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S.I. METHODS

The methods closely follow our earlier study [1]. For completeness these together with

key changes are presented here.

The simulations were performed at a temperature of 298.15 K and a pressure of 1 bar

using, respectively, a Langevin thermostat and a Langevin barostat [2]. The decay constant

of the thermostat was 1 ps−1. The barostat piston period was 200 fs and the decay time was

100 fs. The SHAKE algorithm [3] was used to constrain the geometry of water molecules.

The equations of motion were propagated using the Verlet algorithm with a time step of

2.0 fs. Lennard-Jones interactions were terminated at 10.43 Å by smoothly switching to

zero starting at 9.43 Å. Electrostatic interactions were treated with the particle mesh Ewald

method with a grid spacing of 0.5 Å.

For analyzing helix-coil transition, we studied the hydration of an isolated helix, the

extended coil state C0, and the coil states {C1, . . . , C9}, obtained from the forced-unfolding

in vacuum (Sec. S.II). For the analyzing the pairing of helices, we considered helix-pairs with

helix axes parallel to each other. Helix dipoles with parallel and antiparallel orientations

were considered. For calculating the hydration contribution to the potential of mean force

Wsolv(r), where r is the separation between the helix axes, the helix-pair was treated as one

unit (molecule). Thus

Wsolv(r) = µex(r)− 2µex (S.1)

where µex(r) is the hydration free energy of the helix-pair separated by a distance r and µex

is the hydration free energy of the isolated helix.

A. Chemistry and packing contributions

We apply atom-centered fields to carve out a molecular cavity in the liquid (Fig. 1, main

text). We use the Tcl-interface to NAMD [4] to impose forces on the solvent due to the

field. The functional form of the field was as before (Eq. 4b, Ref. 5):

φλ(r) = 4a

[(
b

r − λ+ 6
√

2b

)12

−
(

b

r − λ+ 6
√

2b

)6 ]
+ a , (S.2)

where a = 0.155 kcal/mol and b = 3.1655 Å are positive constants and (r < λ), and

φλ(r) = 0 for r ≥ λ.
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To build the field to its eventual range of λ = 5 Å, we progressively apply the field, and

for every unit Å increment in the range, we compute the work done in applying the field

using a five-point Gauss-Legendre quadrature [6]. Five Gauss-points[
0,±(1/3)

√
5− 2

√
10/7,±(1/3)

√
5 + 2

√
10/7

]
are chosen for each unit Å. At each Gauss-

point, the system was simulated for 1 ns and the (force) data from the last 0.75 ns used for

analysis. (Excluding more data did not change the numerical value significantly, indicating

good convergence.) Error analysis and error propagation was performed as before [5]: the

standard error of the mean force was obtained using the Friedberg-Cameron algorithm [7, 8]

and in adding multiple quantities, the errors were propagated using standard variance-

addition rules.

The starting configuration for each λ point is obtained from the ending configuration of

the previous point in the chain of states. For the packing contributions, a total of 25 Gauss

points span λ ∈ [0, 5]. For the chemistry contribution, since solvent never enters λ < 2.5 Å,

we simulate λ ∈ [2, 5] for a total of 15 Gauss points.

For the helix and C0 states alone, we repeated the above procedure for chemistry and

packing calculations four times, ensuring that the solvent coordinates are different each

time. The average and associated statistical uncertainties of this procedure are indicated in

Table 1 (main text).

B. Long-range contribution

For λ = 5 Å, the conditional solute-solvent binding energy distribution P (ε|φλ) is

Gaussian, as is the solute-solvent binding energy distribution P (0)(ε|φλ) with solute and

solvent thermally uncoupled. For this condition, it is well-known that µex[P (ε|φλ)] and

µex[P (0)(ε|φλ)] are equal [9], where

µex[P (ε|φλ)] = 〈ε〉+
β

2
σ2

µex[P (0)(ε|φλ)] = 〈ε〉0 −
β

2
σ2 . (S.3)

In the above equations, 〈ε〉 and 〈ε〉0 are the mean binding energies in the coupled and

uncoupled ensembles, respectively, and σ2 is the variance of the distribution, the same for

both P (ε|φλ) and P (0)(ε|φλ). Since calculations with P (0)(ε|φλ) are typically more robust

[10] numerically, the long-range contributions were obtained using the particle insertion
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procedure. But we note that as before [1] test calculations with P (ε|φλ) leads to the same

long-range contribution as the insertion procedure within statistical uncertainties of the

either calculation.

All calculations of long-range interactions were preceded by a 1 ns equilibration of the

appropriate cavity. The starting configuration for the λ = 5 Å simulation was obtained

from the endpoint of the Gauss-Legendre procedure for the packing calculation. For helix

and C0 states, we performed test particle insertion in 40,000 frames collected over 40 ns of

simulation. For the remaining coil conformations {C1, . . . , C9}, we performed insertions in

2,000 frames collected over 2 ns. For the helix-pairs, test-particle insertions were performed

in 10,000 frames collected from 10 ns of production.

