1 <u>SUPPLEMENTAL INFORMATION</u>

2 SUPPLEMENTAL FIGURES

3

7 14-3-3 σ followed by AEDANS fluorescence intensity (Δ F) at 488 nm (excitation at 336 nm). The

8 ΔF values are expressed as a percentage of ΔF_{max} , the difference of fluorescence at the starting 9 point and at saturation. The curve shows the mean \pm SD resulting from three independent 10 experiments.

1

Figure S2 (related to Fig. 3a,b). Structural features of the 14-3-3σ/pHSPB6 crystal structure. 2 **a.** Superposition of the C_{α} -traces of three symmetry-independent complexes found in the 3 asymmetric unit (red, green and blue respectively). The complexes were superposed by the 14-3-4 5 3 dimers. b. Crystal contacts made by one heterotetrameric complex (shown as ribbons and surface; the NTDs are omitted) with two 14-3-3 subunits coming from adjacent complexes in the 6 crystal lattice (shown as ribbons). The numbers at the interfaces of the domains show their areas, 7 as determined using PISA (Krissinel and Henrick, 2007). The ACD dimer is wedged in between 8 of three 14-3-3 molecules in the lattice, but the interface with the 14-3-3 chain within the 9 heterotetramer is the largest (400\AA^2) . This packing arrangement remains stable even in the absence 10 of the N-terminal patching, as the heterocomplex of the slightly N-terminally truncated 11 pHSPB6(7-153) produces the same type of crystal lattice. The triple mutation ¹⁵⁹AAA¹⁶¹ (Clu1) 12 used to improve crystallization of the 14-3-3 σ /pHSPB6 complex is highlighted in red on one (pink) 13 14-3-3 subunit. This mutation is situated in a highly exposed C-terminal end of helix $\alpha 6$. In the 14 crystals, the mutated residues come in contact with the loop connecting strands $\beta 5$ and $\beta 7$ of the 15 ACD (coloured marine blue). In addition, blue arrow marks the position of the triple mutation 16 ⁷⁵AAA⁷⁷ (Clu3) that was used to crystallize the complex with the pHSPB6(13-20) peptide. This 17 mutation resides in a highly exposed loop connecting the helices $\alpha 3$ and $\alpha 4$ of 14-3-3. c. A crystal 18 lattice contact made by two 14-3-3 σ /pHSPB6 heterotetramers shown as molecular surfaces. The 19 20 N-terminus of type II (magenta) patches an ACD of the other heterotetramer. 21

- ---
- 22

3 Figure S3 (related to Fig. 4a). The effect of 14-3-3γ on the limited trypsinolysis of HSPB6.

4 Shown is the time course (min) of digestion of pHSPB6 alone (a) or the $14-3-3\gamma$ /pHSPB6 complex

5 (b) at pHSPB6/trypsin weight ratio 1:1500. Although no trypsin was added to the control samples

6 labelled '0', some minor cleavage of pHSPB6 in these samples was still observed, possibly due to

7 cross-contamination. The MS-based identification of the bands as HSPB6 cleavage products at

8 residues R13, R14, R27, R32 and R56 is given to the right. The cleavage of 14-3-3 γ alone in a

9 parallel control experiment was not significant, without any cleavage products overlapping with

10 those of HSPB6.

2

3 Figure S4 (related to Fig. 4b,c). Modeling of the 14-3-3 σ /pHSPB6 structure using solution

SAXS data. a. Dimensionless Kratky plot of the data indicating rigidity of the complex in solution. 4 b. Superposition of ten independent Coral models built on the basis of the crystallographic 5

6 structure (shown as ribbons and transparent surface) by addition of the missing NTD regions

7 (shown as space-filling models in violet). c. Comparison of the calculated scattering curves from

8 the ten models (lines, rainbow colors) with the experimental SAXS data (circles).

1

2 Figure S5 (related to Fig. 4b,c). Alternative 'most compact' symmetrical model of the 14-3-

 $3 \sigma/pHSPB6$ complex. a. The model constructed by a rigid-body docking of the ACD dimer into

4 the cavity formed by the 14-3-3 dimer (two orthogonal views). **b.** The same model after Coral-

based addition of the missing parts (white spheres). c. Fit of the calculated scattering from the
latter model to the experimental SAXS data.

7

1 SUPPLEMENTAL TABLES

2

3 Table S1 (related to Table 1). Crystallization conditions

Complex	14-3-3σ Clu3 (1-231) / pHSPB6 (13-20) peptide	14-3-3σ WT (1-231) / pHSPB6 (11-23) peptide	14-3-3σ Clu1 (1-231) / pHSPB6 (1-149)	14-3-3σ Clu1 (1-231) / pHSPB6 (7-153)	HSPB6 ACD / N-peptide
Precipitant solution	0.1 M Bis-Tris propane (pH 6.5), 0.2 M NaNO ₃ and 20% PEG 3350	0.1 M HEPES (pH 7.5), 0.2 M MgCl ₂ and 30% PEG 400	0.1 M HEPES (pH 7.5), 0.2 M LiCl, 17% PEG 6000 and 2 mM DTT	0.1 M HEPES (pH 7.5), 20% PEG 8000 and 2 mM DTT	0.1M Tris-HCl (pH6.5),1.5M ammonium sulfate, 0.1M NaCl
Protein conc. (mg/ml)	11.5	11.5	23	20	15
Temperature (°C)	20	4	4	20	20
Growth time (days)	2-5	5	5	10	14

4

5

- c
- 6
- 7 Table S2 (related to Fig. 5).

8 Parameters of the three 'druggable' pockets at the 14-3-3σ/pHSPB6 interface

Pocket	Volume	Hydrophobicity	Residues	Polar	Aromatic	Druggability
1	903.9 Å ³	-0.24	17	0.41	0.18	0.78± 0.07
2	344.4 Å ³	-0.99	9	0.67	0.11	0.21 ±0.01
3	1990.3 Å ³	-0.55	27	0.52	0.15	0.65 ±0.04

9 Parameters and the druggability score of the three pockets as output by the PockDrug server

10 (http://pockdrug.rpbs.univ-paris-diderot.fr/cgi-bin/index.py?page=Druggability)

11

12

13