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This SI Appendix consists of three sections. Section 1 involves a brief model deriva-
tions and the low-order meridional truncation. The parameter values in the coupled
model and the mathematical formulae of the anomalous Walker circulation are also in-
cluded in this section. Section 2 contains the details of determining the transition rates
in the three-state Markov jump process according to the observations. Section 3 includes
sensitivity test.

1 Model derivations, meridional truncation and pa-

rameter choices

The coupled model considered in this article is derived from a more complicated model
that consists of the skeleton model in the atmosphere [1, 2] coupled to a shallow water
ocean in the long-wave approximation and a sea surface temperature (SST) budget [3].
Then an asymptotic expansion with respect to a small factor ε that is the ratio of in-
traseasonal time scale over the interannual one is applied and the result is Eq. (1)-(4) in
the article. The details of model derivation are contained in the SI Appendix of [4]. For
the convenience of statement, we summarize the coupled model below.
1. Atmosphere model:

−yv − ∂xθ = 0,
yu− ∂yθ = 0,
−(∂xu+ ∂yv) = Eq/(1− Q̄).

(1.1)

2. Ocean model:
∂τU − c1Y V + c1∂xH = c1τx,
Y U + ∂YH = 0,
∂τH + c1(∂xU + ∂Y V ) = 0.

(1.2)

3. SST model:
∂τT + µ∂x

(
UT
)

= −c1ζEq + c1ηH. (1.3)
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1.1 Meridional truncation

In order to compute the solutions of the coupled model, we consider the model in its
simplest form, which is truncated meridionally to the first parabolic cylinder functions
[6].

Different parabolic cylinder functions are utilized in the ocean and atmosphere due
to the difference in their deformation radii. The first atmospheric parabolic cylinder
function reads φ0(y) = (π)−1/4 exp(−y2/2), and the third one that will be utilized as
the reconstruction of solutions reads φ2 = (4π)−1/4(2y2 − 1) exp(−y2/2). The oceanic
parabolic cylinder functions read ψm(Y ), which are identical to the expressions of the
atmospheric ones except depending on the Y axis.

In the atmosphere we assume a truncation of moisture, wave activity and external
sources to the first parabolic cylinder function φ0. This is known to excite only the Kelvin
and first Rossby atmospheric equatorial waves, of amplitude KA and RA [1, 2]. In the
ocean, we assume a truncation of zonal wind stress forcing to ψ0, τx = τxψ0. This is known
to excite only the the Kelvin and first Rossby atmospheric oceanic waves, of amplitude
KO and RO. Similarly, for the SST model we assume a truncation ψ0, T = Tψ0. The
ENSO model truncated meridionally reads:
1. Atmosphere model:

∂xKA = χA(Eq − 〈Eq〉)(2− 2Q̄)−1,
−∂xRA/3 = χA(Eq − 〈Eq〉)(3− 3Q̄)−1,

(1.4)

2. Ocean model:
∂τKO + c1∂xKO = χOc1τx/2,
∂τRO − (c1/3)∂xRO = −χOc1τx/3,

(1.5)

3. SST model:
∂τT + µ∂x

(
(KO −RO)T

)
= −c1ζEq + c1ηH, (1.6)

where χA and χO are the projection coefficients from ocean to atmosphere and from
atmosphere to ocean, respectively, due to the different extents in their meridional bases.
The latent heating is linearized with Eq = αqT in the Pacific band and zero outside. Due
to the absence of dissipation in the atmosphere, the solvability condition requires a zero
equatorial zonal mean of latent heating forcing 〈Eq〉 [7, 8]. Note that when meridional
truncation is implemented, a projection coefficient χ ≈ 0.65 appears in front of the
nonlinear term [2], which here is absorbed into the nonlinear advection coefficient µ for
the notation simplicity and the parameter µ in the Table below has already taken into
account this projection coefficient.

Now instead of solving the coupled system (1.1)–(1.3), we solve the system (1.4)–(1.6).
Periodic boundary conditions are adopted for the atmosphere model (1.4). Reflection
boundary conditions are adopted for the ocean model (1.5),

KO(0, t) = rWRO(0, t), RO(LO, t) = rEKO(LO, t), (1.7)

where rW = 0.5 representing partial loss of energy in the west Pacific boundary across
Indonesian and Philippine and rE = 0.5 representing partial loss of energy due to the
north-south propagation of the coast Kelvin waves along the eastern Pacific boundary.
Note that rE here is different from the one taken in [4] (rE = 1), where a perfect reflection
is assumed. For the SST model, no normal derivative at the boundary of T is adopted,
i.e. dT/dx = 0.
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To prevent nonphysical boundary layers in the finite difference method, the coupled
model is solved through an upwind scheme, where some details of discretization is included
in the SI Appendix of [4, 5]. The total grid points in the ocean and in the atmosphere are
NO = 56 and NA = 128, respectively, which are doubled compared with that in [4] for the
purpose of resolving some small scale interactions due to the nonlinearity. The time step
is ∆t = 4.25 hours. The ratio ∆t/∆x is approximately 0.115 under the nondimensional
values.

