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Supplementary Methods

STABILITY ANALYSIS OF DISTRESS PROPAGATION

In this section we derive, under general mild assumptions, the criteria for carrying out the stability analysis of
distress propagation in interbank networks, and we show how the stability of a system of n banks is related to its
interbank leverage matrix. The first important ingredient is the balance-sheet consistency at all times t. The balance
sheet of a bank is composed by assets and liabilities. The former have positive economic value (e.g. loans towards
customers or towards other banks, stocks, derivatives, real estate), while the latter have negative economic value
(e.g. deposits, debits towards other banks). In both cases, we distinguish between interbank and external assets or
liabilities. Interbank assets (liabilities) are credits (debits) of banks towards other banks, while we call external all
other assets and liabilities. We denote by Aij(t) the value at time t of a loan from bank i to bank j, and by Lji(t) the
corresponding liability. External assets and liabilities of bank i at time t are denoted by AE

i (t) and LE
i (t), respectively.

Finally, the equity Ei(t) of bank i at time t is defined as the difference between its assets and liabilities:

Ei(t) = AE
i (t)− LE

i (t) +

n∑
j=1

Aij(t)− Lij(t) . (1)

Assets and liabilities in the balance sheet of a bank depend on time along multiple time-scales. For example, money
borrowed from another bank through an interbank loan will remain in the balance sheet until the expiration of the
loan. Another example is that deposits (which in this context are external liabilities) might significantly decrease over
time as consumers are able to save less money or as other banks become more attractive for depositors. Over shorter
time-scales the value of assets can change because banks constantly assess their market value. In other words, banks
estimate how much an asset would be worth if it were to be sold today and converted into cash, presumably to pay
back other liabilities. Such procedure is known as marking-to-market and it is influenced, among the other things,
by considerations about the liquidity of the asset and the probability of default of the counterparty. Let us suppose
that bank i issued an interbank loan to bank j for a certain amount of money (the face value); as the probability of
default of bank j increases bank i will expect to recover less than the face value and the value of the corresponding
interbank assets in its balance sheet will change accordingly.

Here we will focus precisely on such short time-scale dynamics and on a specific asset class: interbank assets
and liabilities. Hence, the expiration of contracts (as interbank loans) will be far away in the future and the time
dependence of assets and liabilities will be due entirely due to marking-to-market and not to structural changes in
the balance sheets. From this perspective it is easy to realise that liabilities do not depend on time. Actually, the
fact that bank i might expect to recover less than the face value of its interbank loan towards bank j does not change
the fact that bank j still has to pay bank the full face value of the loan, which in its balance sheet appears as an
interbank liability.

We follow the assumption, common in the literature on financial contagion, that a bank defaults if its equity becomes
negative. The rationale is that the market value of the bank’s assets, i.e. the amount of cash that it could be made
by liquidating the entire pool of its assets, would not be enough to pay back its liabilities. This assumption implies
that balance sheet insolvency is a proxy for default and somehow neglects the liquidity aspects. In fact, a bank with
positive equity but no liquidity might default on its payments if it is not able to meet its payment deadlines. However,
missing a due payment might or might not trigger a default event, depending on the intricacies of bankruptcy laws,
which can vary from country to country. Considering a bank in default when its equity is negative also allows us to
abstract from such details.

Interbank loans are established at time t = 0, at which point in time their market value Aij(0) will coincide with
their face value; otherwise the face value would have been different and would have matched the market value. Let us
denote with pj(t) the probability that bank j defaults before the expiration of its loan (i.e. in the far future) estimated
at time t; the bank has obviously not defaulted at time t yet, otherwise its probability of default would be one. At a
later time t bank i will estimate that at the expiration of the loan it will recover the face value Aij(0) with probability
1 − pj(t − 1) (the probability that bank j will not default) and a smaller value Rij with probability pj(t − 1) (the
probability that bank j will default). Therefore, interbank assets will be marked-to-market in the following way:

Aij(t) = Aij(0)(1− pj(t− 1)) +Rijpj(t− 1) . (2)

The time delay from the r.h.s. and the l.h.s. of (2) accounts for the time needed for the information about the
probability of default of borrowers to be incorporated into the assessment of lenders.

