Supporting information

UVRAG Deficiency Exacerbates Doxorubicin-Induced Cardiotoxicity

Lin An¹, Xiao-wen Hu¹, Shasha Zhang¹, Xiaowen Hu¹, Zongpei Song¹, Amber Naz¹,

Zhenguo Zi¹, Jian Wu², Can Li^{1,3}, Yunzeng Zou², Lin He^{1,3}, Hongxin Zhu^{1,3}

1 Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine,

Shanghai Jiao Tong University

2 Institutes of Biomedical Sciences, Fudan University, Shanghai, China

3 Collaborative Innovation Center of Genetics and Development, China

Figure S1. UVRAG expression in the hearts from WT and UVRAG-deficient mice after vehicle and DOX treatment. (a) Western blot detection of UVRAG protein abundance in LVs from WT and UVRAG-deficient mice 5 days after acute DOX or vehicle treatment. **(b)** Western blot detection of UVRAG protein abundance in LVs from WT and UVRAG-deficient mice at 4 weeks of chronic DOX or vehicle treatment.

Figure S2. Expression of α -SMA in the hearts from WT and UVRAG-deficient mice after acute DOX and vehicle treatment. (a) Representative images of α -SMA immunohistochemistry in LVs on heart sections from WT and UVRAG-deficient mice after chronic DOX or vehicle treatment over the indicated time. Scale bar: 40 µm. (b) Quantification of α -SMA expression in LVs in the experiments as illustrated in (a). n=3 mice for each group. *P<0.05 vs. WT+vehicle, [#]P<0.05 vs. WT+DOX.

Figure S3. Expression of α -SMA in the hearts from WT and UVRAG-deficient mice after chronic DOX and vehicle treatment. (a) Representative images of α -SMA immunohistochemistry in LVs on heart sections from WT and UVRAG-deficient mice after chronic DOX or vehicle treatment over the indicated time. Scale bar: 40 μ m. (b) Quantification of α -SMA expression in LVs in the experiments as illustrated in panel (a). n=3 mice for each group. *P<0.05 vs. WT+vehicle, [#]P<0.05 vs. WT+DOX.

Figure S4. Representative images of apoptotic cells detected by TUNEL assay. Scale bar:

40 μm.

Figure S5. Assessment of inflammatory cytokines in acute and chronic DOX-induced cardiotoxicity. **(a)** TNF α levels in the hearts from WT and UVRAG-deficient mice 3 days after vehicle or DOX treatment. **(b)** TNF α levels in the hearts from WT and UVRAG-deficient mice at 2 weeks of chronic DOX or vehicle treatment. **(c)** IL-6 levels in the hearts from WT and UVRAG-deficient mice 3 days after vehicle or DOX treatment. **(d)**

IL-6 levels in the hearts from WT and UVRAG-deficient mice at 2 weeks of chronic DOX or vehicle treatment. (e) IL-1 β levels in the hearts from WT and UVRAG-deficient mice 3 days after vehicle or DOX treatment. (f) IL-1 β levels in the hearts from WT and UVRAG-deficient mice at 2 weeks of chronic DOX or vehicle treatment. n=4 mice for each group. **P*<0.05 vs. WT+vehicle. # *P*<0.05 vs. WT+DOX.

Figure S6. Beclin 1 and Atg5 expression in the hearts from WT and UVRAG-deficient mice after vehicle and DOX treatment. (a) Western blot detection of Beclin 1 protein abundance in LVs from WT and UVRAG-deficient mice 3 days after acute DOX or vehicle treatment. (b) Quantification of Beclin 1 as illustrated in panel (a). (c) Western blot detection of Atg5 protein abundance in LVs from WT and UVRAG-deficient mice 3 days after acute DOX or vehicle treatment. (d) Quantification of Atg5 as illustrated in panel (c). (e) Western blot detection of Beclin 1 protein abundance in LVs from WT and UVRAG-deficient mice at 4 weeks of chronic DOX or vehicle treatment. (f) Quantification

of Beclin 1 as illustrated in panel (e). **(g)** Western blot detection of Atg5 protein abundance in LVs from WT and UVRAG-deficient mice at 4 weeks of chronic DOX or vehicle treatment. **(h)** Quantification of Atg5 as illustrated in panel (g). *P<0.05 vs. WT+vehicle, #P<0.05 vs. UVRAG^{-/-}+vehicle, §P<0.05 vs. WT+DOX.

Figure S7. Effects of intermittent fasting on lysosomal markers in acute cardiotoxicity. (a) Representative images of immunohistochemistry for LAMP-1 in LVs on the heart sections from fed or fasted WT and UVRAG-deficient mice 5 days after acute DOX or vehicle treatment. (b) Representative images of immunohistochemistry for LAMP-2 in LVs on the heart sections from fed or fasted WT and UVRAG-deficient mice 5 days after acute DOX or vehicle treatment. Scale bar: 40 μ m.

Figure S8. Effects of intermittent fasting on lysosomal markers in chronic cardiotoxicity. (a) Representative images of immunohistochemistry for LAMP-1 in LVs on the heart sections from fed or fasted WT and UVRAG-deficient mice 4 weeks after the initial DOX treatment in chronic cardiotoxicity. (b) Representative images of immunohistochemistry for LAMP-2 in LVs on the heart sections from fed or fasted WT and UVRAG-deficient mice 4 weeks after the initial DOX treatment in chronic cardiotoxicity. Scale bar: 40 μm.