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Supplementary Information 

Supplementary Note 1,  Characterization of double gated bi-layer graphene. 

By implementing top and bottom gate electrodes in the studied devices, it is possible control the 

charge carrier density n and the electric displacement field D between the two layers 

independently1. Below, the calibration procedure of n(Vtg,Vbg) and D(Vtg,Vbg) (Vtg and Vbg are the top 

and bottom gate voltages respectively). Examples of such measurements for Hall-bar, Josephson 

junction, and Corbino device geometries are presented in Supplementary Figure 1.  

At first, the resistance R is plotted as a function of the two gates (Supplementary Figure 1a,c,d). The 

sharp peak in R determines the position of the charge neutrality point (CNP), Supplementary Figure 

1b. The axis parallel to the charge neutrality line is determined (see black arrows, Supplementary 

Figure 1a), and its slope: ΔVbg/ΔVtg≈2 is equal to the capacitance ratio of the two gates Ctg/Cbg. 

Smaller Cbg is expected for the thicker SiO2 dielectric at the bottom, and requires separate 

characterization for each device due to the different thickness of hBN which we place on top of SiO2. 

The negative slope (ΔVbg/ΔVtg≈-2, marked by white line on Supplementary Figure 1a), corresponds to 

adding the same charge to both layers and changing the total n while keeping a fixed D. In order to 

accurately measure n we analyze the quantum oscillations in R at high magnetic fields and away 

from CNP. From this, the capacitance (per unit of area) for each gate is extracted using: 𝑛𝑒 = 
𝐶tg∆𝑉tg + 𝐶bg∆𝑉bg, and the displacement field is calculated to be: 𝐃 = (𝐶tg∆𝑉tg − 𝐶bg∆𝑉bg)/2𝜀0.  

The energy gap Egap is measured independently from the Arrhenius-like activation of R at high 

temperatures as shown in the main text, Fig. 4d. When measured at different D, we find 

Egap[meV]≈100×D[V∙nm-1] to hold for all our BLG devices (see inset to Fig. 4d), in agreement with 

previous reports2 and calculations3. 

The devices presented here also show saturation of the sub-gap R with increasing D in the Hall bar 

and Josephson geometry, and exponentially increasing R in the Corbino geometry (Supplementary 

Figure 1b,d). For the latter, an additional increase in R is observed at a fixed value of the bottom gate 

Vbg≈-3 V (Fig. S1c). It corresponds to the CNP of the BLG at the locations in the device not covered by 

the top gate (see image in Fig. 4a, main text). This spatial separation of the top gate from the metal-

graphene interface guarantees a negligibly-low contact resistance at high D for the two-probe 

measurement in this geometry. 
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Supplementary Figure 1│ Characterization of double-gated bilayer graphene. a, Color-plots of the resistance 

R (in log-scale) as a function of the top and bottom gate voltages, for the Hall-bar geometry (the measured 

section is 2.3 µm wide and 6.6 µm long). b, Bottom gate scans from the map in (a) at different fixed values of 

the top gate. At the charge neutrality point (CNP) R is saturated for Vtg>5V corresponding to D ≈-0.2V∙nm
-1

 as 

shown in the main text (Fig. 4c).  c, Color-plots of the resistance R (in log-scale) as a function of the top and 

bottom gate voltages for the Josephson junction studied in the main text Fig. 2. d, Resistance at CNP extracted 

from the map in (c). The increase in R is saturated for displacement field D ≈0.15V∙nm
-1

.  e, Color-plots of the 

resistance R (in log-scale) as a function of the top and bottom gate voltages for a Corbino “edge-less” device. 

Here the top gate is 10 µm wide and 1 µm long, and it is separated by 1 µm from the inner and outer contacts. 

The vertical white line at Vbg≈-3V corresponds to the charge neutrality point in the part of the device which is 

not covered by the top gate. f, Resistance at CNP extracted from the map in (c). The increase in R is 

exponential with the displacement field D. 
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Supplementary Note 2, Example of additional BLG Josephson junction. 