The scenario we have in mind is to initially stress the system via an exogenous shock to external assets, i.e.
AE

i (0) → AE
i (1) < AE

i (0). Balance sheet consistency (1) implies that such shock will result in losses in equity. We
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assume that no additional cash flow (neither positive nor negative) enters the system subsequently. It is reasonable
that the probability, estimated at time t, that the default of bank j occurs before the expiration of the loan depends on
the equity losses experienced by bank j up to time t. More specifically, we expect that, as the equity losses increase,
also the probability of default will increase and, via (2), interbank assets will be devaluated. This, in turn, will lead
(again via (1)) to a change in equity. In subsequent rounds external assets do not change and propagation of shocks
continues only by iterating such dynamic through the interbank channel. As a consequence, two terms contribute to
the loss in equity of bank i between time 0 to time t: the loss in external assets between time 0 and time 1 and the
loss in interbank assets up to time t:

Ei(0)− Ei(t) = AE
i (0)−AE

i (1) +

n∑
j=1

[Aij(0)−Rij ] pj(t− 1). (3)

The aforementioned assumption that a bank defaults if its equity becomes negative implies that the probability of
default is a function of the equity. Equivalently, the probability of default can be seen as a function of the equity loss
measured with respect to a reference point, as the equity at time zero. By defining hi(t), the relative loss of equity at
time t for bank i, as

hi(t) =
Ei(0)− Ei(t)

Ei(0)
, (4)

and:

Λ̂ij =
Aij(0)−Rij

Ei(0)
, (5)

we can re-write (3) as:

hi(t) = hi(1) +

n∑
j=1

Λ̂ijpj(hj(t− 1)) , (6)

where we the probability of default of bank j has been written as an explicit function of its relative equity loss hj . We
stress that the assumptions made so far (balance sheets consistency, fair re-evaluation of interbank assets, probability
of default as a generic function of the equity) can be considered accounting first principles.

Usually Rij , the amount recovered by the lender bank i in case of default of the borrower bank j, is assumed to be
a fraction ρj of the face value Aij(0), independent of the lender bank i:

ρj =
Aij(0)

Rij
(7)

and it is known as recovery rate. Eq. (5) becomes:

Λ̂ij = Λij(1− ρj) , (8)

where

Λij =
Aij(0)

Ei(0)
, (9)

is the interbank leverage matrix.
Let us now detail the assumptions on the functions pj(h). First, such functions map the interval [0, 1] into itself,

i.e. pj : [0, 1] → [0, 1], as both the relative equity loss and the probability of default take values in such interval.
Second, pj(0) = 0, which simply means that the probability of default is zero if no losses have been experienced.
Third, pj(1) = 1, which means that when all equity has been wiped out, the probability of default is one. Fourth,
pj are increasing and convex functions. The last two requirements rest on economic motivations. In fact, the larger
the equity losses experienced, the larger the probabilities of default. Moreover, the probability of default is expected
to increase only marginally for small equity losses (such as those experienced from daily fluctuations of the equity),
while, when a bank is close to defaulting (hj ' 1) even a small variation in equity can have a large influence on the
probability of default. Fifth, we will assume that such functions are differentiable in the interval [0, 1].

Since the relative equity loss cannot become larger than one and given that the probabilities of default are increasing
functions of the relative equity loss, the map h(t+ 1) = f(h(t)) satisfies the hypotheses of Knaster-Tarski fixed point
theorem, meaning that at least a fixed point of such map exists.
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Let us now investigate the stability criterion. More precisely we are interested in the condition that will allow,
starting from the initial condition h(1), the limit limt→∞ h(t) to exist and to be finite. The starting point here is the
linear version of the dynamics (6), i.e. with pj(h) = h, for all j:

hLi (t) = hi(1) +

n∑
j=1

Λ̂ijh
L
j (t− 1) , (10)

where use the superscript L to explicitly distinguish the relative loss from that computed using (6). The fixed point
h̄L of (10) is:

h̄L = (1− Λ̂)−1h(1) . (11)

We will discuss later the significance of the linear dynamics, which at this stage is merely instrumental to our proof. We
now observe that hj(t) ≤ hLj (t), for all j and t. In order to prove it we proceed by induction; first, h(1) = hL(1); second,

by assuming hj(t− 1) ≤ hLj (t− 1), using the convexity of probability of default we have pj(hj(t− 1)) ≤ hLj (t− 1) and,

by using (6) and (10), we easily prove the proposition. Now, if the largest eigenvalue of Λ̂ is smaller than one, the fixed
point h̄L will be stable, i.e. limt→∞ hL(t) = h̄L, therefore also the limit limt→∞ h(t) = h̄ will be finite, and moreover
h̄ ≤ h̄L. Assuming that shocks are small enough, the fixed point will be within the hypercube [0, 1]× . . .× [0, 1].