The physical variables can be easily reconstructed in the following way.

u = (KA −RA)φ0 + (RA/
√

2)φ2,

θ = −(KA +RA)φ0 − (RA/
√

2)φ2,

v = (4∂xRA − H̄A− Sθ)(3
√

2)−1φ1,

U = (KO −RO)ψ0 + (RO/
√

2)ψ2,

H = (KO +RO)ψ0 + (RO/
√

2)ψ2.

(1.8)

See [2, 4, 5] for more details. The variables in (1.8) are utilized in showing the Hovmoller
diagrams in Figure 4 and 5 of the main article.

1.2 Choices of parameters values

Two tables are included below. Table 1 summarizes the variables in the coupled model and
lists the associated units and the typical unit values. Table 2 shows the nondimensional
values of the parameters that are utilized in the meridional truncated model (1.4)–(1.6).

Variable unit unit value
x zonal axis [y]/δ 15000km

y meridional axis atmosphere
√
cA/β 1500km

Y meridional axis ocean
√
cO/β 330km

t time axis intraseasonal 1/δ
√
cAβ 3.3 days

τ time axis interannual [t]/ε 33 days
u zonal wind speed anomalies δcA 5ms−1

v meridional wind speed anomalies δ[u] 0.5ms−1

θ potential temperature anomalies 15δ 1.5K
q low-level moisture anomalies [θ] 1.5K

a envelope of synoptic convective activity 1
Ha convective heating/drying [θ]/[t] 0.45K.day−1

Eq latent heating anomalies [θ]/[t] 0.45K.day−1

T sea surface temperature anomalies [θ] 1.5K
U zonal current speed anomalies cOδO 0.25ms−1

V zonal current speed anomalies δ
√
c[U ] 0.56 cms−1

H thermocline depth anomalies HOδO 20.8m

τx zonal wind stress anomalies δ
√
β/cAHOρOc

2
OδO 0.00879N.m−2

τy meridional wind stress anomalies [τx] 0.00879N.m−2

Table 1: Definitions of model variables and units in the meridional truncated model.

3



Parameter description Nondimensional values
c ratio of ocean and atmosphere phase speed 0.05
ε Froude number 0.1
c1 ratio of c/ε 0.5
χA Meridional projection coefficient from ocean to atmosphere 0.32
χO Meridional projection coefficient from atmosphere to ocean 1.30
LA Equatorial belt length 8/3
LO Equatorial Pacific length 1.16
γ wind stress coefficient 6.529
rW Western boundary reflection coefficient in ocean 0.5
rE Eastern boundary reflection coefficient in ocean 0.5
ζ Latent heating exchange coefficient 8.5
αq Latent heating factor 0.3782
Q̄ mean vertical moisture gradient 0.9
µ nonlinear zonal advection coefficient 0.08
dp dissipation coefficient in the wind burst model 3.4

Table 2: Nondimensional values of the parameters.

1.3 Anomalous Walker circulation

In the atmospheric model (see [1] for the original version of the skeleton model), only
the first baroclinic mode is included in the vertical direction, which has a profile of
cos(z) function. Also recall that the coupled model is projected to the leading parabolic
cylinder function in the meridional direction, which has a Gaussian profile that centers
at the equator. Thus, the meridional derivative at the equator is ∂yφ0(y) = 0 and the
mass conservation equation reduces to

ũx(x, z) + w̃z(x, z) = 0, (1.9)

where ũ(x, z) and w̃(x, z) are the zonal and vertical velocities, respectively, which are
functions of both x and z. Recall that the zonal velocity can be written as [1]

ũ(x, z) = u(x) cos(z). (1.10)

To satisfy the mass conservation condition (1.9), the vertical velocity is given by

w̃(x, z) = w(x) cos(z) = −ux(x) sin(z), (1.11)

where w(x) = −ux(x). In the dimensional form (variables with notation ·D ),

wD(x) = − [Hv]

[L]
uDx (x), (1.12)

where [Hv] = 16/πkm is the vertical length scale and [L] = 15000km is the horizonal

length scale with nondimensional range x ∈ [0, 1.17], z ∈ [0, π]. The pair
(
ũ(x, z), w̃(x, z)

)
forms the anomalous Walker circulation above the equatorial Pacific ocean as shown in
Figure 4 of the main article.
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2 Details of the transition rates in the three-state

Markov jump process

Recall the governing equation of the stochastic wind burst amplitude ap,

dap
dτ

= −dp(ap−âp(TW )) + σp(TW )Ẇ (τ), (2.1)

As discussed in the main article, a three-state Markov jump process is adopted for the
parameters in (2.1),

State 2: σp2 = 2.6, dp2 = 3.4, âp2 = −0.25, (2.2)

State 1: σp1 = 0.8, dp1 = 3.4, âp1 = −0.25, (2.3)

State 0: σp0 = 0.3, dp0 = 3.4, âp0 = 0, (2.4)

where State 2 corresponds to the traditional El Nino and State 1 to the CP El Nino
while State 0 stands for quiescent phases. We assume all the three states can switch
between each other. The detailed forms of the transition rates are shown below, which
are functions of TW , the averaged SST over the western Pacific. These transition rates
are determined in accordance with the observational facts [13] as will be discussed below.