Here we present a second dataset for an additional BLG Josephson junction. As the gap opens, 

redistribution of supercurrent is observed, Supplementary figure 2, in a similar way to the junction 

studied in the main txt, Fig. 2.  

 

Supplementary  Figure 2│ Redistribution of supercurrent as the gap opens in bilayer graphene. a, Resistance 

R of a Josephson junctions (3.5 µm wide and 0.5 µm long) above the critical T as a function of top and bottom 

gate voltages. b, Differential resistance dV/dI measured along the CNP line in a at low T and in zero B. 

Transition from the dissipationless regime to a finite voltage drop shows up as a bright curve indicating Ic. c, 

Interference patterns in small B. The top panel is for the case of high doping [Ic(B =0) ≈2 µA] and 

indistinguishable from the standard Fraunhofer-like behavior illustrated in Fig. 1d. The patterns below 

correspond to progressively larger Egap. Changes in the phase of Fraunhofer oscillations, consistent with the 

formation of edge modes, are highlighted by the vertical dashed white lines. 
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Supplementary Note 3, Bulk versus edge distribution of the supercurrent in bi-layer 

graphene. 

In this section we further analyze the interference patterns of the supercurrent Ic(B) at CNP for 

different values of D. The inverse FFT is calculated to extract the local current distribution Js(x) (see 

Supplementary Figure 3b and Fig. 2d of the main text). Then the current density at the edges is 

compared to the one at the center of the junction. We find that the transition from uniform current 

distribution to the edge dominant flow is rather sharp and occupies the range in the displacement 

0.015<D<0.03 V∙nm-1 (see Supplementary Figure 3b). The bulk component of Js is dramatically 

reduced above D≈0.03 V∙nm-1 and the supercurrent becomes restricted to the edge channels. To this 

end we note that the supercurrent in the graphene is carried by Andreev pairs coupled by the 

superconductor gap Δ. At zero temperature and for entirely gaped graphene, finite Ic is not expected 

for Egap > 2Δ because tunneling processes are improbable across this 400nm long barrier (the length 

of the graphene channel). The analysis of Js(x,D) below suggest that the cut-off for the bulk 

contribution is indeed happening at Egap ≈ 2Δ (=2meV in the case of these Nb contacts4). Thus the 

finite Ic at the edges persisting to large gaps indicates that the edges are less gapped than the bulk, 

or not gapped at all.  

The inverse FFT shown in Supplementary Figure 3b and Fig. 2d can be fitted by Gaussians in order to 

estimate the width w to which the edge mode extend into the bulk (taken as the width of the peak 

at half maximum). Yet a limit on the spatial resolution of Js(x) arise, which can be defined by the 

largest number of the magnetic flux in which the interference pattern Ic(B) still can be detected 

(additional limitation of the calculation is the assumption of a sinusoidal current-phase relation, 

which is not accurate in these long and ballistic Josephson junctions). We can reliably extract the 

interference over ≈10 periods (flux quanta) before the noise level or other ballistic effects4 alters its 

pattern. This number correspond to a spatial resolution limit of ≈W/10=350 nm for the studied 

junctions of the width W. The calculated w from the FFT is 650nm and 450nm at D=0.025 V∙nm-1 and 

0.055 V∙nm-1 respectively and should be regarded as an upper limit of the width of the edge 

channels.  

 

Supplementary Figure 3│ Supercurrent distribution as a function of the displacement field D. a, Examples of 

interference patterns measured at two different D. b, The supercurrent density at the bulk and at the edges is 

extracted from inverse FFTs of the Ic(B) patterns (as shown in Fig. 2d). The transition from bulk dominant to 

edge current is sharp, in the range D≈0.015 to 0.03 V∙nm
-1

. Inset, Gaussian fit to the edge current distribution. 
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Supplementary Note 4, Chemical and electrostatic doping at the edge. 

