

**Supplementary Figure 1**. A. Bar graph representing the expression levels of the 19 indicated genes in the microarrays analyses comparing human lung immortalized broncho-epithelial cells (AALE cells) expressing exogenous KRAS<sup>G12D</sup> over wild-type KRAS-expressing cell (black), mutant KRAS MEFs over wild-type MEFs (dark grey) and Kras<sup>LA2</sup> mouse lung adenocarcinoma tumors over normal lung tissue (light grey). B-L. Gene set enrichment analysis of mouse (B and C) and human (D-L) cancer data sets comparing either active mutant KRAS cells to KRAS-inhibited cells (B and C) or mutant KRAS patients to wild-type KRAS patients (D-L). +, positive; -, negative. M. Box and whiskers plots summarizing the geometric mean of the 8-gene signature in mutant and wild-type KRAS LAC data sets. Each dot is a sample. N. Performance of a univariate classification model for predicting mutant vs. wild-type KRAS of LAC, PDAC and CCA patients based on gene expression of the 8-gene signature measured by area under receiver operator characteristics (AUC). O. Box and whiskers plots summarizing the geometric mean of the 8-gene signature in mutant and wild-type EGFR LAC. P values obtained using Student's t test. P. Box and whiskers plots summarizing the geometric mean of the 8-gene signature in mutant BRAF, EML4-ALK, DDR2 or amplified MYC and wild-type LAC. P values obtained using Student's t test. Q and R. Kaplan-Meier plot of lung squamous carcinoma (Q) or breast cancer (R) patients (TCGA data set) stratified by the mean expression of the 8-gene crosstumors signature. P values obtained using log-rank test (Mantel-Cox).



**Supplementary Figure 2**. A and B. Kaplan-Meier plot of lung squamous carcinoma (A) or breast cancer (B) patients (TCGA data set) stratified by the mean FOSL1 expression. P values obtained using log-rank test (Mantel-Cox). C. Immunohistochemistry of FOSL1 protein in mutant (n=2) and

wild-type (n=2) *KRAS* patient-derived xenografts. D. Western blot of H358 cells treated with U0126 (MEKi, 10  $\mu$ M), BIX02189 (MEK5i, 10  $\mu$ M), SB203580 (JNKi, 20  $\mu$ M), LY294002 (AKTi, 10  $\mu$ M) and SB203580 (p38i, 20  $\mu$ M) and probed with indicated antibodies. The experiment was done 3 times. E. Western blot in mouse Kras-driven lung cancer cells for indicated antibodies to show specificity of a FOSL1 antibody in mouse samples. Western blot was done in 3 independent protein lysates for each sample. F. Expression of FOSL1 (red) and Ki67 (green) by immunofluorescence in tumors from *Kras<sup>LSLG12D</sup>*, *p53<sup>f/f</sup>* mice. Scale bar 50  $\mu$ m. Bar graph indicates percentage of double FOSL1 and Ki67 positive cells in FOSL1-positive tumors. G. qRT-PCR on mutant *Kras* LAC cells, wild-type *Kras* squamous carcinoma cells (UNSCC680) and normal lung. Error bars correspond to s.d. mRNA was obtained from at 3 independent isolates per sample.



**Supplementary Figure 3**. A. Western blot for indicated antibodies in mutant and wild-type *KRAS* LAC cell lines after infection with indicated shRNAs. B. Cumulative (left) and average (right) population doubling time of mutant (H358 and H2347) and wild-type (H1568 and H1650) *KRAS* cells.

C. Relative cell number of mutant RAS, human large cell carcinoma cell lines assessed by an MTS assay after 3 days in culture. Experiment was performed in triplicate. D. Relative cell number of mutant Kras, mouse LAC cell lines (LSZ2 and LSZ3) expressing a control GFP shRNA or two independent shRNAs against Fosl1 assessed by MTS. Experiment was done 3 times. P values obtained using Student's t test. E. Western blot analysis for indicated antibodies in mutant and wildtype KRAS cell lines carrying an inducible FOSL1 shRNA (TET FOSL1 sh1). Cells were treated with 1 µg/ml doxycycline for 96 h prior to protein collection. Results were similar between 2 different protein isolates. F. Relative cell number of H358 cell line expressing an inducible FOSL1 shRNA. Error bars correspond to s.d. G and H. Representative images of xenografted tumors derived from mutant (H358 and H2347) or wild-type (H1650 and H1568) KRAS LAC cells expressing a doxycycline-inducible FOSL1 shRNA or a control GFP shRNA (TET GFP sh). Error bars correspond to s.e.m. I. Analysis of Ki67 positive cells in representative areas (n=15) from tumors in G (H358). Error bars correspond to s.e.m. P values obtained using Student's t test. \*\*, p< 0.01. J. Analysis of cleaved caspase 3 positive cells in representative areas (n=10) of tumors in G. Error bars correspond to s.e.m. P values obtained using Student's t test. \*\*\*, p< 0.001. K. Immunohistochemistry to detect FOSL1 expression in representative sections of the same tumors as in G. Scale bar 50 µm. \*, p<0.05; \*\*, p<0.01; \*\*\*, p<0.001. L. Representative images of xenografted tumors derived from mouse mutant Kras LAC cells (LSZ3) expressing a Fos/1 or a control GFP shRNA. M. Representative images of xenografted tumors derived from mutant H358 KRAS LAC cells expressing a doxycycline-inducible FOSL1 shRNA or a control GFP shRNA. Doxicicline was administered when tumor volume reached 80 to 100 mm<sup>3</sup>.



