
Supplementary Material1

1 Model selection for vital rate functions2

1.1 Survival function: s(x)3

In the main text, we parameterized the survival function s(x) using only individuals at 20 ◦C.4

As discussed in the main text, we chose to do this because individuals at this temperature5

were the only frogs that experienced mortality and we have substantial alternative evidence6

that the load-survival relationship between R. muscosa and Bd is not strongly temperature7

dependent. An alternative way that we could have parameterized the model was using all of8

the temperature data (4, 12, and 20 ◦C), but without including an effect of temperature. Given9

the link function logit[s(x)] = b0 + b1x, the parameters change from b0,only 20 ◦C = 11.597310

(SE: 4.74) to b0,all temperatures = 11.8241 (SE; 4.16) and b1,only 20 ◦C = −0.8873 (SE: 0.45) to11

b1,all temperatures = −0.8605 (SE: 0.39) (Figure 1). Despite these seemingly small differences, our12

elasticity analysis shows that small changes in this survival function can have large effects on13

the ability of R. muscosa to persist through an epizootic.14

1.2 Growth Function: G(x′, x)15

We explored a variety of different models for the growth functions G(x′, x) (Table 1, Figure 2).16

We did identify a more complex model than the model described in the manuscript that included17

a quadratic term for log zoospore size and an interaction between temperature and log zoospore18

load (Table 1; Model 6). We chose to use the linear model (Model 2) because 1) the quadratic19

model was highly specific for the data used to fit the model and did not give a generalizable Bd20

growth curve (e.g. exponential growth) and 2) for a given temperature the quadratic model did21

not allow for realistic extrapolation beyond the range of the data used to fit the model because22

for small log-zoospore loads the function predicts that increasing the log zoospore load at time23

t decreases log zoospore load at time t + 1 (i.e. when you are on the decreasing arm of the24

quadratic function, Figure 4). This is not a biologically reasonable pattern.25

Despite these drawbacks, we ran the IPM analysis described in the paper using this quadratic26

growth model. We accounted for the zero derivative of the quadratic function by defining the27

growth function as the following piecewise function28
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G(x′, x) if
dµ(x, T )

dx
> 0 (1)

G(x′, x0) if
dµ(x, T )

dx
≤ 0 (2)

where x0 is the log zoospore load at which the derivate of µ(x, T ) = b0 + b1x+ b2x
2 + b3T + b4xT29

is equal to 0. Analyzing the IPM with this growth function in place of the growth function30

used in the main text provided qualitatively similar results: population growth rate decreased31

with increasing temperature and the population growth rate was most sensitive to proportional32

changes in the parameters in the growth function G(x′, x) and the survival function s(x). The33

major difference between the two growth functions is that the IPM model with the quadratic34

growth function predicted slower Bd -induced population declines than the linear model.35

1.3 Loss of infection function: l(x)36

The various models we fit for the loss of infection function l(x) are given in Table 2. Model 337

and Model 5 are the best models based on AIC. Model 5 in which temperature is a factor has a38

marginally lower AIC than Model 3 in which temperature is continuous. A likelihood ratio test39

shows that Model 5 does not provide an overwhelmingly better fit than Model 3 (χ2
df=1 = 3.676,40

p = 0.055) so we used the Model 3 (the linear model) because it allowed us to interpolate over41

all temperatures between 4 and 20 ◦C.42

When fitting Model 3, there were three highly influential data points in which individuals43

lost infections after having a log zoospore of 8.3, 10.36, and 8.1. Individuals with these large44

losses had similar pre-loss loads at the next swabbing event (Figure 9), leading us to believe that45

these large losses were likely due to experimental error. Therefore, we excluded these points46

when fitting the model.47

1.4 Initial infection burden function: G0(x
′)48

The various models we fit for the initial function burden function are given in Table 3. The49

normalized residuals of the full model were not significantly different than a normal distribution50

(Shapiro-Wilk test for normality: p = 0.827), thereby justifying the assumption of normality for51

the initial infection distribution. Similar to the loss of infection function, there were three outly-52

ing log-zoospore initial loads of 7.15, 8.26, and 11.81, which were the same spurious transitions53

observed in the loss of infection function, but in this case the points were an unrealistic gain in54
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zoospores after the unrealistic loss of zoospores (Figure 9). These points were again excluded55

from the analysis. After this exclusion, there was only one transition from 0 to infected at 2056

