Gene Copy-Number Variations (CNVs) of Complement *C4* and *C4A* Deficiency in Genetic Risk and Pathogenesis of Juvenile Dermatomyositis

Katherine E. Lintner, ¹* Anjali Patwardhan, ¹* Lisa G. Rider, ² Rabheh Abdul-Aziz, ¹ Yee Ling Wu, ¹ Emeli Lundström, ³ Leonid Padyukov, ³ Bi Zhou, ¹ Alaaedin Alhomosh, ¹ David Newsom, ^{1†} Peter White, ¹ Karla B. Jones, ¹ Terrance P. O'Hanlon, ² Frederick W. Miller, ² Charles H. Spencer, ¹ and C. Yung Yu¹

Supplementary Materials

- Determination of gene copy-number Variation and protein phenotypes of complement C4 (Table S1)
- 2. Plasma protein concentrations of complement C4 and complement factor H in JDM and controls. (Table S2)
- 3. Global gene expression profiling of PAXgene blood RNA samples from JDM and controls (Table S3 and S4)
- 4. Figures S1 to S5

1. Determination of gene copy-number Variation and protein phenotypes of complement *C4* in JDM.

Figure S1 depicts the structural diversities of human complement *C4* genes and proteins. In the Caucasian population, one to four copies of *C4* genes are present in the class III region of the major histocompatibility (MHC). Segmental duplications of *C4* occur in modular fashion. Each module consists of *RP* (STK19) upstream of *C4*, and *CYP21* and *TNX* downstream of *C4*. Each module is either 32.7 kb or 26.3 kb in size dependent on the size of *C4* genes. Each *C4* gene consists of 41 exons. The long gene consists of an endogenous retrovirus with 6.4 kb in size in intron 9 of the long gene. The isotypic residues for C4A and C4B protein are encoded by exon 26. The Histidine-1106 residue in activated C4B catalyzes nucleophilic attack to target surfaces to form a covalent ester bond.

The RCCX modular variation can be detected by long range mapping of *Pmel* digested genomic DNA resolved by pulsed gel electrophoresis. The specific locations and dosage of the long and short *C4* genes can be demonstrated by *Taq*l restriction fragment length polymorphism. The relative dosage of *C4A* and *C4B* genes can be determined by *Psh*Al-*Pvu*II RFLP. The C4A and C4B protein polymorphisms can be resolved based on gross differences in electric charge by high voltage agarose gel electrophoresis of plasma protein samples, which are digested by neuraminidase and carboxylpeptidase B, and revealed by immunofixation using polyclonal antibodies against human C4. Several previous studies on complement C4 in dermatomyositis were based on a two-locus model for C4A and C4B (references 30-32 of the manuscript), which led to data misinterpretation.

For protein allotypes, difference in band intensities for C4A and C4B protein in a allotyping gel reflect unequal expression levels of C4A and C4B that can be a result of unequal gene copy-number, lower expression of C4 protein from long C4 genes, and a potential gene mutation. In other words, unequal expression levels of C4A and C4B are

not necessarily caused by heterozygous deficiency. It is important to interpret C4 phenotype data with reference to *C4A* and *C4B* gene copy-number.

In genomic Southern blot analyses, in *Taq*I RFLP, the 7.0 kb, 6.4 kb, 6.0 kb and 5.4 kb fragments represent RP1-C4 long, RP1-C4 short, RP2-C4 long and RP2-C4 short, respectively. The *Taq*I RFLPs described above are due to the position of the *C4* genes in the MHC and the presence of the endogenous retrovirus HERV-K(C4). *Taq*I restriction fragments do not yield data on whether a *C4* gene code for a C4A or a C4B protein. The isotypic residues for C4A and C4B are encoded by exon 26, which is physically far from the intron 9 (with or without the endogenous retrovirus). Similarly, *Hind*III-RFLP did not reflect the presence or absence of a *C4A* or *C4B* gene. The 8.5 kb *Hind*III fragment corresponding to the 5' region of a *C4* gene reflects a short *C4* gene present in the first *C4* locus. There are examples of bimodular short-short (S-S) genotypes coding for a C4A protein and a C4B protein.