In principle, external doping near graphene edges may offer an alternative explanation for edge-

transport when the bulk is gaped. In the following we consider various doping scenarios, how to 

minimize their effect and how to test its presence experimentally. The three doping scenarios are: i) 

Chemical variations at the edge, which may depend significantly on the fabrication process5. To 

minimize its effect we anneal all samples as an essential part of our fabrication procedures. ii) 

Electrostatic doping arising from a finite separation between the gate electrodes and graphene6. The 

spatial range of this stray doping is determined by the distance to the gates, which for this reason 

were fabricated as close as possible to the graphene plane (≈30 and 120nm away for the top and 

bottom gates, respectively). iii) Non-uniform termination of the two layers in the BLG. This is avoided 

by dry etching the two layers simultaneously using a highly anisotropic etching process. 

To evaluate the effect of external doping, we measured devices in which the two edges of the 

Josephson junction were different (see Fig. 1a, Supplementary Figure 4). One edge of the BLG is 

encapsulated by hBN and overlaid by the top gate, while at the other edge the top gate terminates 

and the BLG edge is uncovered. In principle, the different profiles should result in different chemical 

and electrostatic doping. Calculations of the electrostatic doping profiles are shown for the two edge 

configurations (Supplementary Figure 4). When the top gate terminates above the graphene edge, 

the charge density accumulation is diverging near it, with a lateral cutoff given by the thickness of 

the dielectric spacer. 100 nm away from the edge, the carrier density is expected to be ≈5x109 cm-2 

for 1V / 0.24V applied to the bottom / top gate, respectively (corresponding to D≈0.03V∙nm-1). In 

contrast, the configuration of extended gate and hBN show negligible electrostatic doping. The 

effect of electrostatic or chemical doping, if significant, should clearly favor edge conductance along 

one of the edges only. 

Supplementary Figure 4│ Electrostatic modeling of edge doping. a, Schematic cross-section of a Josephson 

junction with different edge profiles (the other cross-section and top view are shown in figure 1 a,b main text). 

b, c, Finite element calculation of the electrostatic potential distribution for the two edge configurations. The 

bottom gate is fixed at 1 Volt while the top gate is tuned to fix a zero potential at the bulk of the BLG (colored 

circles mark the two edge configurations) d, Calculated carrier density accumulation as function of the 

distance from the edge for the extended (Blue curve) and edge-terminated (red) profiles. For the former, 

charge accumulation is negligible. 

Here we point out the high sensitivity of the supercurrent interference patterns to asymmetric 

supercurrent density distribution. Conceptually this sensitivity can be described as follow: if the 

maximum supercurrent density in the two edges is precisely equal, flux penetration can force it in 

opposite directions for each edge, such that a zero net supercurrent can be driven across the 
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junction (the measured Ic). On the other hand, uneven critical current density will preserve a finite 

“net” supercurrent in the better conducting edge, even when the flux-driven supercurrent at the less 

conducting edge is maximal. This will result in a non-zero net supercurrent flowing across the 

junction, at all values of magnetic flux. In the interference pattern, it will show up as a lifting of the 

minimum Ic 
7,8. Furthermore, in the case of supercurrent flowing only in one of the edges the period 

of the oscillations will increase significantly, reflecting the confined width of the supercurrent and 

the small effective area of flux penetration. 

The fact that the interference of the BLG junctions drops to zero at half integer values of flux (see 

Fig. 2c, Supplementary Figure 2c), indicates that the conductance at the two edges is very similar, 

and that the gate electrode profile does not have a significant effect on the edge modes observed. 

To test the electrostatic doping scenario in the Hall bar devices, we compared top gates terminated 

at the edge of bilayer graphene (see Fig. 4a, main text), or extend far beyond the bilayer (see 

Supplementary Figure 5a). For both types of devices the sub-gap resistance at high D was measured 

and similar saturation of R was observed (Supplementary Figure 5b). It indicates again that the edge 

profile and the resulting external doping is not significant in these devices. 