Calculation of ε for a given solvent configuration is as follows. We calculated the potential

energy, Uw, of the solvent configuration alone. (This was standardly performed in NAMD

by running the code for zero time steps of dynamics.) Likewise, the potential energy of

the solute plus solvent configuration, Usw, and the potential energy of the solute, Us, was

obtained. Then ε = Usw − Uw − Us. The treatment of long-range interactions was exactly

as that involved during dynamics. To characterize P (ε|φλ), the PairInteraction module

in NAMD provided an easier way to calculate the binding energies.

Electrostatic self-interaction corrections were obtained following Hummer et al. [11, 12].

These turn out to be important for the helix state and for the helix pairs. The correction

for the helix was about −0.5 kcal/mole and for the coil it was an order of magnitude lower.

For the helix-pair with parallel arrangement of helix-dipoles, the self-interaction correction

reached a minimum value of −2 kcal/mol for r = 7.5 Å. For the antiparallel helices, the

minimum value of the correction is −0.3 kcal/mol occurring at r = 14.5 Å.

S.II. SAMPLING UNFOLDED STATES

We used the adaptive-bias force (ABF) approach [16, 17] to unfold the helix in vacuum and

this calculation additional gave the free energy of unfolding in vacuum. We closely followed

the ABF documentation (within NAMD) in performing the simulation. The distance, ξ,

between the terminal carbon atoms — methyl-carbon of the acetyl group and the methyl-

carbon of the n-methyl-amide group — defined the reaction coordinate. ξ was varied between

16 Å (helix) and 36 Å (extended coil).
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Calculations were run for 100 ns, of which we used the last 50 ns for analysis. The

temperature was maintained at 298 K using a Langevin thermostat with a friction coefficient

of 10 ps−1. The equations of motion were integrated using a time-step of 1 fs. The biasing

forces were binned in windows of width 0.1 Å along ξ. The biasing force (in each bin) is

adaptively updated such that at convergence its effect is to cancel the force due to underlying

free energy surface (the quantity of interest). From the converged average-force-vs-ξ data,

we then obtained the potential of mean force, W (ξ), by integration (Fig. S1). To assess the

role of forcefield, we performed corresponding simulations with the recently re-optimized c36

[18] variant of the CHARMM forcefield.
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FIG. S1. The sensitivity of the potential of mean force for unfolding a deca-alanine helix in vacuum

to slightly different variants of the CHARMM forcefield. The C0 (ξ = 36.8 Å, ∆µex ≈ −7 kcal/mol)

and C7 (ξ = 34.0 Å, ∆µex ≈ −14 kcal/mol) coil states have roughly the same W (ξ). Notice that

the c36 forcefield improves the balance towards the coil state.

S.III. ENTHALPIC AND ENTROPIC CONTRIBUTIONS TO HYDRATION

From the Euler relation for the pure solvent and the solvent with one added solute, we

can show that the excess entropy of hydration is

Tsex = Eex − kT 2αp + p(〈V ex〉+ kTκT )− µex

≈ Esw + Ereorg − µex (S.4)
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where κT is the isothermal compressibility and αp is the thermal expansivity of the solvent.

The average excess energy of hydration, Eex, is the sum the average solute-water interaction

energy Esw and Ereorg, the reorganization energy. The latter is given by the change in the

average potential energy of the solvent in the solute-solvent system minus that in the neat

solvent system. (Note that solute-solvent interactions are not counted as part of Ereorg.)

Ignoring pressure-volume effects, the excess enthalpy of hydration hex = Eex. The solute-

solvent interaction contribution Esw can be further decomposed into backbone-solvent, Ebb,

and sidechain-solvent, Esc, contributions. These contributions were straightforwardly ob-

tained using the PairInteraction module within NAMD. The coupled peptide solvent

system was simulated for an additional 3 ns and frames were archived every 500 fs for

interaction-energy analysis.

For calculating Ereorg we adapted the hydration-shell-wise procedure developed earlier

[19]. We define an inner-shell around the peptide as the union of shells of radius λ centered

on the peptide heavy atoms. λ ≤ 5 Å, 5.0 < λ ≤ 8 Å, and 8.0 < λ ≤ 11.0 Å defined the first,

second, and third shells, respectively. Let nw be the number of water molecules in a shell

for some chosen configuration. The potential energy of the these nw waters is given by the

interaction energy between these nw waters plus half the interaction energy of these nw waters

with the rest of the fluid. We thus find the average potential energy, 〈Eshell〉, and the average

population, 〈nshell〉, for a given shell. The contribution to the average reorganization energy

from the shell is then 〈Eshell〉 − 〈nshell〉 · 〈εw〉. Errors are propagated using standard rules.

For the antiparallel configuration of helices, we find that by the third shell bulk behavior is

attained; that is, Ereorg,3 ≈ 0, where Ereorg,3 is the reorganization energy contribution from

the third (3rd) shell. For the parallel configuration, Ereorg,3 ≈ 5± 2 kcal/mol and hence this

was also included in the calculation. Given the magnitudes and statistical uncertainties, we

expect water beyond the third shell will follow bulk behavior.
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