Figure S2 illustrates laboratory methods used to elucidate the genotypic and phenotypic diversities of complement C4 in eight JDM patients. Briefly, specific *C4* haplotypes were determined by long-range mapping by PFGE following *Pmel* digestion (Figure S2A). One to three copies of *C4* genes in an RCCX module on each Chromosome 6 were demonstrated. The GCNs of *C4* and details on long and short *C4* genes together with their neighboring genes *RP1* and *RP2* were revealed by Southern blot analyses using *Taq*I-digested genomic DNA (Figure S2B). Haplotypes with single short *C4* gene (S), two long *C4* genes (LL), one long and one short *C4* genes (LS), and three long genes (LLL) were observable. The relative copy-number of *C4A* and *C4B* genes in each subject was determined by *Psh*AI-*Pvu*II digested genomic DNA (Figure S2C). C4A and C4B protein polymorphisms were resolved by immunofixation of EDTA-plasma (Figure S2D).

For example, Patient No. 30 (first lane) had homozygous single short (S) *C4* genes with 107 kb *Pme*l fragment, which was confirmed by the presence of the 6.4 kb

*Taq*l fragment (Figure S2B) and the presence of single *C4B* gene and absence of *C4A* gene (Figure S2C). Immunofixation of plasma revealed the presence of C4B1 protein and a deficiency of C4A protein (Figure S2D).

Interpretations of C4 genotypes and phenotypes together with data of *HLA DRB1* genotypes for eight JDM patients are shown in Table S1. Such C4 genotyping and phenotyping strategies were performed for all 41 JDM patients recruited in Columbus. For 34 JDM patients recruited by NIH, alternative genotyping methods by TaqManbased quantitative real-time PCR were applied.

Table S1. RCCX haplotypes (H1 and H2)	2), complement C4B and C4A GCN and protein
polymorphism, and HLA-DRB1 haplotype	es (H1 and H2) in eight JDM patients.

DM	RCCX	RCCX	C4B	C4A	C4B	C4A	DRB1*	DRB1*
ID#	H1	H2	GCN	GCN	protein	protein	H1	H2
30	S	S	2	0	B1,B1	Q	03	03
18	LS	S	2	1	B1,B1	АЗ	01	03
29	LL	S	2	1	B1,B1	A3	15	03
31	LS	LS	2	2	B2B2	A4,A2	04	08
03†	LS	LS	1	3	B 3 ¶	A91 [¶] A12 [¶] A3	03	07
22	LL	LL	1	3	B1	A3,A3,A3	04	15
32	LLL	LS	0	5	Q	A3,A3,A3,A3,A3	04	13
24	LL	LS	2	2	B1,B1	A3,A3	03	07

GCN, gene copy number; ⁺ DM03 was African American; H1, haplotype 1; H2, haplotype 2 [¶]B3, A91 and A12 had similar electrophoretic mobilities in an agarose typing gel.

2. Complement C4 and complement factor H plasma protein concentrations in JDM and controls.

Figure S3 shows a scatter-plot of normalized C4 protein levels plotted against GCN of total *C4* among JDM patients. The means of normalized C4 protein levels positively correlated with GCN of total *C4*. However, it is clear that there are large degrees of variations in protein levels within each GCN group. The median total C4 protein concentration in Columbus JDM patients (N=32) was 28.3 mg/dL (IQR: 22.4-35.2) and did not significantly differ from race-matched healthy controls from the same location (N=368) (30.1 mg/dL; IQR: 23.8-37.4) (Table S2). Likewise, we did not detect differences in C4A and C4B protein levels between JDM and controls.

Microarray data revealed transcript levels in peripheral blood for *CFH* were downregulated by 1.7-fold in JDM. We measured plasma protein levels of CFH in 31 JDM and 16 controls (Table S2). As expected, CFH protein levels were lower in JDM compared to controls [JDM: 55.3 mg/dL (IQR: 50.4-59.5 mg/dL); Control: 73.9 mg/dL (IQR: 68.8-84.9 mg/dL); p<0.0001].

