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2. Supplementary Methods  

Gene expression analysis 

Two different microarray platforms were used to generate expression data from whole 

blood samples obtained from a total of 114 individuals recruited as part of the Stanford-

Ellison longitudinal cohort1-3; the Human HT12v3 Expression Bead Chip (Illumina, San 

Diego, CA) for years 2008 and 2009, and the GeneChip PrimeView Human Gene 

Expression Array (Affymetrix, Santa Clara, CA), for years 2010, 2011 and 2012. For this 

study, we did not pre-specify effect size, however, based on our previous studies on these 

same cohorts, we estimated that 114 individuals would provide a statistical power of 0.75 

(α = 0.05) for an effect size of 0.3. For the Illumina platform, biotinylated, amplified 

antisense complementary RNA (cRNA) targets were prepared from 200 to 250 ng of the 

total RNA using the Illumina RNA amplification kit (Applied Biosystems/Ambion). 

Seven hundred and fifty nanograms of labeled cRNA was hybridized overnight to 

Illumina Human HT-12v3 BeadChip arrays (Illumina), which contained >48,000 probes. 

The arrays were then washed, blocked, stained and scanned on an Illumina BeadStation 

500 following the manufacturer’s protocols. BeadStudio/GenomeStudio software 

(Illumina) was used to generate signal intensity values from the scans. For normalization, 

the software was used to subtract background and scale average signal intensity for each 

sample to the global average signal intensity for all samples. A gene expression analysis 

software program, GeneSpring GX version 7.3.1 (Agilent Technologies), was used to 

perform further normalization under the default percentile shift settings. During this 

process the signal values are transformed to the log base, then the log transformed signal 

values are arranged in increasing order and the rank of the required percentile (Pth) is 
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computed. Once the value corresponding to the Pth percentile is obtained, this value is 

subtracted from the corresponding log transformed signal values and this gives the 

normalized intensity value. For the Affymetrix platform standard Affymetrix 3'IVT 

Express protocol was used to generate biotinylated cRNA from 50-500 ng of total RNA. 

DNA polymerase was used for the production of double stranded cDNA. T7 RNA 

polymerase, in the presence of biotinylated nucleotides, was used for in 

vitro transcription (IVT) of biotinylated cRNA. The fragmented and labeled targets were 

hybridized to the PrimeView Human Gene Expression Array cartridge, which measure 

gene expression of more than 36,000 transcripts and variants per sample by using 

multiple (11 probes per set for well-annotated sequences, 9 probes per set for the 

remainder) independent measurements for each transcript. The standard Affymetrix 

hybridization protocol includes 16hr (overnight) hybridization at 45 degree at 60rpm in 

an Affymetrix GeneChip Hybridization Oven 645. The arrays were then washed and 

stained in an Affymetrix GeneChip Fluidics Station 450. The arrays were scanned using 

the Affymetrix GeneChip Scanner 3000 7G and the Affymetrix GeneChip Command 

Console Software (AGCC) was used for the gene expression data processing and 

extraction. The raw data for years 2008 through 2012 has been deposited on the 

Immunology Database and Analysis Portal (ImmPort, https://immport.niaid.nih.gov) 

under accession numbers SDY314, SDY312, SDY311, SDY112 and SDY315, 

respectively. 

To identify gene modules associated with IL-1β  production and inflammasome activity, a 

list of a total of 89 genes including the Pattern-Recognition Receptor family and their 

positive and negative regulators encompassing TLRs, NLRs, RIG-I-Like Receptors 
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(RLRs), C-type lectin-like Receptors (CLRs) and their adaptors; inflammatory caspases 

and their direct regulators; and transcription factors involved in NF-kB and Type-I 

Interferon (IFN) signaling which are known to regulate inflammasome gene expression 

and activation was gathered from manually curated data. We searched for the presence of 

these genes across a total of 109 previously defined gene modules2. A gene module 

corresponds to a set of co-expressed genes sharing regulatory programs4,5. Briefly, data 

were filtered by variance and a total of 6234 highly variant genes (standard deviation 

cutoff = 0.24) were normalized by centering and scaling the expression so that each 

gene's expression across all subjects had euclidean norm equal to 1 for purposes of 

clustering. Data was log transformed to approximate to normal distribution. We utilized 

hierarchical agglomerative clustering with average linkage, euclidean distance and a 

height cutoff value of 1.5 to derive 109 modules. For each gene module, we assigned a 

set of regulatory genes (regulatory program), based on regression analysis of genes in the 

modules onto expression of known transcription factors using a Akaike Information 