◦C. Diagnostic plots for the model used in the main text (given in bold in Table 3) are given in57

Figure 3.58

1.5 Density-independent transmission function: φ(T )59

We explored three different density-independent transmission models. In the first model, the60

probability of infection was independent of temperature (Model 1). In the second model, tem-61

perature was a linear predictor of the probability of infection (Model 2). In the third model,62

temperature was a factor predicting the probability of infection. The model with a linear effect63

of temperature was the best model based on AIC criteria (Table 4).64

2 The effect of eviction on the Bd-Rana muscosa Integral65

Projection Model66

Given the parameterized density-independent IPM described in the main text, we examined the67

effects of eviction (loss of individuals from the model because their predicted future loads are68

outside the model range) using the examples and code given in Williams et al. (2012). In Table69

5, we show the maximum size-dependent eviction value ε(x) as given by equation 2 in (Williams70

et al. 2012) for the host-parasite IPM model at four different temperatures. These values are71

non-zero, indicating that eviction is occurring in our parameterized IPM with a lower bound of -572

and an upper bound of 18. To assess the effect of eviction on the IPM predictions, we also show73

the value dλ which gives the effect of eviction on the predicted population growth rate (Williams74

et al. 2012). For all temperatures between 4 and 20 ◦C (4 temperatures shown in Table 5), dλ75

is very small indicating that despite eviction occurring in the parameterized IPM, it is having76

very little effect on the predictions of the IPM. Therefore, we felt confident in interpreting the77

IPM with the given upper and lower bounds.78

3 R0 for host-parasite Integral Projection Models79

3.1 Derivation of R0 for IPMs80

Calculating R0 for Integral Projection Models (IPM)s is challenging because IPMs can be used81

to represent the dynamics of both microparasites and macroparasites. Therefore, R0 will need82
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to be computed and understood differently depending on the which type of parasite is being83

considered and the structure of the IPM. For microparasites, R0 is defined as the average number84

of secondary infections produced by a typical infectious individual over its infective lifetime85

(Diekmann et al. 1990). For macroparasites, R0 is defined as “the number of new female parasites86

produced by an average female parasite when there are no density-dependent constraints acting87

anywhere in the life cycle of the parasite” (Tompkins et al. 2002). We adopt a microparasite88

definition of R0 for the remainder of this discussion, bearing in mind that a host-parasite IPM89

could easily be formulated such that the macroparasite definition of R0 is more appropriate.90

To define a microparasite R0 for the host-parasite IPM described in the main text (equations91

1 and 2), we start by considering density-dependent transmission such that the probability of92

becoming infected in a time step t is93

φ(I(x, t)) = 1− exp

(
β

∫ U

L

I(x, t)dx

)
(3)

We then note that the host-parasite IPM model can be analogously stated as a (S)usceptible-94

(I)nfected-(S)usceptible model with a continuous I(x) class. When analyzing the IPM model, it95

is standard practice to discretize the IPM into some number of n bins such that the IPM can96

be represented as a matrix model with a large number of classes (Coulson 2012). This could97

be thought of as re-expressing the SIS model with a continuous I class as an S-I1-I2-I3-. . . -In-98

S model with many discrete I classes. Using this discretized approach, R0 can be calculated99

using the methods described in Allen & van den Driessche (2008) and Klepac & Caswell (2011).100

Following the notation of Klepac & Caswell (2011), the partial matrix representation of the IPM101

that we use to calculate R0 is given by102

S
I

 (t+ 1) =

 0 0

M(I) N(I)


S
I

 (t) = m(I(t))S(t) + UI(t) = I(t+ 1) (4)

where the top two entries are 0 because they are not needed when calculating R0 (i.e. R0 only103

depends upon individuals entering the infected classes or individuals that are already in the104

infected classes), not because they are actually 0 in the IPM model (Oli et al. 2006; Klepac &105

Caswell 2011). I is a vector of length n that gives the various infected parasite load classes.106

m(I) is a vector of length n where each element gives the probability of transitioning from class107

S (uninfected/susceptible) to an infected class with parasite load xi where i is between 1 and n.108