 

Supplementary Figure 5│Sub-gap resistivity of BLG with the top gate extending above the edges. a, Optical 

image of the device. Additional hBN cover-layer was placed, enabling the extension of the top gate away from 

the BLG edges (marked by dashed black line). b, Resistivity  as a function of the displacement field measured 

at neutrality point for the device shown in a (blue curve). The exponential increase in resistivity is dumped 

above D ≈0.2V∙nm
-1

, where  becomes comparable to the quantum of resistance. Devices with gate electrode 

terminated at the edge (red curve) show a more pronounced saturation, presumably owing to the higher 

mobility achieved. 

To test the effect of electrostatic doping due to uneven distance from the top and bottom gates, we 

measured a device with the two gates separated by the same distance (Supplementary Figure 6). 

Again, we find the resistance to saturate at high displacement fields. 
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Supplementary Figure 6│Sub-gap resistivity of BLG with even distance from the top and bottom gates. a, 

Optical image of the device. Graphite flake is used as a bottom gate with equally thick hBN spacers. b, 

Resistance R as a function of the displacement field measured at neutrality point for the device shown in a, 

showing the same saturation at high D. 

Lastly, we point to the experiments on the gapped monolayer graphene discussed in the main text. 

There we compare Josephson junctions made using the same fabrication procedures and geometries 

(including the thickness of the dielectric materials) but for non-aligned (non-gapped) and aligned 

(gapped) devices. Any inhomogeneity in the external doping should be essentially the same for the 

two cases. After testing more than 10 non-gapped monolayers4 and 4 gaped (hBN-aligned) junctions 

we note that no edge current enhancement was observed in any of the former, while clear edge-

dominant currents where observed in all the latter. Here, to avoid the case of the edge-modes being 

masked by the bulk currents, we examined different aspect-ratios of un-gapped junction with 

different normal state resistance above the Nb transition temperature or at currents above Ic (see 

Fig. 3d,f). We note that no sign of edge currents was found even when the normal state resistance 

exceeds the resistance where edge-dominant transport was observed in the gapped graphene. It 

points again to the crucial role of the gap in supporting the enhanced edge conductivity rather than 

external doping mechanism. 

Supplementary Note 5, On-off ratio in gapped bi-layer graphene.  

Achieving high on-off ratio in gapped graphene devices is a focus of intense research driven by the 

practical requirements of electronic applications like field effect transistors (FET)9. Owing to the 

ballistic transport over micron length scales in pristine graphene and BLG at room temperature, the 

“on” state resistance is mostly determined by the metal-graphene interface resistance, which can be 

as low as 35 Ohm×µm4.  

The “off” state resistance is usually determined by the size of the gap and the device 

inhomogeneities. As has been discussed in the main text, for sufficiently clean bilayer graphene 

devices the edge conductance limits the sub-gap R to the order of the quantum resistance. In the 

Josephson junction FET geometry for example, the on-off ratio is limited to 102 at D=0.2V∙nm-1 and 

saturates for higher displacement fields. In contrast, for the edgeless Corbino geometry the highly 

resistive “off” state is recovered. Here we demonstrate on-off ratio ≈104 (at 20K), achieved already 
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at D=0.2V∙nm-1 owing to the high device homogeneity. Importantly the “off” resistance is limited 

only by the device quality and the achievable D.  

 

Supplementary Figure 7│ On-off ratios in Corbino and in the field effect transistor (FET) geometry.                                             

The resistance of the device in the FET geometry (3.5µm wide, 0.4µm long) changes by only 2 orders of 

magnitude, due to the edge-conductance at the charge neutrality point. In the case of the “edge-less” Corbino 

geometry, R changes by over 4 orders of magnitude already at D =0.2V∙nm
-1

. 
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