Criterion (AIC)6. To do so, we performed linear regression with elastic net penalty of 

each module's expression onto a set of 188 transcription factors using LARS-EN 

algorithm. To select the best model among the outputs of LARS-EN, we assessed quality 

of the resulting models by AIC, with sample specific terms weighted by within-module 

variance. The fit with the best AIC score was selected for each module. For all 109 gene 

modules, annotation was computed based on Gene Set Enrichment Analysis7. For 

accessing the gene modules, regulatory programs and annotations see 

http://cs.unc.edu/~vjojic/fluy2-upd/. 
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To determine the stability of the age-associations for module 62 and 78, we used the 

QuSAGE gene set analysis method8, which creates a probability distribution representing 

the mean and standard deviation of a set of genes and enables comparisons of gene sets 

across different groups. For this analysis, samples from the individuals' first appearance 

in the study were used to analyze the age associations for module expression. 

We examined the presence of extreme phenotypes by using classification based on the 

magnitude and stability (chronicity) of the expression levels. For each year, the 

expression of modules 62 and 78 were used to bin subjects into quartiles. Subjects were 

assigned into inflammasome module high (IMH) or inflammasome module low (IML) 

groups if they were in the upper (top 25% of subjects) or lower quartile (bottom 25%) in 

at least in 3/5 years, respectively. Subjects who were not in the upper or lower quartiles in 

at least 3/5 years were not included in this analysis. 

 

Estimation of cell frequency using gene expression analysis 

We estimated the frequencies of 22 different cell subsets in IMH and IML older adults (N 

= 22), and in a separate analysis, we compared such frequencies between young and older 

adults (N = 86). For these analyses we used Cibersort9, which uses gene expression 

profiles to characterize cell subset composition in complex tissues, such as whole blood. 

We found significant differences in the estimated frequencies of circulating mast cells, as 

well as in the CD4 T regulatory cell compartment between young and older adults (P < 

0.01). However, no significant differences were observed for any of the other cell subsets 

analyzed. Similarly, there were no significant differences in cell subset frequencies 

between IMH and IML older adults (Fig. S7).  
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Mass cytometry (CyTOF) 

Antibodies 

Antibodies were either obtained pre-conjugated from the manufacturer (Fluidigm, South 

San Francisco, CA) or were conjugated in-house to the appropriate metal isotopes (Table 

S5).  Purified unconjugated antibodies in carrier-protein-free PBS were labeled using the 

MaxPAR antibody conjugation kit (Fluidigm) using the manufacturer’s protocol.  

Conjugated antibodies were stored at a concentration of 0.2mg/mL (based on percent 

yield calculated from measured absorbance at 280nm) in Candor PBS Antibody 

Stabilization solution (Candor Biosciences, Wangen, Germany) at 4°C.  Antibodies were 

titrated on whole blood and used at concentrations listed in Supplementary Table 6.    

 

Sample thaw and red blood cell lysis 

Fixed samples were thawed for 10 minutes at 4°C and 10 minutes in a room temperature 

water bath.  Samples were filtered using a 100µm membrane into a hypotonic lysis 

solution (Smart tube Inc., San Carlos, CA) and incubated for 5 minutes at room 

temperature.  Samples were centrifuged and resuspended in lysis solution for 5 minutes 

and washed twice with cell-staining media (CSM, phosphate buffered saline with 0.5% 

bovine serum albumin, 0.02% NaN3).   

 

Mass-tag cellular barcoding  

To minimize experimental variability, samples were barcoded as previously described. 