We use this notation loosely as it is really the probability of transitioning to an infected class109

with a load in the interval xi ± ∆/2 where xi is the midpoint of this interval. ∆ arises from110
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using the midpoint rule to evaluate the IPM (Easterling et al. 2000). Each ith element of the111

vector m(I) is given by112

mi(I(t)) = s0φ(I(t))G0(xi)∆ (5)

where s0 represents the probability of an uninfected individual surviving and G0(xi) is the113

probability density function of transitioning from uninfected (S) to infected with a load of xi as114

defined in the main text. ∆ is needed to convert the probability density G0(xi) to a probability.115

U is a n x n matrix that specifies the transition probabilities of infected individuals among116

different load classes. The element in the ith row and the jth column of the matrix is given by117

uij = s(xj)(1− l(xj))G(xi, xj)∆ (6)

which gives the probability of an individual in the jth load class surviving (s(xj)), not losing its118

infection (1− l(xj)), and transitioning to the load class of xi in a time step (G(xi, xj)).119

To calculate R0, we then linearize I(t + 1) about a vector n∗ which we set to be a host120

population with only susceptibles (Rohani et al. 2009; Klepac & Caswell 2011), N∗ = [S∗ 0]121

where 0 is a vector of zeros of length n. We then compute the Jacobian matrix evaluated at n∗122

J =
dI(t+ 1)

dI(t)

∣∣∣∣
n∗

(7)

which allows us to compute R0 (Klepac & Caswell 2011).123

In the above case, one could compute J as follows. First compute,
dUI(t)

dI(t)

∣∣∣∣
n∗

which is simply124

U. This is just the transition matrix for the infected individuals of various load classes. Next,125

compute
dm(I(t))

dI(t)

∣∣∣∣
n∗

, which results in a column vector m of length n where each element is126

given by127

dmi(I(t))

dI(t)
= βs0S

∗G0(xi)∆ (8)

Now let M be an n by n matrix with each column being equal to m so that J = M+U. R0128

is then given by129

R0 = max eig(M(1−U)−1) (9)

where 1 is the identity matrix and M is equivalent to the “fertility” matrix described in Klepac130

& Caswell (2011). “max eig” refers to the maximum eigenvalue of this matrix.131
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A helpful approximation of this result can be derived by “collapsing” the various infected132

classes I(t) into a single infected class I(t). The model is then reduced to a simple SIS model133

with the following transition matrix (where we again include 0s where the transitions do not134

affect the calculation of R0)135

S
I

 (t+ 1) =

 0 0

s0φ(I(t)) s̄I(1− l̄)


S
I

 (t) = s0φ(I(t))S(t) + s̄I(1− l̄)I(t) = I(t+ 1) (10)

where s̄I is the survival probability for an average infected individual and l̄ is the probability of136

an average infected individual losing an infection.137

Using the sames steps as above the resulting value of R0 is138

R0 =
βs0S

∗

1− s̄I(1− l̄)
(11)

3.2 Application of R0 to Bd-R. muscosa139

Using equations 9 and 11, we computed R0 for the Bd -Rana muscosa system described in the140

main text as an illustrative example. Note that in this example, we assumed density dependent141

transmission without any probability of acquiring an infection from the environmental reservoir142

as we do in the main text. We make this simplification here because without accounting for143

the decay of the pathogen in the environment, an R0 that accounts for both transmission due144

to the environment and other infected individuals would be trivially ∞ (Rohani et al. 2009).145

An environmental reservoir could be more explicitly incorporated in the host-parasite IPM by146

including an additional state variable Z(t) which gives the total number of parasites in the147

environment at time t.148

We set the transmission coefficient β = 9.82e10−4 which was the transmission coefficient149

estimated in Rachowicz & Briggs (2007) for density-dependent transmission in Bd -Rana muscosa150

and assumed an initial susceptible population of 100 frogs (S∗ = 100). Otherwise, all values151

for the hosts-parasite IPM were as given in Table 1 the main text. To compute s̄I and l̄ in152

equation 11, we assumed a density-independent host-parasite IPM (equations 7 and 8 in the153

main text) with φ = 1−exp(−β) and calculated the stable parasite load distribution conditional154

on infection (p(x)) giving the probability density of having some parasite load x. We used this155

probability distribution to compute the expected survival and loss probability of an average156

infected individual as s̄I =
∫ U

L
s(x)p(x)dx and l̄ =

∫ U

L
l(x)p(x)dx, respectively.157
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Figure 10 shows the temperature dependence of R0 for this illustrative example parameterized158

