soring /throasing									
	protein kinase									
OXSR1	OSR1	0	-21.417	0	180.025	0.000434	-121.7	0.02293	-169.583	114.3667
OXSR1	OSR1	0	-21.417	0	180.025	0.000434	-121.7	0.02293	-169.583	114.3667

	Protein disulfide-									
PDIA3	isomerase A3	0	16.9167	0	15.875	0.3885	-141.592	0.126365	-106.042	-44.5167
	Pleckstrin homology domain-									
PLEKHA7	A member 7	0	-23.642	0.1224	-119.34	0.007987	-67.5833	0	-16.95	-49.0833
	60S ribosomal							_		
RPL35A	protein L35a	0.08467	-117.84	0	45.9583	0.3161/3	-161.517	0	-36.8917	-65.2083
RPL36AP7	-	0.10976	-81.342	0	232.117	0	31.18333	9.70E-05	-7.31667	-4.96667
SLC25A35	Solute carrier family 25 member 35	0	250.942	0	397	0.031912	-63.5417	0.504695	-208.875	18.675
SORBS2	Sorbin and SH3 domain- containing protein 2	0	-13.192	0.0244	-69.05	0.000502	-27.1833	0	6.666667	-20.1417
	Telomeric repeat- binding factor 2- interacting									
TERF2IP	protein 1	0.00021	-10.708	0	36.8083	0	62.7	0.018244	-46.2917	6.566667
XPO5	Exportin-5	0	-5.1	0.0204	-42.908	0.109217	-67.9333	0	24.50833	-10.8833
ATRX	Transcriptional regulator ATRX	0	66.2	0.1794	-79.358	0	153.8167	0	91.38333	25.775
CDC26P1	-	0	-9.3583	0	40.425	0	3.275	0.112387	-125.758	-34.1583
LSM5	U6 snRNA- associated Sm- like protein LSm5	0	0.3	0.1261	-48.167	0	46.06667	0	14.85	3.925
MAP3K4	Mitogen- activated protein kinase kinase kinase 4	0	6.525	0	33.6083	0	74.03333	0.359337	-96.3083	-16.6917
METTL18	Histidine protein methyltransferase 1 homolog	0	-11.867	0	246.325	0.176803	-99.0083	0	-6.7	24.48333
PCBD2	Pterin-4-alpha- carbinolamine dehydratase 2	0	51.575	0.3111	-154.42	0	160.1083	0	15.81667	-21.1167
PSMC1P1	-	0	31.3833	0	193.658	0	-36.5083	0.165339	-288.35	-190.542
PUM1	Pumilio homolog 1	0	61.5583	0	-21.158	0	5.875	0.144704	-194.758	-128.917
		, v		, i	==0		•			

	GTP-binding									
RHEB	protein Rheb	0	57.5917	0	-55.858	0	-10.1333	0.153889	-181.8	73.89167
SPP1	Osteopontin	0	-52.383	0.2257	-123.83	0	22.85833	0	-35.2167	-59.4

Supplementary Table 6: Literature references for genes associated with cancer progression