Briefly, Isothiocyanobenzyl-EDTA/Pd (Pd)-based reagents were prepared for mass tag 
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barcoding as described10-12. Twenty-well barcode plates were prepared, each well 

containing a unique combination of three Pd isotopes (102, 104, 105, 106, 108, 110) at 

200nM in DMSO.  After sample thaw and red blood cell lysis, cells were washed with 

once with CSM, once with PBS, and once with 0.02% Saponin in PBS.  Barcoding plates 

were thawed and resuspended in 1ml 0.02% Saponin in PBS.  Barcoding reagent was 

added to each sample and incubated shaking at room temperature for 15 minutes.  

Samples were subsequently washed twice with CSM and pooled into a single tube for 

antibody staining.  Samples were run on three barcode plates; to facilitate comparisons, 

all samples from a feto-maternal pair run on the same barcode plate.   

 

Antibody staining 

Pooled barcoded samples were incubated with a cocktail of antibodies against surface 

antigens (Supplementary Table 6) for 30 minutes shaking at room temperature.  Samples 

were washed with CSM, permeabilized with methanol for 10 minutes at 4°C, and washed 

twice with CSM.  Samples were subsequently incubated with a cocktail of antibodies 

against intracellular proteins (Supplementary Table 6) for 30 minutes shaking at room 

temperature then washed with CSM.  Samples were incubated with an iridium 

intercalator (Fluidigm) with 1.6% paraformaldehyde in PBS overnight at 4°C.   

 

Mass cytometry measurement 

Intercalated samples were washed once with CSM and twice with double distilled water, 

and resuspended in a solution of normalization beads (Fluidigm).  Samples were filtered 

prior to mass cytometry analysis through a 35µm membrane and analyzed at a flow rate 
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of approximately 500 cells/second.  Samples were normalized and debarcoded using 

software described in12,13.   

 

Statistical tests 

Age association of inflammasome gene modules and correlation with clinical outcomes. 

For the analysis of age-related gene expression in the Stanford-Ellison longitudinal 

cohort, we first derived gene modules from microarray data collected during the year 

2008. The data were processed as previously described2. Briefly, of a total of 48771 gene 

probes in the microarray per sample, we first selected 6234 based on variance (s.d. cutoff 

value of 0.24). We then normalized their expression by centering and scaling data so that 

each gene’s expression across all subjects had euclidean norm equal to 1 for purposes of 

clustering. We conducted hierarchical clustering with average linkage, euclidean distance 

and a height cutoff value of 1.5 to derive a total of 109 modules. For each gene module a 

set of regulatory genes were assigned, based on regression analysis of genes in the 

modules onto expression of transcription factors using a Akaike Information Criterion 

(AIC; Akaike, 1974). Of a total of 394 transcription factors in total, 188 met the s.d. 

cutoff value. We performed linear regression with elastic net penalty of each module’s 

expression onto the set of regulators using LARS-EN algorithm with l2 penalty weighted 

by 0.01. To select the best model among the outputs of LARS-EN, we assessed 

robustness of the resulting models by AIC. The fit with the best AIC score was selected 

for each module.  

We subsequently searched for gene modules that were correlated with age by the 

Benjamini-Hochberg method14, which is based on permutation procedures and outputs a 
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false discovery rate (FDR), defined as the expected percentage of false positives among 

all the claimed positives. Of the 109 gene modules derived from our previous analysis, 41 

were correlated with age (Q ≤ 0.05). We then conducted functional analysis on the age-

associated gene modules (totaling 41) by using the DAVID Functional Annotation 

Bioinformatics Microarray Analysis tool (https://david.ncifcrf.gov/). To validate the 

findings that modules 62 and 78 were annotated to participate in cytokine production, we 

conducted hypergeometric tests to identify which sub-populations of gene modules were 

overrepresented (enriched) for inflammasome genes in our sample. This test uses the 

hypergeometric distribution to calculate the statistical significance of having drawn a 

specific k successes (out of n total draws) from the population. Using this analysis we 

found significant enrichment for these same modules (FDR Q < 0.01). 

To search for stability of the observed higher expression of inflammasome gene modules 

in the older cohort, we used the longitudinal data and the expression of these two gene 

modules in young versus older subjects was compared using the QuSAGE method8. For 

this analysis, samples from the individuals' first appearance in the study (N = 114) were 

used to analyze the age associations for module expression.  