from the Bd -R. muscosa IPM. Notice that the approximation given by equation 11 is nearly159

identical to the predictions for R0 from equation 9. At low temperatures, R0 is less than 1160

and proceeds to increase as temperature increases. At approximately 12 ◦C, R0 ¿ 1. However,161

around 17 ◦C the R0 reaches a maximum and begins to decline. This is due to the average162

probability of losing an infection l̄ quickly and non-linearly decreasing as temperature increases163

and the average probability of surviving with an infection s̄I holding relatively constant with164

temperature and then rapidly decreasing as temperature increases past 17 ◦C.165
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Table 1: Candidate models for the growth function G(x′, x). All models assumed a normal distribution for the response
variable. T is temperature, x is log zoospore size at time t, and ri represents a random effect of an individual frog. The
model with the bold AIC value is the model used in the main text.

Model Mean Component Variance Component AIC

1 µ(x, T ) = b0 + b1x+ b2T σ2 1067.8

2 µ(x, T ) = b0 + b1x+ b2T σ2(x) = ν exp(2cx) 1060.0

3 µ(x, T ) = b0 + b1x+ b2T σ2(x, T ) = ν exp(2c1x+ 2c2T ) 1060.7

4 µ(x, T )i = b0 + b1x+ b2T + ri σ2(x) = ν exp(2cx) 1061.8

5 µ(x, T ) = b0 + b1x+ b2T + b3xT σ2(x) = ν exp(2cx) 1061.0

6 µ(x, T ) = b0 + b1x+ b2T + b3xT + b4x
2 σ2(x) = ν exp(2cx) 1045.3

7 µ(x, T ) = b0 + b1x+ b2T + b3x
2 σ2(x) = ν exp(2cx) 1049.3
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Table 2: Candidate models for the loss of infection function l(x). All models assumed a binomial distribution for the
response variable. T is temperature, Ti is temperature as a factor, and x is log zoospore load at time t. The model with
the bold AIC value is the model used in the main text.

Model Mean Component AIC

1 logit(l(x)) = b0 + b1x 193.0

2 logit(l(T )) = b0 + b1T 202.1

3 logit(l(x, T )) = b0 + b1x+ b2T 180.4

4 logit(l(x, T )) = b0 + b1x+ b2T + b3xT 182.4

5 logit(l(x, T ))i = b0 + b1x+ Ti 178.7
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Table 3: Candidate models for the initial infection burden function G0(x′). All models assumed a normal distribution for
the response variable. T is temperature, Ti is temperature as a factor, and x is log zoospore load at time t. The model
with the bold AIC value is the model used in the main text.

Model Mean Component Variance Component AIC

1 µ(T ) = b0 + b1T σ2 149.2

2 µ(T )i = b0 + Ti σ2 148.5

3 µ(T ) = b0 + b1T σ2(T ) = ν exp(2cT ) 145.2
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Table 4: Candidate models for the density-independent transmission function φ(T ). All models assumed a binomial
distribution for the response variable. T is temperature and Ti is temperature as a factor. The model with the bold AIC
value is the model used in the main text.

Model Mean Component AIC

1 logit(φ) = b0 198.0

2 logit(φ(T )) = b0 + b1T 193.9

3 logit(φ(T )i) = b0 + Ti 195.8
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Table 5: Table shows the effect of eviction on the Batrachocytrium dendrobatidis-Rana muscosa Integral Projection Model
described in the main text at 4 different temperatures. ε(x) specifies the maximum value of eviction occurring in the
IPM model as given by equation 2 in Williams et al. (2012). A value of zero indicates no eviction is occurring while
a non-zero value indicates that eviction is occurring in the IPM. dλ gives the effect of this eviction on the predicted
population growth rate. In other words, how much would this growth rate change if no eviction was occurring. Despite
eviction occurring in the Bd -R. muscosa IPM, it is having little effect on the predicted population growth rate.