**Supplementary Figure 4**. A. Genotyping PCR of a mouse from the *Kras*<sup>LSL-G12D/+</sup>; Trp53<sup>flox/flox</sup>; *Fosl1*<sup>+/+</sup> (KP) and *Kras*<sup>LSL-G12D/+</sup>; *Trp53*<sup>flox/flox</sup>; *Fosl1*<sup>flox/flox</sup> (KPF) groups. B. PCR to assess the degree of Fosl1 recombined allele in microdissected tumors from KPF mice. C. Tumor size analysis of KP and KPF mice by quartiles.



**Supplementary Figure 5**. A. Western blot for indicated antibodies in immortalized normal epithelial pancreatic cells (KF07) and KRAS-driven PDAC cells (CFPac1 and HPAFII). B. Western blot for indicated proteins in mouse pancreatic cancer cells (black) and normal pancreatic tissue (grey). C. Western blot for indicated antibodies in mutant *KRAS* PDAC cells (CFPac1) carrying a doxyxycline-

inducible KRAS or GFP shRNA. Expression of the shRNA was induced with 1 µg/ml doxycycline for 96 h prior to protein collection. D. Western blot for indicated proteins with a FOSL1 antibody (Santa Cruz Biotech., sc- 376148) specifically used for immunohistochemistry studies to confirm specificity of antibody against human FOSL1 protein. E. Representative images of mouse and human PDAC samples stained with the same FOSL1 antibody as in D. F. Kaplan-Meier plot of PDAC patients for the expression of the 8-gene cross-tumors signature. P values obtained using log-rank test (Mantel-Cox). G. *Ck19* mRNA expression in acinar cells from *Kras*<sup>LSLG12D</sup> mice treated with control adenovirus (AdE), adenovirus Cre (AdCre) and AdCre plus a shRNA targeting *Fosl1*. H. *Ck19* mRNA expression in acinar cells from *Kras*<sup>LSLG12D</sup> mice expressing vector.



Supplementary Figure 6. A. Heat map of 45 down-regulated genes upon inhibition of FOSL1 in mutant KRAS cells (H2009) by a specific shRNA. B and C. Gene set enrichment analysis of human LAC (B) and PDAC (C) data sets comparing mutant KRAS patients to wild-type KRAS patients. D. Bar graph representing the Gene Ontology analysis of the biological pathways enriched in genes down-regulated after FOSL1 inhibition. E and F. Q-PCR analysis of mitotic genes in human LAC (E) and PDAC (F) cells transduced with 2 shRNAs to FOSL1.G. Western blot analysis of mitotic genes in CFPac1 PDAC cells after FOSL1 inhibition. H. Cell cycle analysis of pHH3 positive cells in mutant KRAS LAC (H358 and A549) cell lines expressing an inducible GFP or FOSL1 shRNA (1 µg/ml doxycycline) upon treatment with taxol (0.5 µM). I. Western blot analysis for indicated antibodies in mutant KRAS LAC cells (H358 and A549) carrying an inducible FOSL1 or GFP shRNA. Expression of the shRNA was induced with 1 µg/ml doxycycline for 96 h prior to protein collection. J. Cell proliferation assay (MTS) of H358 cells overexpressing lacZ or AURKA and transduced with a shRNA to FOSL1 and a shRNA control (GFP). K. Western blot of indicated proteins in cell lysates from J. C: lacZ; A: AURKA. L. Western blot of indicated proteins in H358 cells transduced two shRNAs targeting TACC3. M. Survival analysis of LAC patients stratified by KRAS status and expression of AURKA, and PDAC patients stratified by expression of AURKA. P values obtained using log-rank test (Mantel-Cox). N. Western blot for phospho (p)-AURKA and AURKA in H2009 cells treated with alisertib (500 nM), trametinib (500 nM) and both for 3 days. Cells were treated with taxol for the last 20 hours of the experiment to induce mitotic arrest and p-AURKA activation. O. Western blot for phospho (p)-ERK and ERK in H2009 cells treated with alisertib (500 nM), trametinib (nM) and their combination. P. MTS analysis of mutant and wild-type KRAS cells lines treated with alisertib (1  $\mu$ M), trametinib (1  $\mu$ M) or both. CI: combination index. Results are average of 4 different independent treatment experiments performed in triplicate. Q. Average tumor weight of mice injected with H2009 or H1792 cell lines and orally administered vehicle, alisertib (25 mg/kg), trametinib (1 mg/kg) or both. S: start of experiment; E: end of experiment.