When then looked for association with clinical phenotypes. To that end we classified the 

older cohort into two classes inflammasome module high (IMH) or inflammasome 

module low (IML) groups if they were in the upper or lower quartiles, respectively, for 

each gene module in 3 or more of the 5 years analyzed. Subjects who did not meet these 

criteria were not included in this analysis. For module 62, this yielded 19 individuals with 

extreme phenotypes: 9 IMH and 10 IML individuals, and for module 78, 16 individuals: 

9 IMH and 7 IML. Since the two modules correlated well and a significant degree of 
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overlap for the modules 62 and 78 in each category was noted (6 IMH and 6 IML, P-

value for enrichment < 0.001), IMH (age range 66-86) or IML (age range 62-90) 

individuals from modules 62 and 78 were combined (N = 23) for further analysis. 

When then asked whether the IMH vs IML status correlated with clinical phenotypes by 

logistic regression analysis to compare the IMH and IML phenotypes (N=23) with 

respect to their clinical history of diabetes, hypertension and psychiatric disorders (all 

binary outcomes). Because the age range of our older cohorts was relatively large (60 - 

>89), age and sex were included in the logistic regression models. We also adjusted for 

other confounding factors such as medication history and body mass index (BMI). 

We found a significant association with hypertension but not with other clinical 

phenotypes.  

The analysis of pulse wave velocity (PWV) was done using a two-tail student’s t-test. 

The PWV was significantly lower in the IML group (7.9 ± 2.4 m/s) compared to the IMH 

group (10.7 ± 2.1 m/s) (P = 0.02) (N = 17,  t = -2.4976, df = 13.902). 

The analysis of module expression and deaths was also done using two-tail student’s t-

test. For module 62, the p-value was 0.068 (t = -2.0647, df = 9.3161) and for module 78, 

0.01 (t = -2.8009, df = 9.8783, p-value = 0.018). 

For the analysis of serum cytokines we used data from year 2013 (N = 16) an conduced 

multiple regression analysis on each analyte’s MFI against age, sex and IML/IMH status. 

Significance of the regression coefficients was obtained via permutation tests. For years 

2008-2011 the number of samples were as follows: IML (2008, 2009, 2010, 2011) = 10, 

10, 8, 7, respectively and IMH (2008, 2009, 2010, 2011)  = 12, 11, 12, 8, respectively. 
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Metabolomics analysis  

The metabolomics analysis was conducted on available serum samples from year 2011 (N 

= 9 IML and 11 IMH). We conducted significance analysis of microarrays (SAM) on a 

total of 692 metabolites. Sixty-seven were differentially expressed (all upregulated) in 

IMH versus IML (FDR Q < 0.2, score (d) >1.3). Functional annotation and pathway 

analysis of the metabolites found was conducted using MetPA33. 

We used two-tail student’s t-test to compare levels of cystine and 8-isoprostane (N = 20). 

The p-value for 8-isoprostane was 0.01 (t = -3.1493, df = 10.087) and the p-value for 

cystine was 0.018 (t = -2.7667, df = 14.36). 

For the stimulation assays using primary monocytes, platelets, granulocytes or THP-1 

cells, we either used two or one-tail t-test (see Figure legends). Error bars in those cases 

reflect experimental variability (technical replicates). 

 

Analysis of blood pressure and immune cell activation in mice treated with N4A and 

adenine 

Adult male C57BL/6 mice (12-18-week old) were randomized into either control (N = 4 

or 10) or treatment (N = 4 or 10) groups. The p-value for comparison of blood pressure 

between the two groups of mice (N = 8) was 0.016 (t = -4.4164, df = 4.367). The p-value 

obtained when comparing the larger set (N = 20) was 0.011 (t = -3.0117, df = 11.736).  

To analyze the differences in signaling molecules in mice treated with the compunds 

versus controls (N = 12) we used SAM analysis (21 cell surface markers and 10 signaling 

proteins). The cell subsets analyzed included granulocyes, monocyes, NK cells CD4 and 

CD8 T cells, T regulatory CD4 T cells and B cells. The panel in the figure 5b shows the 
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results of SAM analysis comparing the two groups of mice with the x-axis representing 

the FDR or significance (at a cutoff of 5%) as a function of score (d) parameter (y-axis), 

which is equivalent to the T-statistic value of a t-test when comparing two samples.  