Gene_ID	Gene_Name	Reference		
		Kim, H. S. et al. Systematic identification of molecular subtype-		
		selective vulnerabilities in non-small-cell lung cancer. Cell 155,		
ARCN1	Coatomer subunit delta	552-566 (2013).		
		Wang, X. et al. The Role of HMGB1 Signaling Pathway in the		
		Development and Progression of Hepatocellular Carcinoma: A		
HMGB1	High mobility group protein B1	Review. Int J Mol Sci 16, 22527-22540 (2015).		
	ADP ribosylation factor like GTPase 14			
ARL14EPL	effector protein like			
RABIF	Guanine nucleotide exchange factor MSS4			
		Hashii, Y. et al. A novel partner gene CIP29 containing a SAP		
		domain with MLL identified in infantile myelomonocytic		
SARNP	SAP domain-containing ribonucleoprotein	leukemia. Leukemia 18, 1546-1548 (2004).		
		Bawa-Khalfe, T. et al. Differential expression of SUMO-specific		
		protease 7 variants regulates epithelial-mesenchymal		
		transition. Proc. Natl. Acad. Sci. U.S.A. 109, 17466-17471		
SENP7	Sentrin-specific protease 7	(2012).		
AGFG1	Arf-GAP domain and FG repeat-containing			
		Sreekumar, B. K. et al. Polarization of the vacuolar adenosine		
		triphosphatase delineates a transition to high-grade		
		pancreatic intraepithelial neoplasm lesions. Pancreas 43, 1256-		
ATP6V1E1	V-type proton ATPase subunit E 1	1263 (2014).		
		Wu, L. et al. [Increased coronin-1C expression is related to		
		hepatocellular carcinoma invasion and metastasis]. Zhonghua		
CORO1C	Coronin-1C	Gan Zang Bing Za Zhi 18, 516-519 (2010).		
	Heterogeneous nuclear ribonucleoprotein	Lefave, C. V. et al. Splicing factor hnRNPH drives an oncogenic		
HNRNPH1	Н	splicing switch in gliomas. EMBO J. 30, 4084-4097 (2011).		
		Agarwal, A. et al. Functional RNAi screen targeting cytokine		
		and growth factor receptors reveals oncorequisite role for		
	Cytokine receptor common subunit	interleukin-2 gamma receptor in JAK3-mutation-positive		
IL2RG	gamma	leukemia. Oncogene 34, 2991-2999 (2015).		
		Mukasa, A. et al. Mutant EGFR is required for maintenance of		
		glioma growth in vivo, and its ablation leads to escape from		
		receptor dependence. Proc. Natl. Acad. Sci. U.S.A. 107, 2616-		
KLHDC8A	Kelch domain-containing protein 8A	2621 (2010).		
PRPF40A	Pre-mRNA-processing factor 40 homolog A			
SETD5	SET domain-containing protein 5			
UTP11	U3 small nucleolar RNA-associated protein			
AGBL1	Cytosolic carboxypeptidase 4			
		Shtutman, M. et al. Tumor-specific silencing of COPZ2 gene		
		encoding coatomer protein complex subunit ζ 2 renders		
		tumor cells dependent on its paralogous gene COPZ1. Proc.		
COPZ1	Coatomer subunit zeta-1	Natl. Acad. Sci. U.S.A. 108, 12449-12454 (2011).		
DDX24	ATP-dependent RNA helicase DDX24			

		Degen, M., Barron, P., Natarajan, E., Widlund, H. R. &
		Rheinwald, J. G. RSK activation of translation factor eIF4B
		drives abnormal increases of laminin γ2 and MYC protein
		during neoplastic progression to squamous cell carcinoma.
EIF4B	Eukaryotic translation initiation factor 4B	PLoS ONE 8, e78979 (2013).
		Ahmed, Z. et al. Grb2 monomer-dimer equilibrium determines
		normal versus oncogenic function. Nat Commun 6, 7354
GRB2	Growth factor receptor-bound protein 2	(2015).
		Li, X. et al. KCTD1 suppresses canonical Wnt signaling pathway
		by enhancing β -catenin degradation. PLoS ONE 9, e94343
KCTD1	BTB/POZ domain-containing protein KCTD1	(2014).
TMEM161B-		
AS1	TMEM161B antisense RNA 1	
	NADH:ubiquinone oxidoreductase complex	
LOC727919	assembly factor 2 pseudogene	
		Zheng, B., Chai, R. & Yu, X. Downregulation of NIT2 inhibits
		colon cancer cell proliferation and induces cell cycle arrest
		through the caspase-3 and PARP pathways. Int. J. Mol. Med.
NIT2	Omega-amidase NIT2	35, 1317-1322 (2015).
		Nagata, C. et al. Increased expression of OCIA domain
		containing 2 during stepwise progression of ovarian mucinous
OCIAD2	OCIA domain-containing protein 2	tumor. Pathol. Int. 62, 471-476 (2012).
OXSR1	Serine/threonine-protein kinase OSR1	
		Liao, C. J. et al. Glucose-regulated protein 58 modulates β -
		catenin protein stability in a cervical adenocarcinoma cell line.
PDIA3	Protein disulfide-isomerase A3	BMC Cancer 14, 555 (2014).
		Tille, J. C. et al. The Expression of the Zonula Adhaerens
		Protein PLEKHA7 Is Strongly Decreased in High Grade Ductal
	Pleckstrin homology domain-containing	and Lobular Breast Carcinomas. PLoS ONE 10, e0135442
PLEKHA7	family A member 7	(2015).
		Kroes, R. A. et al. The identification of novel therapeutic
		targets for the treatment of malignant brain tumors. Cancer
RPL35A	60S ribosomal protein L35a	Lett. 156, 191-198 (2000).
	rik	
KPL36AP7	nbosomal protein L36a pseudogene 7	
SLCDEADE	Soluto corrier family 25 momber 25	
SLCZJASJ	Solute carrier family 25 member 35	Backsch C at al. An integrative functional genemic and gene
		expression approach revealed SOPRS2 as a putative tumour
	Sorbin and SH3 domain-containing protein	expression approach revealed SORBS2 as a putative tumour
SOPRS2	o	Carcinogonosis 22, 1100-1106 (2011)
5011052	- Telomeric repeat-hinding factor 2-	Potrony M et al Undate in genetic suscentibility in
TERE2IP	interacting protein 1	melanoma, Ann Transl Med 3, 210 (2015)
		Li, Y., Wang, X., He, B., Cai, H. & Gao, Y. Downregulation and
		tumor-suppressive role of XPO5 in henatocellular carcinoma
XPO5	Exportin-5	Mol. Cell, Biochem, 415, 197-205 (2016).
A 65		