Supplementary Figure 7. Uncropped blots corresponding to Figure 2.



Supplementary Figure 8. Uncropped blots corresponding to Figure 5.

Fig. 6e



**Supplementary Figure 9.** Uncropped blots corresponding to Figure 6.

|         |             |                    |                |              |                    |                |            |                  | 1            |
|---------|-------------|--------------------|----------------|--------------|--------------------|----------------|------------|------------------|--------------|
| Name    | Probeset.x  | AALE.MutvsWt.logFC | AALE.MutvsWt.B | Probeset.z   | MEFs.MutvsWt.logFC | MEFs.MutvsWt.B | Probeset.d | LA2.MutvsN.logFC | LA2.MutvsN.B |
| ADAM19  | 209765_at   | 1.314214507        | 1.289626239    | 1418402_at   | 1.326806216        | -3.223111552   | 103554_at  | 1.006791676      | 19.58707548  |
| AOX1    | 205083_at   | 1.111810683        | 1.789711993    | 1419435_at   | 2.339078512        | 7.349766337    | 104011_at  | 0.663907337      | 2.16102608   |
| AREG    | 205239_at   | 0.413419376        | -3.888873302   | 1421134_at   | 2.655429581        | 0.165757475    | 99915_at   | 2.606357084      | 35.33778089  |
| CLU     | 222043 at   | 0.035780218        | -6.595316803   | 1454849 x at | 2.358785308        | 0.48596376     | 95286 at   | 3.066041629      | 32.90870974  |
| DLK1    | 209560 s at | -0.116535998       | -6.201875201   | 1449939 s at | 3.908639956        | 9.916748259    | 101975 at  | 2.326707281      | 4.179971992  |
| DOCK4   | 205003 at   | 1.505532582        | 2.935051091    | 1431114 at   | 2.545906488        | 3.622647666    | NA         | NA               | NA           |
| DUSP4   | 204014 at   | 1.44105697         | 3.064072966    | 1428834 at   | 2 431045858        | 0.334895356    | NA         | NA               | NA           |
| DUSP6   | 208891 at   | 1.429643604        | 3.003890749    | 1415834 at   | 2.351216618        | 3.815782947    | 93285 at   | 1.300014292      | 16.25728497  |
| FOSL1   | 204420 at   | 1.075107627        | 2.965207783    | 1417488 at   | 1.290424434        | 0.821459199    | 99835 at   | -0.03760981      | -7.458848546 |
| GLBX    | 209276 s at | 1 110123083        | 3 165966855    | 1416592 at   | 0.620143175        | -0 377596367   | 95722 at   | 1 358422991      | 26.07477847  |
| HDAC9   | 205659 at   | 1 407177541        | 5.013290395    | 1434572 at   | 1 900903875        | 0.57901606     | NA NA      | NA               | NA           |
| LAMBS   | 200000_at   | 1.052866705        | 0.070707535    | 1417012      | 0.53103814         | 3 (01(70(71    | 02750 -+   | 1 05 4 2 5 4 0 9 | 20.05552557  |
| CRIVIDO | 209270_at   | 1.052866705        | 0.8/0/9/535    | 141/612_a_at | 0.55102814         | -3.6316/36/1   | 92759_at   | 1.854265458      | 38.65552557  |
| LAMC2   | 207517_at   | 1.382477096        | 1.899102543    | 1421279_at   | 0.357314463        | -5.382765808   | 100428_at  | 1.259546633      | 42.34499896  |
| NAV3    | 204823_at   | 1.681084969        | 4.322071983    | 1456144_at   | 1.093424252        | 1.432516916    | NA         | NA               | NA           |
| PHLDA1  | 217997_at   | 0.976798614        | 2.237297511    | 1418835_at   | 1.218915852        | 0.914333008    | 160829_at  | 1.434815126      | 17.37798679  |
| SPRY2   | 204011_at   | 1.086896567        | 0.24856866     | 1436584_at   | 1.525148674        | 6.922276652    | NA         | NA               | NA           |
| SPRY4   | 221489_s_at | 1.876731877        | 5.610182601    | 1445669_at   | 2.380211422        | 6.817248966    | 98278_at   | -0.018891529     | -7.671968992 |
| STC1    | 204597_x_at | 1.152724839        | 1.394438561    | 1450448_at   | 1.074527586        | 0.216654677    | NA         | NA               | NA           |
| MT1     | NA          | NA                 | NA             | 1451612_at   | 2.051313888        | 0.388564522    | 93573_at   | 2.612437655      | 54.67021075  |