 

Effect of caffeine on inflammasomes 

To correlate the levels of caffeine consumption and expression of inflammasome gene 

modules, we conduced regression on the expression of module 62 and 78 and caffeine 

consumption in mg/week (adjusted for age, sex and BMI). The caffeine intake levels 

were estimated from a 15-category survey conducted during the year 2008, derived from 

120 of the most commonly consumed caffeinated products in the United States in 2007 

(Center for Science in the Public Interest, see http://www.cspinet.org/new/cafchart.htm). 

The data used in this analysis corresponded to samples collected in the year 2008, N = 

89). 

The differences in circulating caffeine and caffeine metabolites between the IMH and 

IML groups were computed using one-tail t-test and p-values were combined using a 

modified generalized Fisher method for combining probabilities from dependent tests15.  

Differences in the expression of NLRC4 in THP-1 cells upon treatment with caffeine, 

N4A and adenine were analyzed by the Student’s t-test. Figure 6c shows mean ± SD; N = 

3.  
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3. Supplementary Figures and Tables 

 

 

 

 Supplementary Table 1. Number of young and older subjects per year 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2008 2009 2010 2011 2012 
Young 29 22 20 28 19 

Old 60 51 55 59 52 
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Name	 Mechanism	of	action	 Class	
Amlodipine	 Calcium	channel	blocker	 1	
Atenolol	 Beta-blocker	 3	
Candesatran	Cilexetil	 Angiotensin	II	receptor	antagonist	 2	
Carvedilol	 Beta-blocker	 3	
Chlorthalidone	 Thiazide	diuretic	 4	
Diltiazem	(also	XR	version)	 Calcium	channel	blocker	 1	
Doxazosin	 Alpha-adrenergic	blocker	 5	
Enalapril	 ACE	inhibitor	 6	
Furosemide		 Loop	diuretic	 7	
Hydrochlorothiazide	(HCTZ)	 Thiazide	diuretic	 4	
Lisinopril	 ACE	inhibitor	 6	
Lisinopril+HCTZ	 ACE	inhibitor+thiazide	diuretic	 6*4	
Metoprolol	 Beta-blocker	 3	
Olmesartan	 Angiotensin	II	receptor	antagonist	 2	
Spironolactone	 Potassium-sparing	diuretic	 8	
Triamterene	 Potassium-sparing	diuretic	 8	
Valsartan	 Angiotensin	II	receptor	antagonist	 2	

Supplementary Table 2. List of medications prescribed in IML and IMH subjects 
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Supplementary Table 3. List of cytokines and chemokines associated with the IMH 
vs IML groups of older individuals 
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Supplementary Table 4. List of metabolites upregulated in IMH compared with IML 
older subjects. Compounds selected for experiments in primary monocytes are depicted 
in red.   
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 Antigen Clone Atomic Symbol Atomic Mass Vendor 

SU
R

FA
C

E
 

Ter-119 TER-119 In 113 Biolegend/BD 
CD45 30-F11 In 115 Biolegend 
Ly6G 1A8 Pr 141 BD 

CD11b M1/70 Nd 143 Fluidigm 
CD115 AFS98 Nd 144 Fluidigm 

CD4 RM4-5 Nd 145 Fluidigm 
CD8a 53-6.7 Nd 146 Fluidigm 
CD19 6D5 Sm 149 Fluidigm 
CD3 17A2 Sm 152 Fluidigm 

CD25 3C7 Gd 157 Fluidigm 
CD16 2.4G2 Gd 158 BD 
TCRγδ GL3 Tb 159 Fluidigm 
CD62L MEL-14 Gd 160 Fluidigm 
Ly6C HK1.4 Dy 162 Fluidigm 
NK1.1 PK136 Ho 165 Fluidigm 
IgM RMM-1 Er 169 Fluidigm 

CD49b HMalpha2 Er 170 Fluidigm 
CD44 IM7 Yb 171 Fluidigm 

MHCII M5/114.15.2 Yb 174 Fluidigm 
CD127 A7R34 Lu 175 BD 
B220 RA3-6B2 Lu 176 Fluidigm 

