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Supplementary Figures 1 

 2 

Supplementary Figure 1. Schematic of the experimental setup. Juelich Plant Atmosphere 3 

Chamber (JPAC) is shown. SMPS: scanning mobility particle sizer; CPC: condensation 4 

particle counter; AMS: aerosol mass spectrometer; CCN-C: cloud condensation nuclei 5 

counter; RH: relative humidity; Vis-lamp: visible light lamps. 6 
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 8 

Supplementary Figure 2. Volatile organic compounds composition of unstressed trees. 9 

Fractions of different classes of volatile organic compounds (VOC) in the total VOC 10 

emissions (ppbC) from pines in the absence of biotic stresses at different plant temperatures 11 

are shown. Blue, orange and red indicate the fractions of sesquiterpene, monotperene and 12 

others (see Methods for detailed classification). 13 
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 15 

 16 

Supplementary Figure 3. Volatile organic compounds composition of biotically-stressed 17 

trees. Fractions of different classes of volatile organic compounds in total VOC emissions 18 

from boreal forest trees under biotic stresses at different plant temperature are shown. Blue, 19 

orange and red indicate the fractions of sesquiterpene, monotperene and others (see Methods 20 

for detailed classification).   21 
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 26 

(c) 27 

Supplementary Figure 4. Detailed volatile organic compounds composition at different 28 

temperature. Fractions of different compounds in each classes for monoterpenes (a), 29 

sesquiterpenes (b), and other compounds (c) (see Supplementary Figure 3) for boreal forest 30 

trees under biotic stresses at different plant temperature are shown. See the Methods for the 31 

details of volatile organic compounds classification.  32 
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    (a)      (b) 35 

 36 

   (c)      (d) 37 

Supplementary Figure 5. Effects of particle size and κ on cloud condensation nuclei 38 

concentrations. Panel a shows the size of the cloud droplet (Dwet) that at given 39 

supersaturation (SS=RH-100%) a dry particle of given chemical composition can grow to 40 

from subsaturated condition as a function of particle size. The dash line indicates that the 41 

final droplet size is uncertain, depending on dynamic conditions in clouds. Dcrit is the critical 42 

activation diameter, which is defined as the particle size above which the droplet formed can 43 

grow spontaneously to large droplets and the particle is considered to have activated into a 44 

cloud droplet. Panel b shows that for given particle numbers as a function of size (particle 45 

size distribution, solid line), how cloud condensation nuclei (CCN) concentration is derived 46 

as the total number of particles larger than the critical activation diameter Dcrit,1, i.e. the 47 

integral of the part of the size distribution N1(Dp) that is larger than Dcrit,1 (blue line). The 48 

dash line shows a larger particle size distribution N2(Dp) that the particle size distribution 49 

shifts from N1(Dp). Panel c shows Dcrit as a function of κ at a given supersaturation. The blue 50 

lines indicates the critical diameter Dcrit,1 and Dcrit,2 for a higher and lower κ, respectively. 51 
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Panel d shows the effect of an increase of Dcrit from Dcrit,1 to Dcrit,2 on the CCN concentration 52 

(number of particles larger than Dcrit). The blue lines indicate Dcrit,1 and Dcrit,2, respectively. 53 

  54 
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 55 

(a) 56 

 57 

(b) 58 

Supplementary Figure 6. Effect of drought on volatile organic compounds emissions. (a). 59 

Fractions of different classes of volatile organic compounds (VOC) in total VOC emissions 60 

from a pine at different levels of water shortage. The blue, orange and red indicate the 61 

fractions of sesquiterpene, monotperene and others (see Methods for detailed classification). 62 

(b). The concentration of total VOC (ppbC) emitted as a function of water content in the soil.  63 
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 65 

 66 

Supplementary Figure 7. Impact of various stresses on cloud condensation nuclei 67 

concentrations. The effects of biotic stress, heat and drought on κ and particle size and cloud 68 

condensation nuclei (CCN) concentrations are shown on a typical plot of CCN number 69 

concentrations as a function of size and κ. The effects were calculated based on the results in 70 

this study (see Methods for details). The left higher and right lower white dots indicate the 71 

reference case of induced emissions and constitutive emissions at room temperature, 72 

respectively. 73 

200

150

100

50

 P
a

rt
ic

le
 d

ia
m

e
te

r 
(n

m
)