a. Mut: mutant

b. Wt: wild type

c. FC: fold change

**Supplementary Table 1.** Meta-analysis of mouse and human data sets identifies 19 upregulated genes dependent on mutant KRAS expression. Summary of microarray analysis comparing human lung immortalized broncho-epithelial cells (AALE cells) expressing exogenous KRAS<sup>G12D</sup> over wild-type KRAS-expressing cell, mutant KRAS MEFs over wild-type MEFs and Kras<sup>LA2</sup> mouse lung adenocarcinoma tumors over normal lung tissue. Selected genes include those with a LogFC>1 and B>0 in at least 2 out of the 3 microarray analyses.

| GEO       | Sample   | SitePrimary_lung | HistologySubtype_lung             | Histology_AC | KRAS status              |
|-----------|----------|------------------|-----------------------------------|--------------|--------------------------|
| GSM886858 | A549     | lung             | non_small_cell_carcinoma          | carcinoma    | KRAS mut                 |
| GSM886861 | ABC1     | lung             | non_small_cell_carcinoma          | carcinoma    | wt                       |
| GSM886905 | CAL12T   | lung             | non_small_cell_carcinoma          | NA           | wt (BrafG466V)           |
| GSM886915 | CALU3    | lung             | adenocarcinoma                    | carcinoma    | wt                       |
| GSM886990 | DV90     | lung             | adenocarcinoma                    | carcinoma    | KRAS mut                 |
| GSM887034 | HCC1171  | lung             | non_small_cell_carcinoma          | NA           | KRAS mut                 |
| GSM887036 | HCC1195  | lung             | mixed_adenosquamous_carcinoma     | carcinoma    | NRAS mut                 |
| GSM887050 | HCC2279  | lung             | adenocarcinoma                    | carcinoma    | wt (EGFR mut)            |
| GSM887051 | HCC2935  | lung             | non_small_cell_carcinoma          | NA           | wt (EGFR)                |
| GSM887053 | HCC366   | lung             | mixed_adenosquamous_carcinoma     | carcinoma    | wt (DDR2 mut)            |
| GSM887055 | HCC4006  | lung             | adenocarcinoma                    | carcinoma    | wt (EGFR)                |
| GSM887056 | HCC44    | lung             | adenocarcinoma                    | carcinoma    | KRAS mut                 |
| GSM887059 | HCC78    | lung             | adenocarcinoma                    | carcinoma    | wt (SLC34A2–ROS1 fusion) |
| GSM887060 | HCC827   | lung             | adenocarcinoma                    | carcinoma    | wt (EGFR mut)            |
| GSM887093 | HS229T   | lung             | adenocarcinoma                    | carcinoma    | wt                       |
| GSM887104 | HS618T   | lung             | adenocarcinoma                    | carcinoma    | wt                       |
| GSM887285 | LXF289   | lung             | adenocarcinoma                    | carcinoma    | wt                       |
| GSM887339 | MORCPR   | lung             | adenocarcinoma                    | carcinoma    | wt                       |
| GSM887358 | NCIH1355 | lung             | adenocarcinoma                    | carcinoma    | KRAS mut                 |
| GSM887359 | NCIH1373 | lung             | adenocarcinoma                    | carcinoma    | wt                       |
| GSM887361 | NCIH1395 | lung             | adenocarcinoma                    | carcinoma    | wt (Braf)                |
| GSM887362 | NCIH1435 | lung             | non_small_cell_carcinoma          | carcinoma    | wt                       |
| GSM887364 | NCIH1437 | lung             | adenocarcinoma                    | carcinoma    | wt (MEK1)                |
| GSM887366 | NCIH1563 | lung             | adenocarcinoma                    | carcinoma    | wt                       |
| GSM887367 | NCIH1568 | lung             | non_small_cell_carcinoma          | carcinoma    | wt                       |
| GSM887368 | NCIH1573 | lung             | adenocarcinoma                    | carcinoma    | KRAS mut                 |
| GSM887371 | NCIH1623 | lung             | adenocarcinoma                    | carcinoma    | wt                       |
| GSM887372 | NCIH1648 | lung             | adenocarcinoma                    | carcinoma    | wt                       |
| GSM887373 | NCIH1650 | lung             | bronchioloalveolar_adenocarcinoma | carcinoma    | wt (EGFR mut)            |
| GSM887374 | NCIH1651 | lung             | adenocarcinoma                    | carcinoma    | wt                       |
| GSM887375 | NCIH1666 | lung             | bronchioloalveolar_adenocarcinoma | carcinoma    | wt (BRAFG466V)           |
| GSM887376 | NCIH1693 | lung             | adenocarcinoma                    | carcinoma    | wt                       |
| GSM887378 | NCIH1703 | lung             | adenocarcinoma                    | carcinoma    | wt                       |
| GSM887379 | NCIH1734 | lung             | adenocarcinoma                    | carcinoma    | KRAS mut                 |
| GSM887380 | NCIH1755 | lung             | adenocarcinoma                    | carcinoma    | wt (BRAFG469A)           |
| GSM887381 | NCIH1781 | lung             | bronchioloalveolar_adenocarcinoma | carcinoma    | wt (ERBB2)               |
| GSM887382 | NCIH1792 | lung             | adenocarcinoma                    | carcinoma    | KRAS mut                 |