Bd-R. muscosa IPM ε(x) dλ

at 4 ◦C 0.32 2.26e-05

at 10 ◦C 0.26 2.74e-05

at 15 ◦C 0.22 2.52e-05

at 20 ◦C 0.18 1.45e-08
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Figure 1: Comparison of survival functions fit from two different subsets of the data. The blue line shows the survival
function used in the Integral Projection Model (IPM) analysis described in the main text and only includes data from
individuals housed at 20 ◦C. The red line shows an alternative survival function that was parameterized using the data
from all temperatures used in the experiment (4, 12, 20 ◦C). The dashed vertical line gives the 10,000 zoospore threshold
reported by Vredenburg et al. (2010), which gives an approximate threshold at which R. muscosa begins to experience
Bd -induced mortality in the field. While the survival curves from the two models are very similar, our elasticity analysis
shows that even this small difference can have large effects on whether an R. muscosa population can persist through an
epizootic at high temperatures.
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Figure 2: Diagnostic plots for the Model 2 in Table 1. The noticeable pattern in the residual plot (red line) can be
accounted for with a quadratic term in the growth function (Model 6, Table 1). As discussed in the subsection Growth
Function: G(x′, x) we chose to use this linear model for the growth function, but explored the effects of the alternative,
non-linear growth function on the IPM predictions.
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Figure 3: Diagnostic plots for the Model 3 in Table 3. The data point to the far right in the residual plot shows the
single data point for a transition of an individual from 0 to infected at a temperature of 20 ◦C.
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Figure 5: A local elasticity analysis of the population growth rate λ to the vital rate parameters used in the Bd -Rana
muscosa IPM. The x axis gives all the vital rate parameters used in the Bd -R. muscosa IPM model. Each x axis label
specifies the vital rate function to which a parameter belongs as well as the identity of that parameter. The parameters
labeled as b0,j represent the intercepts of the given vital rate functions. The parameters labeled as load and temperature
identify the load and temperature parameters of the given vital rate function. The parameters specified as variance
refer to the parameters affecting the variance of the vital rate function, where ν0,j gives the variance of the vital rate
function when the effect of other covariates on the variance is 0. The points represent the median elasticity of λ to a
given parameter based on 1000 simulations and the error bars give the first and third quartiles of the uncertainty around
this elasticity.
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Figure 6: A local elasticity analysis of the variance to mean ratio of the Bd load distribution to the vital rate parameters
used in the Bd -Rana muscosa IPM. The x axis gives all the vital rate parameters used in the Bd -R. muscosa IPM model.
Each x axis label specifies the vital rate function to which a parameter belongs as well as the identity of that parameter.
The parameters labeled as b0,j represent the intercepts of the given vital rate functions. The parameters labeled as load
and temperature identify the load and temperature parameters of the given vital rate function. The parameters specified
as variance refer to the parameters affecting the variance of the vital rate function, where ν0,j gives the variance of the
vital rate function when the effect of other covariates on the variance is 0. The points represent the median elasticity of
the variance to mean ratio to a given parameter based on 1000 simulations and the error bars give the first and third
quartiles of the uncertainty around this elasticity.
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Figure 7: Prevalence of Bd at the end of a 120 day epizootic given different transmission coefficients (β) and environmental
infection probabilities (ω) for the density-dependent transmission function. This plot shows 40 x 40 systematically chosen
pairs of β and ω for which the Bd -prevalence dynamics were examined. Each panel shows the change in Bd prevalence
in Rana muscosa populations with the different parameter combinations for a given temperature between 12 and 20 ◦C.
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Figure 8: Proportional population loss of Rana muscosa at the end of a 120 day epizootic given different transmission
coefficients (β) and environmental infection probabilities (ω) for the density-dependent transmission function. This plot
shows 40 x 40 systematically chosen pairs of β and ω for which the population dynamics were examined. Each panel
shows the change in proportional population loss for R. muscosa with the different parameter combinations for a given
temperature between 12 and 20 ◦C.
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Figure 9: Infection trajectories of individual Rana muscosa housed at 4, 12, and 20 ◦C. Each line represents the Bd load
trajectory of a particular Rana muscosa individual.
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Figure 10: Plots of R0 for a Rana muscosa-Bd IPM with density dependent transmission parameterized based on the
parameters provided in Table 1 in the main text. The only parameter that was not from Table 1 was the transmission
coefficient β which was set to be 9.82e10−4 based on Rachowicz & Briggs (2007). The number of susceptible individuals
in the initial population was set to S∗ = 100. R0 was computed using both equation 9 (the blue line, Full R0) and
equation 11 (the red line, Collapsed R0)
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