0.200.150.100.050.00

 κ

2000

1500

1000

500

0

C
C

N
 n

u
m

b
e

r 
c
o

n
c
e

n
tr

a
ti
o
n

 (
#

 c
m

-3
)

Heat

Heat

Induced emission

Constitutive emission
Drought



10 

 

Supplementary Tables 74 

Supplementary Table 1. Summary of κ of SOA from sesquiterpene oxidation from CCN measurements in the literature. 75 

  76 

Literature Precursor κ value 
Oxidation 

condition 
Chamber/Conditions Comments 

Hartz et al.1 

β-caryophyllene, 

α-humulene,  

α-cedrene 

0.001-0.009a   Ozonolysis 
CMU 10 m3 chamber. VOC: 50-75 ppb, 

O3:100-600 ppb, RH: 5-8% 

κ was not reported in the paper
e
. 

Asa-Awuku et al.
2
 β-caryophyllene 

0.02-0.05
a
  

0.01-0.05
b
  

Ozonolysis 

CMU 12 m
3
 chamber. VOC: 22-32 ppb, O3: 

300 ppb, RH: 3-8%, T: 22 °C. NOx not 

reported. 

κ was not reported in the paper. 

Alfarra et al.
3
 β-caryophyllene 0-0.02  Photooxidation 

Manchester Univ. 18 m3 chamber. NOx: 

26.8-125 ppb, VOC: 31.1-139.9 ppb.  RH: 

~70%  

- 

Tang et al.4 β-caryophyllene 
0.05-0.073

a
 

0.16-0.22b 
Ozonolysis 

UCI 90 m
3
 chamber. VOC: 5-20 ppb, O3: 

100-290 ppb, NOx: not reported. RH: 0.1%  
Light has negligible effects on κ. 

Frosch et al.
5
 β-caryophyllene 

0.001-0.005
a
 

0.003-0.05
b
 

0.01-0.075c  

0.04-0.09
d
 

Ozonolysis and 

Photooxidation 

PSI 27 m
3
 chamber. VOC: 25 ppb O3: 300 

ppb, RH: 5-10% 
κ was found to depend on SS. 

Alfarra et al.
6
 β-caryophyllene 0.009 Photooxidation 

Manchester Univ. 18 m
3 
chamber. NOx: ~25 

ppb, VOC: 50/250 ppb.  RH: 44-71% 
- 

 77 
a
: The value is for SOA from ozonolysis with OH scavenger (usually 2-butanol was used). 78 

b
: The value is for SOA from ozonolysis without OH scavenger . 79 

c: The value is for SOA from photooxidation (OH from O3 photolysis and O3 reaction). 80 
d
: The value is for SOA from photooxidation (OH from O3 photolysis and O3 reaction plus OH from HONO photolysis). 81 

e: κ was calculated using supersaturation and critical activation diameter and a temperature of 298.15 K when κ was not reported in original papers. 82 
  83 
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Supplementary Table 2. Summary of κ of SOA from monoterpene oxidation from CCN measurements in the literature. 84 

Literature Precursor κ value Oxidation condition Reactor Comments 

VanReken et al.
7

 α-pinene 0.014-0.091
a
 Ozonolysis CIT 28 m

3
 chamber κ was not reported in the paper

i
. 

Hartz et al.
1

 α-pinene 0.028-0.229
a
 Ozonolysis CMU 10

3
 chamber  κ was not reported in the paper. 

Prenni et al.
8

 α-pinene 0.1 Ozonolysis UCR 7m
3
 chamber - 

Engelhart et al.
9

 α-pinene 0.11-0.14
b 

Ozonolysis CMU 12 m
3
 chamber κ was not reported in the paper. 

Duplissy et al.
10

 α-pinene 0.09-0.12 Photooxidation PSI  27m
3
 chamber - 

Wex et al.
11

 α-pinene 0.1±0.04 Ozonolysis 12L flow reactor κ was not reported in the paper. 

Juranyi et al.
12

 α-pinene 0.091±0.01 Photooxidation PSI  27m
3
 chamber - 

Massoli et al.
13

 α-pinene 0.13-0.24
c 

Photooxidation Aerosol flow reactor - 

Frosch et al.
14

 α-pinene 0.06-0.16
c
 Photooxidation PSI  27m

3
 chamber - 

Lambe et al.
15

 α-pinene 0.12-0.23
c 

Photooxidation 15L PAM flow reactor - 

Lambe et al.
16

 α-pinene 0.12-0.18 Photooxidation 15L PAM flow reactor - 

Alfarra et al.6  α-pinene 0.10-0.17 Photooxidation Univ. Manchester 18m3  chamber - 

Zhao et al.
17

 α-pinene 0.10-0.17 Photooxidation FZJ 270 m
3
 chamber  

Hartz et al.
1
 β-pinene 

0.033-0.106
d
 

0.044
e
 

Ozonolysis CMU 10
3
 chamber  

κ was not reported in the paper. 