Table S2. A comparison of plasma protein levels for complement C4 and CFH between JDMand race matched controls

	JDM	Control	p-value	OR (95% CI)
D. Median (IQR) plasma pro	tein conc.			
C4 protein, mg/dL N	28.3 (22.4-35.2) 32	30.1 (23.8-37.4) 368	NS	
CFH protein, mg/dL N	55.3 (50.4-59.5) 31	73.9 (68.8-84.9) 16	<0.0001	

3. Global gene expression profiling of PAXgene blood RNA samples from JDM and controls.

Tables S3 lists the patient demographics, complement *C4* and RCCX genetic background, *HLA-DRB1* genotypes, state of serum muscle levels and medications of 19 JDM patients subjected to global gene expression analyses using PAXgene peripheral blood RNA samples for Agilent microarrays. Different expression of 56 genes were identified and tabulated in Table S4. Among them are 24 upregulated genes and 32 down-regulated genes. Differential expression of transcripts (RNA) in blood samples reflects gene expression levels and the constituents of leukocyte populations present in samples (Figure S4 for interferon-stimulated genes IFI17 and IFI44 with polymorphs (PMNs), and Figure S5 for CCR5 and lymphocytes S5).

Microarray ID	M_ORDER	Age	Age (diagnosis)	Sex	race	Total C4 GCN	C4B GCN	C4A GCN	RCCX- H1	RCCX- H2	DRB1- H1	DRB1- H2	DR51/ 52/53	Elevated Muscle Enzymes	Disease Status	Current Treatment
DM04	1	18.7	17.9	F	W	4	2	2	LL	LL	1	14		AST, CK	Active	MTX
DM12	2	16.6	13.1	F	W	4	2	2	LL	LS	7	15	51	Aldolase, AST, CK	Active	MTX
DM18	3	17.3	17.3	F	W	4	2	2	LS	LS	4	8		Aldolase, AST	Active	MTX, Pred
DM05	4	14.6	8	Μ	W	4	1	3	LL	LL	4	15	51	None	Active	MTX
DM10	5	9.5	6.3	Μ	W	3	2	1	LS	S	3	7	52	None	Active	IVIG, MTX, Pred
DM09	6	10.9	8.8	F	В	4	1	3	LS	LS	7	18	52	None	Active	IVIG, Pred
DM08	7	14.7	10.7	Μ	W	3	2	1	LS	S	3	7	52	None	Flare	IVIG, MTX, Pred
DM06	8	10.5	4.1	F	W	4	2	2	LL	LS	1	4		None	Remission	None
DM16	9	15.7	14.1	F	W	3	1	2	LL	S	1	3	52	n/a	Remission	MTX
DM17	10	3.1	1.7	F	W	3	2	1	LL	S	3	11	52	None	Remission	MTX
DM03	11	12.6	9.6	F	В	4	2	2	LL	LS	9	11	52	None	Remission	MTX
DM01	12	6	2.9	F	В	4	0	4	LL	LS	13.1	18	52	Aldolase	Active	MTX
DM15	13	9.4	4.4	Μ	W	4	1	3	LL	LL	4	4		None	Remission	None
DM19	14	12	5.6	М	W	4	3	1	LSS	S	3	7	52	None	Remission	IVIG, Pred
DM14	15	8.9	2.1	F	W	3	2	1	LS	S	1	3	52	None	Remission	MTX
DM02	16	13.8	6	F	W	4	2	2	LL	SS	3	13.1	52	None	Active	IVIG, Dexamethasone
DM07	17	10.6	3.7	F	W	3	2	1	LS	S	3	7	52	None	Active	MTX
DM13	18	7.7	4	Μ	W	3	2	1	LL	S	3	15	51	Aldolase	Flare	MTX
DM11	19	7.2	4	Μ	W	5	1	4	LLL	LS	1	1		none	Remission	MTX, Pred

Table S3. Patient demographics, C4 CNV, HLA-DRB1 genotypes, serum muscle enzymes and medications of 19 JDM patients (at recruitment) for microarray gene profiling experiments.

F, female; M, male; W, White; B, Black; RCCX: RP-C4-CYP21-TNX; GCN, gene copy number; H1, haplotype 1; H2, haplotype 2

AST, aspartate aminotransferase; CK, creatine kinase;

MTX, methotrexate; Pred, prednisone; IVIG, intravenous immunoglobulin IgG.