		Lee, J. C. et al. Alternative lengthening of telomeres and loss
		of ATRX are frequent events in pleomorphic and
		dedifferentiated liposarcomas. Mod. Pathol. 28, 1064-1073
ATRX	Transcriptional regulator ATRX	(2015).
CDC26P1	cell division cycle 26 pseudogene 1	
LSM5	U6 snRNA-associated Sm-like protein LSm5	
		Whitmarsh, A. J. & Davis, R. J. Role of mitogen-activated
	Mitogen-activated protein kinase kinase	protein kinase kinase 4 in cancer. Oncogene 26, 3172-3184
MAP3K4	kinase 4	(2007).
METTL18	Histidine protein methyltransferase 1	
PCBD2	Pterin-4-alpha-carbinolamine dehydratase	
PSMC1P1	proteasome 26S subunit, ATPase 1	
		Fernandez, S. et al. miR-340 inhibits tumor cell proliferation
		and induces apoptosis by targeting multiple negative
		regulators of p27 in non-small cell lung cancer. Oncogene 34,
PUM1	Pumilio homolog 1	3240-3250 (2015).
		Wang, Y. et al. Inhibition of MAPK pathway is essential for
		suppressing Rheb-Y35N driven tumor growth. Oncogene,
RHEB	GTP-binding protein Rheb	(2016).
		Lin, J. et al. Osteopontin (OPN/SPP1) isoforms collectively
		enhance tumor cell invasion and dissemination in esophageal
SPP1	Osteopontin	adenocarcinoma. Oncotarget 6, 22239-22257 (2015).

Supplemental Table 7: List of primers used for amplification of the library

Primer Name	Primer Sequences
FwdHTS	TTCTCTGGCAAGCAAAAGACGGCATA
RevHTS	TGCCATTTGTCTCGAGGTCGAGAA
FwdGex	CAAGCAGAAGACGGCATACGAGA
Rev_Ind_1	ACACGACGCTCTTCCGATCTACAAGCTACGAAACCCCAAACGCACGAA
Seq2N_AD	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
	Primer Rev_Ind_1 represents seriens of index primes. All 50 indexes are in Supp Table 10.
Red letters:	The 8 base index sequence marked with red.