VanReken et al.7 β-pinene 0.02-0.18e, f Ozonolysis CIT 28 m3 chamber κ was not reported in the paper. 

Prenni et al.
8
 β-pinene 0.07-0.10

e 
Ozonolysis UCR 7m

3
 chamber κ was not reported in the paper. 

Hartz et al.1 limonene 
0.017-0.44

d
 

0.170e 
Ozonolysis CMU 103 chamber  

κ was not reported in the paper. 

VanReken et al.
7
 limonene 0.05-0.45

e, f 
Ozonolysis CIT 28 m

3
 chamber κ was not reported in the paper. 

Alfarra et al.
6
 limonene 0.06

g
 Photooxidation Univ. Manchester 18m

3
  chamber - 

Hartz et al.
1
 carene 0.02-0.13

e
 Ozonolysis CMU 10

3
 chamber  κ was not reported in the paper. 

VanReken et al.
7
 carene 0.04-0.25

e, f 
Ozonolysis CIT 28 m

3
 chamber κ was not reported in the paper. 

Prenni et al.8 carene 0.07-0.13e Ozonolysis UCR 7m3 chamber κ was not reported in the paper. 

Alfarra et al.6 myrcene 0.10-0.12 Photooxidation Univ. Manchester 18m3  chamber - 

Engelhart et al.
9
 monoterpene mixtures

 h
 0.08-0.27 Ozonolysis CMU 12 m

3
 chamber κ was not reported in the paper. 

Zhao et al.
18

 
α-pinene/limonene 

mixture 
0.10-0.17 Photooxidation FZJ 270 m

3
 chamber 

 

a
: κ here was from Petters and Kreidenweis

19
. 85 

b:κ here was from Engelhart et al.20 86 
c
: Values were not explicitly provided and were read from the figures in the paper. 87 
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d: The value is for SOA from ozonolysis with OH scavenger (usually 2-butanol was used). 88 
e
: The value is for SOA from ozonolysis without OH scavenger . 89 

f: Dcrit and SS data are read from the figures in the paper. 90 
g: The authors note that the value is derived from a limited number of measurements. 91 
h
: Monoterpene mixtures consist of α-pinene, β-pinene, limonene and carene. 92 

i: κ was calculated using supersaturation and critical activation diameter data and a temperature of 298.15 K when κ was not reported in original papers except 93 
otherwise stated. 94 
 95 
 96 
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Supplementary Table 3. Number of measurements and measured ratios of monoterpene to 97 

sesquiterpene and κ in Figure. 2.  98 

Stress status  N(MT/SQT) N(κ) MT/SQT κ 

Unstressed 4 3 8.37±1.55
a
 0.15±0.02 

Intermediate 4 6 2.74±0.35 0.09±0.01 

Stressed 20 48 0.32±0.05 0.07±0.01 

a
: Standard deviation. 99 

MT: monoterpene; SQT: sesquiterpene; N(MT/SQT) and N(κ): number of measurements for 100 

the ratios of monoterpene to sesquiterpene and for κ, respectively.  101 
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Supplementary Table 4. Number of measurements and measured total VOC, particle size and 102 

κ in Figure. 3.  103 

Emission 

type 

Temperature 

(°C) 
N(VOC) N(size) N(κ) 

TVOC 

(ppbC) 

Size 

(nm) 
κ 

Constitutive 

emission 

20 6 6 - 19.2±2.1
a
 28.9±0.7 - 

25 4 6 3 40.3±6.2 55.0±2.3 0.15±0.02 

35 2 3 4 84.2±9.6 69.8±1.0 0.11±0.03 

Induced 

emission 

22 19 15 48 83.5±19.3 60.2±8.3 0.073±0.01 

29 12 9 11 236.4±24.2 85.7±1.5 0.065±0.01 

34 8 6 15 731.4±243.0 116.1±5.6 0.059±0.01 

 
a
: Standard deviation. 104 

N(VOC), N(size), N(κ): number of measurements for total VOC, particle size and κ, 105 

respectively. 106 

 107 

  108 
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