Gene Symbol	Gene Name	GenBank	Mean Fold-
	putative functions	Accession	Change*
Interferon resp			
IFI44	interferon-induced protein 44	NM_006417	2.9
EPSTI1	epithelial stromal interaction 1 (breast)	NM_033255	2.6
USP18	ubiquitin specific peptidase 18 downregulates interferon responses	NM_017414	2.1
OAS3	2'-5'-oligoadenylate synthetase 3 100kDa; binds and activates RNase L, inhibition of cellular protein synthesis and viral infection resistance	NM_006187	2.2
EIF2AK2	eukaryotic translation initiation factor 2-alpha kinase 2 <i>inhibition; IFN-stimulated</i>	NM_001135652	2.1
IFITM1	interferon induced transmembrane protein 1 (9-27)	NM_003641	1.6
ZC3HAV1	zinc finger CCCH-type, antiviral 1 prevents infection by retroviruses	NM_024625	1.5
TRIM5	tripartite motif containing 5 E3 ubiquitin-ligase and ubiquitnates itself, retroviral restriction	NM_033092	1.5
PYHIN1	pyrin and HIN domain family, member 1; HIN-200 family of interferon-inducible proteins	NM_198930	-1.6
Immune system	1		
B cell functions			
VPREB1	pre-B lymphocyte 1	NM_007128	1.8
FCRL1	Fc receptor-like 1	NM_001159397	1.6
IL37	interleukin 37 IL-1 family, binds IL-1 receptor	NM_014439	1.5

Table S4. Differentially expressed genes in blood samples of JDM patients

T cells functions

CD2	CD2 molecule	NM_001767	-1.5
TIGIT	T cell immunoreceptor with Ig and ITIM domains	NM_173799	-1.6
ANKRD35	ankyrin repeat domain 35	NM_144698	-1.6
MID2	midline 2 localizes to microtubular structures in the cytoplasm, TRIM member; antiviral	NM_012216	-1.7
WNT1	wingless-type MMTV integration site family, member 1 mesencephalon and cerebellum, cell signaling, embryogenesis; T cell development	NM_005430	-1.7
CTSW	cathepsin W regulation of T-cell cytolytic activity; T cells	NM_001335	-1.7
CTSZ	cathepsin Z lysosomal cysteine proteinase, carboxyl mono and di-peptidase activities	NM_001336	-1.8
EOMES	eomesodermin differentiation of effector CD8+ T cells ; essential during trophoblast development and gastrulation; T-box DNA binding protein	NM_005442	-1.9
RORC	RAR-related orphan receptor C nuclear hormone receptors; DNA binding lymphoid organogenesis ; inhibit the expression of Fas ligand and IL2	NM_005060	-2.4
GZMK	granzyme K granzyme 3; tryptase II	NM_002104	-2.5
Innate immunit	y /chemokine receptors		
CFH	complement factor H	NM_001014975	-1.7
CCR5	chemokine (C-C motif) receptor 5 expressed on T cells and macrophages	NM_000579	-2.3
CXCR3	chemokine (C-X-C motif) receptor 3; G protein-coupled receptor with selectivity for three chemokines	NM_001504	-2.2
CXCR6	chemokine (C-X-C motif) receptor 6 homing of T-cells to skin	NM_006564	-2.5

Blood vessel fur	nctions		
PHACTR1	phosphatase and actin regulator 1 blood vessel, endothelial cells; a key component in the angiogenic process	ENST00000379350	1.7
CYP4A11	cytochrome P450, family 4, subfamily A, polypeptide 11 <i>coronary artery disease</i>	NM_000778	1.6
ZNF831	zinc finger protein 831 blood pressure	NM_178457	-1.5
EMILIN1	elastin microfibril interfacer 1 blood vessels	NM_007046	-1.5
KLKB1	kallikrein B, plasma (Fletcher factor) 1 surface-dependent activation of blood coagulation, fibrinolysis, kinin generation and inflammation	NM_000892	-1.6
Signaling pathw	ays, membrane transports		
XAF1	XIAP associated factor 1 apoptosis signaling	NM_017523	2.1
GNG11	guanine nucleotide binding protein (G protein), gamma 11 guanine nucleotide-binding protein	NM_004126	1.9
CDCA7	cell division cycle associated 7 c-Myc - phosphorylated by Akt-transformation; apoptosis	NM_031942	1.6
KIAA1958	KIAA1958	ENST00000374244	1.5
PLEKHG3	pleckstrin homology domain containing family G (with RhoGef domain) member 3; <i>rhoGTPase exchange</i>	NM_015549	-1.5
PERP	PERP, TP53 apoptosis effector p53 effector	NM_022121	-1.7
IGFBP3	insulin-like growth factor binding protein 3 proapoptotic and antiproliferative; TGF - β signaling -receptor	NM_001013398	-1.8
Nervous system	, synapses, Ca ⁺⁺ , muscle functions		
SNX22	sorting nexin 22	NM_024798	1.7
BAALC	brain and acute leukemia, cytoplasmic	ENST00000297574	1.7
GABRA3	gamma-aminobutyric acid (GABA) A receptor, alpha 3	NM_000808	1.7
SAMD9L	sterile alpha motif domain containing 9-like mutated in familial tumoral calcinosis; cell proliferation, lost in mouse	NM_152703	1.7
ENKUR	enkurin, TRPC channel interacting protein	NM_145010	1.6