• The transition rates from State 2 to State 1 and from State 2 to State 0 are given
by respectively

ν21 =
1

10
· 1− tanh(2TW )

4
, (2.5)

ν20 =
9

10
· 1− tanh(2TW )

4
. (2.6)

Starting from State 2, the probability of switching to State 0 is much higher than
that to State 1. This comes from the fact that a traditional El Niño is usually
followed by a La Niña rather than a CP El Niño (e.g., year 1963, 1965, 1972, 1982
and 1998). Typically, the La Niña event has a weaker amplitude and a longer
duration compared with the preceding El Niño. This actually corresponds to a
discharge phase of the ENSO cycle with no external wind bursts (State 0).

• The transition rates from State 1 to State 0 and from State 1 to State 2 are given
by respectively

ν10 =
1− tanh(2TW )

12
, (2.7)

ν12 =
1 + tanh(2TW )

40
, (2.8)

Although the denominator of ν10 is smaller than that of ν12, quite a few CP El
Niño events are associated with a slight positive TW in the model, which means the
transition rate ν12 is not necessarily smaller than ν10. In fact, with the transition
rates given by (2.7)–(2.8), the results show in the main article that more events
are transited from state 1 to 2 than from state 1 to 0. This is consistent with the
observations (e.g., year 1981 and 1995), implying that the CP El Niño is more likely
to be followed by the classical El Niño than the quiescent phase.
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• The transition rates from State 0 to State 1 and State 2 are given by

ν01 =
2

3
· 1 + tanh(2TW )

7
, (2.9)

ν02 =
1

3
· 1 + tanh(2TW )

7
. (2.10)

Again, the transition rates to State 1 and 2 are different. This is due to the fact
that after a quiescent period or discharge La Niña phase, more events are prone
to becomes CP El Niño as a intermediate transition instead of directly forming
another traditional El Niño (e.g., year 1969, 1977, 1990 and 2002).

Note that in (2.5)–(2.10), the transition rate νij from a more active state to a less active
state (with i > j) is always proportional to 1− tanh(2TW ) while that from a less active
state to a more active state (with i < j) is always proportional to 1 + tanh(2TW ). These
are consistent with the fact stated in the main article that a transition from a less active
to a more active state is more likely when TW ≥ 0 and vice versa.

3 Sensitivity test

With the optimal parameters of the transition rates shown in (2.5)–(2.10), the variance
of the three T indices almost perfectly match those of the Nino indices and the non-
Gaussian statistical characteristics in different Nino regions are recovered. Since most of
the general circulation models tend to be sensitive to parameter perturbations [14, 15, 16],
it is important to test the robustness of the coupled model studied in the main article. To
this end, some perturbations are added to the transition rates and the statistics with the
suboptimal rates are shown in the following. In each of the panel below, the variable with
asterisk stands for the optimal value given by (2.5)–(2.10). The maximum perturbation
of each transition rate is ±25%.

In Figure S1–S3, the variance, skewness and kurtosis of T-3, T-3.4 and T-4 are shown
as functions of perturbed transition rates. It is clear that all these statistics are fairly
robust with respect to the parameter perturbations, where the variance of different T
indices remain nearly the same as those in nature and the non-Gaussian features are still
significant. The only parameter that is slightly sensitive is the transition rate from State
1 to State 2, i.e., ν12. In fact, an underestimated ν12 modifies not only the frequency of
both the CP and traditional El Niño but also the development of the nonlinear advective
mode [5], which affect the PDFs in different Nino regions.

Other sensitivity tests with respect to the parameter perturbations in the coupled
ocean-atmosphere were shown in the previous study [4]. The results there also indicate
the robustness of the coupled model.
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Figure S1: Sensitivity test. The variance of the three T indices as functions of suboptimal
transition rates, where the variable with asterisk stands for the optimal value in (2.5)–
(2.10).
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Figure S2: Sensitivity test. The skewness of the three T indices as functions of suboptimal
transition rates, where the variable with asterisk stands for the optimal value in (2.5)–
(2.10).
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Figure S3: Sensitivity test. The kurtosis of the three T indices as functions of suboptimal
transition rates, where the variable with asterisk stands for the optimal value in (2.5)–
(2.10).
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