| L         | 1         |                 |                                   |           |                         |
|-----------|-----------|-----------------|-----------------------------------|-----------|-------------------------|
| GSM887383 | NCIH1793  | lung            | non_small_cell_carcinoma          | carcinoma | wt                      |
| GSM887385 | NCIH1838  | lung            | non_small_cell_carcinoma          | carcinoma | wt                      |
| GSM887390 | NCIH1944  | lung            | non_small_cell_carcinoma          | carcinoma | wt                      |
| GSM887393 | NCIH1975  | lung            | non_small_cell_carcinoma          | carcinoma | EGFR                    |
| GSM887394 | NCIH2009  | lung            | adenocarcinoma                    | carcinoma | KRAS mut                |
| GSM887395 | NCIH2023  | lung            | adenocarcinoma                    | carcinoma | wt                      |
| GSM887397 | NCIH2030  | lung            | non_small_cell_carcinoma          | carcinoma | KRAS mut                |
| GSM887401 | NCIH2085  | lung            | adenocarcinoma                    | carcinoma | wt                      |
| GSM887402 | NCIH2087  | lung            | adenocarcinoma                    | carcinoma | NRAS mut/Braf mut       |
| GSM887405 | NCIH2110  | lung            | non_small_cell_carcinoma          | NA        | wt (RST1 mutation)      |
| GSM887407 | NCIH2122  | lung            | adenocarcinoma                    | carcinoma | KRAS mut                |
| GSM887408 | NCIH2126  | lung            | adenocarcinoma                    | carcinoma | wt                      |
| GSM887415 | NCIH2228  | lung            | adenocarcinoma                    | carcinoma | wt (ALK fusion)         |
| GSM887418 | NCIH2291  | lung            | adenocarcinoma                    | carcinoma | wt (EGFR mut)           |
| GSM887419 | NCIH2342  | lung            | adenocarcinoma                    | carcinoma | wt                      |
| GSM887420 | NCIH2347  | lung            | adenocarcinoma                    | carcinoma | KRAS mut                |
| GSM887421 | NCIH23    | lung            | non_small_cell_carcinoma          | carcinoma | KRAS mut                |
| GSM887422 | NCIH2405  | lung            | adenocarcinoma                    | carcinoma | wt                      |
| GSM887423 | NCIH2444  | lung            | non_small_cell_carcinoma          | NA        | Kras mut                |
| GSM887426 | NCIH322   | lung            | adenocarcinoma                    | carcinoma | wt (KRAS amplification) |
| GSM887427 | NCIH358   | lung            | bronchioloalveolar_adenocarcinoma | carcinoma | KRAS mut                |
| GSM887428 | NCIH441   | lung            | adenocarcinoma                    | carcinoma | KRAS mut                |
| GSM887434 | NCIH522   | lung            | non_small_cell_carcinoma          | carcinoma | wt                      |
| GSM887439 | NCIH650   | lung            | bronchioloalveolar_adenocarcinoma | carcinoma | wt                      |
| GSM887448 | NCIH838   | lung            | non_small_cell_carcinoma          | carcinoma | wt (KRAS amplification) |
| GSM887450 | NCIH854   | lung            | adenocarcinoma                    | carcinoma | wt                      |
| GSM887505 | PC14      | lung            | non_small_cell_carcinoma          | carcinoma | wt                      |
| GSM887532 | RERFLCAD1 | lung            | adenocarcinoma                    | carcinoma | KRAS mut                |
| GSM887533 | RERFLCAD2 | lung            | adenocarcinoma                    | carcinoma | KRAS mut                |
| GSM887535 | RERFLCKJ  | lung            | non_small_cell_carcinoma          | carcinoma | wt                      |
| GSM887536 | RERFLCMS  | lung            | non_small_cell_carcinoma          | carcinoma | wt                      |
|           |           |                 |                                   |           |                         |
| GSM886897 | C2BBE1    | large_intestine | carcinoma                         | C2BBe1    | NA / Wild-type          |
| GSM886924 | CCK81     | large_intestine | carcinoma                         | CCK-81    | NA / Wild-type          |
| GSM886933 | CL11      | large_intestine | carcinoma                         | CL-11     | p.Q61H,p.V14I           |
| GSM886934 | CL14      | large_intestine | carcinoma                         | CL-14     | NA / Wild-type          |
| GSM886935 | CL34      | large_intestine | carcinoma                         | CL-34     | NA / Wild-type          |
| GSM886936 | CL40      | large_intestine | carcinoma                         | CL-40     | p.G12D                  |
| GSM886940 | COLO205   | large_intestine | carcinoma                         | COLO 205  | NA / Wild-type          |
| GSM886941 | COLO320   | large_intestine | carcinoma                         | COLO-320  | NA / Wild-type          |
| GSM886943 | COLO678   | large_intestine | carcinoma                         | COLO-678  | NA / Wild-type          |