IN
T

R
A

C
E

L
L

U
L

A
R

 

pCREB 87G3/pS133 Nd 148 CST 
pSTAT5 47/pY694 Nd 150 Fluidigm 

pp38 36/p38/pT184/pY182 Eu 151 BD 
pSTAT1 4a/pY701 Eu 153 Fluidigm 
pSTAT3 4/P/pY705 Sm 154 BD 

prpS6 N7-548/pS235/236 Gd 155 Fluidigm 
Foxp3 NRRF-30 Gd 156 BD 

IκB L35A5 Dy 164 Fluidigm 
NFκB K10-895.12.50/pS529 Er 166 Fluidigm 

pERK1/2 D13.14.4E/pT202/Y404 Er 167 Fluidigm 
MAPKAPK2 27B7/pT334 Er 168 CST 

 Supplementary Table 5. Mouse Antibody Panel 
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Module 62 
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Module 78 

 
Figure S1. Age-associated modules containing genes related to inflammasome 
activity and regulation. Gene expression data from the Stanford-Ellison longitudinal 
cohort1-3 was used to find changes in inflammasome-associated genes with age. Gene 
modules were derived from microarray data as previously described2. From a total of 41 
age-associated gene modules (see also Fig. S2) only modules 62 (top) and 78 (bottom) 
were annotated to participate in cytokine production and both also show significant 
enrichment for inflammasome genes (P < 0.01).  
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Figure S2. Modules 62 and 78 are enriched for inflammasome genes and their 
expression levels are highly correlated. (a) Enrichment analysis was conducted for 41 
age-associated gene modules derived from the Stanford-Ellison longitudinal cohort1-3 by 
hypergeometric test. Both gene modules 62 and 78 were significantly enriched for 
inflammasome genes (P < 0.01). Expression of gene modules 62 and 78 was highly 
correlated in individuals from the year 2008 data set (N = 89) (P < 0.01) (b).  
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Figure S3. Hypertension rates, arterial stiffness and interleukin-1β levels in IML, 
IMH and unclassified older adults. Upper left: rates of hypertension in older IML, IMH 
and unclassified subjects shows that the extreme phenotypes IML and IMH are 
significantly different (P = 0.002 age-adjusted) and the unclassified group (intermediate 
phenotype) is not significantly different from either group. Upper right: pulse wave 
velocity in IML (N = 8), IMH (N = 9) and unclassified (N = 22) older adults shows 
significant differences between the IML and IMH groups (age-adjusted) but not in 
comparison with the group of unclassified older subjects. Bottom panel: the levels of IL-
1β were analyzed from data collected during the years 2008 to 2011 in the IML group (N 
(2008, 2009, 2010, 2011) = 10, 10, 8, 7, respectively), IMH group (N (2008, 2009, 2010, 
2011)  = 12, 11, 12, 8, respectively) and unclassified older individuals (N (2008, 2009, 
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2010, 2011)  = 39, 32, 31, 31, respectively). Significant differences are observed between 
the IML and IMH groups, but not between the IML group vs unclassified older adults nor 
between the IMH group vs unclassified older adults (age-adjusted) (left panel).  
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Figure S4. Pyrimidine and purine metabolism genes and metabolites differentially 
expressed in IML versus IMH individuals. Functional annotation and pathway analysis 
of a total of 67 differentially expressed metabolites (FDR Q < 0.2) was conducted using 
MetPA16 and significant enrichment for pyrimidine metabolism (top) was identified with 
7 compounds involved (a, red circles), as well as for purine metabolism (bottom) with 3 
compounds involved (b, red circles) (P < 0.05 by hypergeometric test). A total of 104 
pyrimidine metabolism genes (PYR) and 54 genes participating in purine metabolism 
(PUR) were gathered from KEGG17. Regression analysis was conducted on each gene’s 
expression using microarray data from year 20081,2 against IML/IMH status (adjusted for 
age and sex) and significance for each regression coefficient was obtained via 
permutation tests18. PYR genes differentially expressed between IML and IMH included 
(the enzyme that a given gene encodes for is shown in parenthesis): POLR3E (2.7.7.6), 