	signal transduction to Ca-channels		
ABCC3	ATP-binding cassette, sub-family C (CFTR/MRP), member 3	NM_001144070	1.6
NGFRAP1	nerve growth factor receptor (TNFRSF16) associated protein 1	NM_014380	1.5
PARD3	par-3 partitioning defective 3 homolog (C. elegans) polarized cell growth, neural tube	NM_001184792	1.5
DLG3	discs, large homolog 3 (Drosophila) excitoray synapses	NM_021120	-1.5
CAMK2N1	calcium/calmodulin-dependent protein kinase II inhibitor 1 negative regulation of protein kinase	NM_018584	-1.5
CACNA1I	calcium channel, voltage-dependent, T type, alpha 1I subunit	NM_021096	-1.5
CACNA2D2	calcium channel, voltage-dependent, alpha 2/delta subunit 2 early infantile epileptic encephalopathy	NM_001005505	-1.6
TMED9	transmembrane emp24 protein transport domain containing 9 <i>Golgi and ER</i>	NM_017510	-1.7
LRFN3	leucine rich repeat and fibronectin type III domain containing 3 <i>adhesion, synapses</i>	NM_024509	-1.7
CLIC5	chloride intracellular channel 5 associates with actin-based cytoskeletal structures; hair cell stereocilia formation, myoblast proliferation and glomerular podocyte and endothelial cell maintenance	NM_016929	-1.8
ATXN7L2	ataxin 7-like 2	NM_153340	-1.9
SLC4A10	solute carrier family 4, sodium bicarbonate transporter, member 10 <i>HCO3⁻</i> , <i>Cl⁻ transport; regulates pH</i>	NM_022058	-2.3
<u>Other</u>			
LOC144571	uncharacterized LOC144571	NR_026971	-1.8

* from 19 JDM patients and 7 healthy controls.

Figure S1. Genetic diversity of complement C4. **A**. Copy-number variation (CNV) of *RP-C4-CYP21-TNX* (RCCX) modules in the class III region of the HLA. **B**. Gene size dichotomy of long and short *C4* genes. Exon-intron structures of long and short C4 genes are shown. The long gene is due to endogenous retrovirus integrated into intron 9 of the *C4* gene. **C**. DNA sequences and derived amino acid sequences determining C4A and C4B. C4A and C4B isotypic sequences are present in Exon 26 of the *C4* genes. The long/short *C4* genes and *C4A/C4B* genes are independent structural features of *C4* genes that can be distinguished by *Taq*I RFLP and *Psh*AI RFLP, respectively.

Figure S2. Variations of *C4* haplotypes and gene copy-numbers (GCNs) of total *C4*, *C4A* and *C4B*, and C4 protein polymorphisms in eight selected JDM subjects. **A**. *C4* haplotype structures were determined by PFGE *Pmel*-digested genomic DNA and hybridization to a *C4*d-specific probe. **B**. Total *C4* copy-number and gene sizes were determined by *Taq*I genomic RFLP. **C**. Relative dosages of *C4A* and *C4B* were determined by *PshAI-PvuII* RFLP. **D**. C4A and C4B protein polymorphisms were revealed by immunofixation of EDTA-plasma resolved by high-voltage agarose gel electrophoresis.

Figure S3. Relationship between C4 plasma protein levels plotted versus total *C4* GCN in 94 White JDM patients; C4 plasma levels are normalized and graphed as fold changes, which were calculated as the fold change compared to the mean plasma level of either the Columbus plasma samples or NIH plasma samples GCN, gene copy-number. Red dotted line represents the trend line.

Figure S4. Correlations of transcript levels for interferon-stimulated genes IFI17 (left) and IFI44 (right) with polymorphonuclear cells present in leukocytes of JDM blood samples.

Figure S5. Correlation of CCR5 transcripts with lymphocytes present in leukocytes of JDM blood samples