Supplementary Table 2. Annotation of LAC and CRC cell lines from the Cancer Cell line Encyclopedia.

| IHC<br>slide | Patient<br>No. | Sex | Age | PDAC Histology                             | Localization | G1 | G2 | G3 | pTNM           | stage    | Survival<br>in mo. |
|--------------|----------------|-----|-----|--------------------------------------------|--------------|----|----|----|----------------|----------|--------------------|
| 1            | 10596          | м   | 51  | ductal adenocarcinoma                      | head         |    | G2 |    | pT3N0M0        | Ш        | 12.00              |
| 2            | 51522          | F   | 78  | ductal adenocarcinoma                      | body, tail   |    | G2 |    | pTxNxM1        | IVB      | 14.07              |
| 3            | 49634          | F   | 57  | ductal adenocarcinoma                      | head         |    |    | G3 | pT1NxM1        | IVB      | 9.00               |
| 4            | 55988          | F   | 76  | ductal adenocarcinoma                      | head         |    | G2 |    | pT3N0M0        |          | 2.25               |
| 5            | 57120          | F   | 78  | ductal adenocarcinoma                      | head         |    | G2 |    | pT3N0M0        |          | 6.20               |
| 6            | 57020          | F   | 59  | ductal adenocarcinoma                      | head         |    | G2 |    | pT3N0M0        |          | 7 80               |
| 7            | 56308          | м   | 68  | ductal adenocarcinoma                      | head         |    |    | G3 | pT3N1aM0       |          | 0.67               |
| 8            | 55503          | м   | 46  | ductal adenocarcinoma                      | head         |    | G2 |    | pT3N0M0        |          | 8 13               |
| 9            | 58826          | м   | 68  | mucinous<br>cystadenocarcinoma<br>invasive | head         |    | G2 |    | pT3N1bM0       |          | 11.83              |
| 10           | 57647          | м   | 72  | undifferentiated carcinoma                 | head         |    |    | G3 | pT3N1bM0       | Ш        | 1.80               |
| 11           | 59871          | м   | 74  | ductal adenocarcinoma                      | head         |    | G2 |    | pT3N0M0        |          | 10.13              |
| 12           | 62999          | м   | 57  | ductal adenocarcinoma                      | body         |    | G2 |    | pTxNxM1        | IVB      | 1.70               |
| 13           | 60608          | м   | 69  | ductal adenocarcinoma                      | head         |    | G2 |    | pT3N0M0        |          | 4 10               |
| 14           | 62095          | м   | 73  | ductal adenocarcinoma                      | head         |    |    | G3 | pT3N0M1        |          | 3.97               |
| 15           | 61365          | F   | 84  | ductal adenocarcinoma                      | head         |    |    | G3 | pT3NxM0        |          | 1.00               |
| 16           | 12753/07       | F   | 68  | ductal adenocarcinoma                      | head         |    | G2 |    | pTxNxMx        | 2        | 6.93               |
| 17           | 11961/07       | F   | 81  | ductal adenocarcinoma                      | body         |    | G2 |    | pTxNxMx        | 2        | 9.93               |