POLD3 (2.7.7.7), NUDT2 (3.6.1.17), NME6 (2.7.4.6), ENTPD8 (3.6.1.5), CMPK2 
(2.7.4.14), UMPK (2.7.4.22), ITPA (3.6.1.19), NT5E (3.1.3.5), UPRT (2.4.2.9), DCK 
(2.7.1.74), DCTD (3.5.4.12), TK1 (2.7.1.21), CDA (3.5.4.5), TYMP (2.4.2.4) and PNP 
(2.4.2.1) (a, red stars). PUR genes differentially expressed between IML and IMH 
included (the enzyme that a given gene encodes for is shown in parenthesis): ADCY1 
(4.6.1.1), GUCY1A2 (4.6.1.2), PDE10A (PDE), PRUNE (3.6.1.11), POLD3 (2.7.7.7), 
RRM2B (1.17.4.1), CANT1 (3.6.1.6), APRT (2.4.2.7), NUDT16 (3.6.1.64), APRT 
(2.4.2.7) and PDE7B (3.1.4.53) (b, red stars). Genes differentially expressed were 
subjected to enrichment analysis by hypergeometric test. A significant enrichment is 
observed for both PYR and PUR pathways (P < 0.05 by hypergeometric test).  
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Figure S5. Dose-response experiments show dose-dependent increase in IL-1β with 
increasing concentrations of adenosine and adenine in human primary monocytes. 
Compounds were tested at increasing concentrations (0, 3, 10, 30, 100 µM) and 
displayed significant dose-responses (P < 0.01) in the concentration of cytokine found 
in the supernatants of treated monocytes from 4 healthy donors. To assess significance 
for the dose-response experiments we used Short Time-series Expression Miner 
(STEM)19 which uses clustering methods for time-series or dose-response experiments 
and allows for the identification of significant dose-dependent profiles. P <0.01 was 
considered statistically significant. 
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Figure S6. Metabolites in IMH individuals activate the NLRC4 inflammasome (a) 
Differentiated THP-1 cells were treated with compounds as indicated (1mM N4A; 300 
µM adenine) for 6 hr or ATP 5 mM 30 min, cells were lysed and cell lysates were then 
immunoblotted with various antibodies to monitor expression of NLRs, Casp1, and 
proIL-1β. (b) Differentiated THP-1 cells were treated with compounds as before and cell 
lysates were submitted to immunoprecipitation with Biotinyl-YVAD-fmk peptide. 
Complexes were then recovered by using Streptavidin-sepharose beads and 
immunoblotted with anti-Caspase-1 p10 antibody.  
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Figure S7. Cell subset frequencies estimates from whole blood in young and older 
adults, and in IMH versus IML older subjects. The frequencies of 22 different cell 
subsets were estimated based on whole-blood gene expression profiles in young and older 
adults (N = 86) (top panel) and in IMH and IML older adults (N = 22) (bottom panel). 
Significant differences in the estimated frequencies of circulating mast cells, as well as in 
the CD4 T regulatory cell compartment are observed between young and older adults (P 
< 0.01).  
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Figure S8. Kidney (medulla) sections from mice treated with N4A+Adenine show 
moderate infiltration of T cells. Mice were treated with N4A (N/A) (lower panel) or 
medium alone (upper panel) and sections of the kidney medulla were obtained and 
stained for CD3+ T cells. Eight fields per kidney (medulla region) were randomly chosen 
and CD3+ cells were counted. Kidneys from 6 mice were quantified per group. P 
corresponds to one-tail student t-test.  
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Figure S9. Adenosine derivatives are increased in IMH compared to IML subjects. 
The levels of adenosine and adenosine derivatives including N1-methyladenosine, N6-
methyladenosine, N6-carbamoylthreonyladenosine, N6-succinyladenosine and 5-
methylthioadenosine were compared between IMH (N = 11) and IML (N = 9) by multiple 
regression (adjusted for age and sex). Significant differences were found for N6-
methyladenosine, N6-carbamoylthreonyladenosine 5-methylthioadenosine (P < 0.05). 
The bars represent the magnitude of regression coefficient from the fits.  
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