Index Num	Sample	Index sea	
maex Num.	Name	muex seq	
1	MDA-1A	ACAAGCTA	
2	MDA-1B	AAACATCG	
3	MDA-2A	ACATTGGC	
4	MDA-2B	ACCACTGT	
5	MDA-3A	AACGTGAT	
6	MDA-3B	CGCTGATC	
7	MDA-4A	CAGATCTG	
8	MDA-4B	ATGCCTAA	
9	MDA-5A	CTGTAGCC	
10	MDA-5B	AGTACAAG	
11	MDA-6A	CATCAAGT	
14	BJ-1A	AACCGAGA	
15	BJ-1B	AACGCTTA	
16	BJ-2A	AAGACGGA	
17	BJ-2B	AAGGTACA	
18	BJ-3A	ACACAGAA	
19	BJ-3B	ACAGCAGA	
20	BJ-4A	ACCTCCAA	
21	BJ-4B	ACGCTCGA	
22	BJ-5A	ACGTATCA	
23	BJ-5B	ACTATGCA	
26	HT1080-1A	AGCAGGAA	
27	HT1080-1B	AGTCACTA	
28	HT1080-2A	ATCCTGTA	
29	HT1080-2B	ATTGAGGA	
30	HT1080-3A	CAACCACA	
31	HT1080-3B	CAAGACTA	
32	HT1080-4A	CAATGGAA	
33	HT1080-4B	CACTTCGA	
34	HT1080-5A	CAGCGTTA	
38	HCT116-1A	CCGTGAGA	
39	HCT116-1B	CCTCCTGA	
40	HCT116-2A	CGAACTTA	
41	HCT116-2B	CGACTGGA	
42	HCT116-3A	CGCATACA	
43	HCT116-3B	CTCAATGA	
44	HCT116-4A	CTGAGCCA	
45	HCT116-4B	CTGGCATA	
46	HCT116-5A	GAATCTGA	
47	HCT116-5B	GACTAGTA	
51	PC3-1A	GCGAGTAA	
52	PC3-1B	GCTAACGA	
53	PC3-2A	GCTCGGTA	
54	PC3-2B	GGAGAACA	

Supplementary Table 8: List of individual indexes

55	PC3-3A	GGTGCGAA
56	PC3-3B	GTACGCAA
57	PC3-4A	GTCGTAGA
58	PC3-4B	GTCTGTCA
59	PC3-5A	GTGTTCTA
60	PC3-5B	TAGGATGA

siRNA	BJ-hTERT	HCT-116	MB-231	PC-3
Mock	1	1	1	1
Non-targeting	0.993637	1.076347	1.145371	1.236729
Empty	0.995182	0.940182	1.05333	1.053895
AGBL1	0.993353	0.829061	0.94132	0.968732
HNRNPH1	1.008916	0.706796	0.887928	0.950942
PCBD2	0.994845	0.973945	0.957894	1.045638
SETD5	1.000087	0.748977	0.898195	1.077305
AGFG1	0.994808	0.938085	1.028644	0.9287
IL2RG	0.996655	0.963529	1.293999	1.290599
PDIA3	0.992133	0.928903	1.11852	1.121697
SLC25A35	0.995125	0.996245	1.01256	1.077171
ARCN1	0.989305	0.265602	0.323694	0.297051
KCTD1	0.997719	0.992288	1.070425	1.118217
PLEKHA7	0.995435	1.110114	0.985993	1.312232
SORBS2	0.997753	1.056556	1.089335	1.01474
ATP6V1E1	0.993027	1.116636	0.982125	0.955134
KLHDC8A	1.005215	0.895708	1.265156	1.104444
PRPF40A	0.9932	1.085609	0.980048	0.980877
SPP1	0.997114	1.164841	1.005836	1.182003
ATRX	0.991238	0.935701	1.260971	0.848173
LSM5	0.99214	0.942326	0.982554	0.571907
PUM1	0.992634	0.990456	1.012888	0.99408
TERF2IP	1.000324	1.102796	1.102099	1.008148
CORO1C	0.987569	1.175916	1.003253	0.879636
MAP3K4	0.996622	1.006132	1.108993	0.934333
RABIF	0.998564	1.01153	1.184535	1.032891
UTP11L	0.998573	0.81696	0.843181	0.863122
DDX24	0.993122	0.652864	0.593598	0.567028
METTL18	1.009398	1.076623	1.0784	1.05731
RHEB	0.996713	1.104943	1.284004	0.906698
XPO5	0.987849	1.166598	1.029362	0.925374
EIF4B	0.995085	0.917745	0.95623	0.87972
NIT2	0.996144	1.103389	1.151813	1.239495
RPL35A	0.8349	0.255282	0.29914	0.343375
GRB2	0.991738	0.581017	1.017937	0.979098
OCIAD2	0.993775	1.002994	1.212914	1.177656
SARNP	0.994299	0.978375	1.19879	0.995627
HMGB1	0.987477	0.892343	1.056406	0.952099
OXSR1	1.003865	0.969629	1.03246	1.096614
SENP7	0.995039	1.018165	0.988002	1.114387

Supplemetal Table 9 siRNA screenings results