| 18           | 1916-          | F   | 64  | ductal adenocarcinoma                      | bead         | G1 |    |    | pT3N0M0        |          | 11 10              |
| 19           | 21056          | . м | 80  | ductal adenocarcinoma                      | head         |    |    | G3 | pT4N1aM0       | <br>Ι\/Δ | 2 30               |
| 20           | 264126         |     | 61  | ductal adenocarcinoma                      | head         |    | 62 | 00 | pT4N1M1        | IVR      | 1.60               |
| 20           | 267373         |     | 71  | ductal adenocarcinoma                      | ogon         |    | 02 | G3 | pT4N0M0        |          | 0.70               |
| 21           | 201313         |     | 60  | mucinous noncystic                         | body         |    |    | 00 | pT4N0M0        |          | 0.70               |
|              | 212309         | IVI | 09  | mucinous                                   | body         |    |    | 03 | p14N0IVI0      | IVA      | 2.31               |
| 23           | 275118         | м   | 53  | invasive                                   | body         |    | G2 |    | pT3NxMx        | Ш        | 60.00              |
| 24           | 283726         | м   | 57  | ductal adenocarcinoma                      | head         |    |    | G3 | pT1N0M0        | 1        | 3.10               |
| 25           | 291904         | м   | 65  | carcinoma                                  | head         | G1 |    |    | pT3N1bM0       | Ш        | 22.00              |
| 26           | 62888          | F   | 73  | ductal adenocarcinoma                      | head         |    |    | G3 | pT4N1bM1       | IVB      | 0.97               |
| 27           | 3037           | м   | 52  | ductal adenocarcinoma                      | head         |    | G2 |    | pT1N0M0        | 1        | 1.97               |
| 28           | 41714          | F   | 60  | ductal adenocarcinoma                      | head         |    | G2 |    | pT4N1bM1       | IVB      | 1.10               |
| 29           | 30250          | F   | 75  | ductal adenocarcinoma                      | head         |    | G2 |    | pT2N0M0        | 1        | 60.00              |
| 30           | 13374          | F   | 71  | ductal adenocarcinoma                      | body         |    | G2 |    | pT1N0M0        | 1        | 60.00              |
| 31           | 36427          | М   | 66  | ductal adenocarcinoma                      |              |    | G2 |    | pT3N0M0        | Ш        | 6.60               |
| 32           | 33441          | М   | 76  | ductal adenocarcinoma                      | head         |    | G2 |    | pT4NxM1        | IVB      | 3.10               |
| 33           | 31201          | М   | 72  | ductal adenocarcinoma                      | head         |    |    | G3 | pT4NxM1        | IVB      | 1.87               |
| 34           | 25956          | М   | 71  | ductal adenocarcinoma                      | head, body   |    |    | G3 | pT2N0M0        | 1        | 16.07              |
| 35           | 4173           | М   | 55  | ductal adenocarcinoma                      | head         |    |    | G3 | pT4N0M1<br>IVB | IVB      | 5.77               |
| 36           | 21909          | F   | 54  | ductal adenocarcinoma                      | head, body   |    | G2 |    | pT4N1bM1       | IVB      | 16.00              |

| 37 | 49616         | М | 61 | ductal adenocarcinoma                      |            | G2 |    | pT3N0M0  | Ш   | 18.97 |
|----|---------------|---|----|--------------------------------------------|------------|----|----|----------|-----|-------|
| 38 | 43302         | м | 56 | ductal adenocarcinoma                      | head       |    | G3 | pT2N0M0  | 1   | 23.00 |
| 39 | 43236         | F | 61 | ductal adenocarcinoma                      | head       | G2 |    | pT4N1aM0 | IVA | 0.50  |
| 40 | 38753         | м | 50 | ductal adenocarcinoma                      | head       | G2 |    | pT4NxM1  | IVB | 0.90  |
| 41 | 3782          | F | 77 | ductal adenocarcinoma                      | head       | G2 |    | pT4NxM1  | IVB | 8.83  |
| 42 | 46912         | F | 74 | ductal adenocarcinoma                      | head       |    | G3 | pT4NxM1  | IVB | 2.07  |
| 43 | 9304          | м | 59 | mixed:ductal adenoca and squamous ca.      | head       | G2 |    | pT4N0M0  | IVA | 20.17 |
| 44 | 24255         | М | 70 | ductal adenocarcinoma                      | head       |    | G3 | pT3N1bM0 | Ш   | 5.10  |
| 45 | 24048         | м | 67 | ductal adenocarcinoma                      | head, body |    | G3 | pT4N1bM1 | IVB | 2.80  |
| 46 | 3072          | F | 67 | ductal adenocarcinoma                      | head       | G2 |    | pTxNxM1  | IVB | 5.20  |
| 47 | 13470         | м | 78 | ductal adenocarcinoma                      | head       |    | G3 | pTxNxM1  | IVB | 7.00  |
| 48 | 41895         | м | 68 | ductal adenocarcinoma                      | head       |    | G3 | pT4N1aMx | IVA | 2.20  |
| 49 | 15943         | F | 75 | ductal adenocarcinoma                      | head       | G2 |    | pTxNxM1  | IVB | 16.27 |
| 50 | 23007/09      | F | 51 | ductal adenocarcinoma                      |            | G2 |    | pT3N1M0  | Ш   | 2.17  |
| 51 | 13747         | F | 71 | ductal adenocarcinoma                      |            | G2 |    | pT3N0M0  | Ш   | 0.80  |
| 52 | 299764-<br>5  | F | 65 | mucinous<br>cystadenocarcinoma<br>invasive | head       | G2 |    | pT2N0M0  | IB  | 14.07 |
| 53 | 300889-<br>2  | F | 52 | ductal adenocarcinoma                      | head       |    | G3 | pTxNxMx  | ?   | 12.03 |
| 54 | 313652        | F | 72 | ductal adenocarcinoma                      | head       | G2 |    | pTxNxMx  | ?   | 6.10  |
| 55 | 315472-<br>8  | м | 48 | signet ring carcinoma                      | head       |    | G3 | pTxN1M0  | ш   | 60.00 |
| 56 | 320316        | F | 51 | ductal adenocarcinoma                      | head, body |    | G3 | pT4N1M1  | IV  | 6.13  |
| 57 | 329351        | м | 44 | ductal adenocarcinoma                      | head       | G2 |    | pT4N1M1  | IV  | 5.80  |
| 58 | 331091        | М | 82 | ductal adenocarcinoma                      | head       |    | G3 | pT4N1M1  | IV  | 2.20  |
| 59 | 338141        | М | 48 | mucinous noncystic<br>carcinoma            | head       | G2 |    | pT3N0M0  | IIA | 8.10  |
| 60 | 340255-<br>1  | F | 67 | anaplastic carcinoma                       | body       |    | G3 | pT3N0M0  | IIA | 3.03  |
| 61 | 357321-<br>1  | F | 67 | mucinous noncystic<br>carcinomatrzon       |            | G2 |    | pT3N0M0  | IIA | 9.50  |
| 62 | 359343-<br>1  | М | 69 | ductal adenocarcinoma                      | head       | G2 |    | pT3N0M0  | IIA | 5.07  |
| 63 | 385507-<br>3  | М | 61 | ductal adenocarcinoma                      | head       | G2 |    | pT3N0M0  | IIA | 4.40  |
| 64 | 392798-<br>2  | М | 80 | ductal adenocarcinoma                      | head       | G2 |    | pT3N0M0  | IIA | 4.20  |
| 65 | 394421        | F | 53 | ductal adenocarcinoma                      | head       | G2 |    | pTxNxM1  | IV  | 15.50 |
| 66 | 398813-<br>5a | м | 54 | mucinous<br>cystadenocarcinoma<br>invasive | head, body | G2 |    | pT3N1M0  | IIB | 10.70 |
| 67 | 403590-<br>1  | М | 83 | ductal adenocarcinoma                      | head       |    | G3 | pTxNxM1  | IV  | 1.50  |
| 68 | 404894-<br>1  | М | 72 | ductal adenocarcinoma                      | head       | GX |    | pTxNxM1  | IV  | 7.03  |
| 69 | 410122-<br>2  | F | 69 | mucinous noncystic<br>carcinoma            |            | G2 |    | pT3N0M0  | IIA | 12.50 |
| 70 | 419082-<br>4a | F | 56 | mucinous noncystic<br>carcinoma            |            |    | G3 | pT3N0M0  | IIA | 4.80  |
| 71 | 298162-<br>6  | F | 46 | ductal adenocarcinoma                      | head       | G2 |    | pT3N0M0  | IIA | 10.20 |
| 72 | 48187         | F | 67 | ductal adenocarcinoma                      | głowa      | G2 |    | pT2N1bM0 | Ш   | 13.27 |

Supplementary Table 3. Information on PDAC patients' clinical data.