In order to investigate the instability criterion let us assume for a moment that (at least) one fixed point h̄ exist
within the the hypercube [0, 1]× . . .× [0, 1], meaning that:

h̄i = hi(1) +
∑
j

Λ̂ijpj(h̄j) . (12)

We can study the dynamics of perturbations around such fixed point by subtracting h̄ from both sides of (6):

hi(t)− h̄i = hi(1)− h̄i +

n∑
j=1

Λ̂ijpj(hj(t− 1))

= hi(1)− h̄i +

n∑
j=1

Λ̂ijpj(h̄j + hj(t− 1)− h̄j)

' hi(1)− h̄i +

n∑
j=1

Λ̂ij

[
pj(h̄j) + p′j(h̄j)

(
hj(t− 1)− h̄j

)]
= hi(1)− h̄i +

n∑
j=1

Λ̂ijpj(h̄j) +

n∑
j=1

Λ̂ijp
′
j(h̄j)

[
hj(t− 1)− h̄j

]
=

n∑
j=1

Λ̂ijp
′
j(h̄j)

[
hj(t− 1)− h̄j

]
,

(13)

where in the fourth line we have used (12). From the last line of (13) it is clear that h̄ is unstable (stable) if the

largest eigenvalue of Λ̂ijp
′
j(h̄j) is larger (smaller) than one. We know recall that, since pj are convex functions, p′j are

increasing functions, implying that p′j(0) ≤ p′j(h̄j). As a consequence, the largest eigenvalue of

Λ̃ij = Λ̂ijp
′
j(0) (14)

is smaller than or equal to the largest eigenvalue of Λ̂ijp
′
j(h̄j) (see e.g. Corollary 8.1.19 in [1]). Therefore, if the largest

eigenvalue of Λ̃ is larger than one, all fixed points will be unstable.

Let us now denote for convenience with λ̂max the largest eigenvalue of Λ̂ and with λ̃max the largest eigenvalue of
Λ̃. Moreover, given that pj(0) = 0, pj(1) = 1, and that pj are convex, we have that p′j(0) < 1 and thus (again using
Corollary 8.1.19 in [1]):

λ̃max ≤ λ̂max . (15)

We can therefore have three possible situations. First, λ̃max ≤ λ̂max < 1, meaning that both the linear dynamics

and the non-linear dynamics are stable. Second, 1 < λ̃max ≤ λ̂max and both the linear dynamics and the non-linear



S4

dynamics are unstable. Third, λ̃max < 1 < λ̂max, in which case the linear dynamics will be unstable, while the
non-linear dynamics could be either stable or unstable.

An important observation of that the stability criterion depends on the matrix Λ̂, which does not contain the

probabilities of default. Hence, if we have a network whose λ̂max is smaller than one, the dynamics on that network will
be stable, no matter which probabilities of defaults we have chosen. On the contrary, the instability criterion depends
on the matrix Λ̃, which contains the probabilities of default. If we have a network whose λ̃max is larger than one, we
can always find a local deformation of probabilities of default close to the origin such that p′j(0)→ p′j(0)/(λ̃max + ε),
making the system with the new probability of default stable. This result formalises the following intuition. The initial
state of the system is such that there are no losses (h(0) = 0) and the probabilities of default are zero (pj(0) = 0). If
we now are able to decrease by an arbitrary large amount the rate with which such probabilities of default become
larger than zero, we will always be able to make the system stable.

From the vantage point of the previous observation it makes sense to give the following definition. Given the
dynamical system in (6), with probabilities of default satisfying the aforementioned hypotheses and with recovery
rates ρj , we define a pathway towards instability as a sequence of networks Λ(0),Λ(1), . . . ,Λ(k) such that i) the

dynamics corresponding to Λ(0) is stable for all choices of probabilities of default, ii) there exist at least one choice
of probabilities of default such that the dynamics corresponding to Λ(k) is unstable, and iii) there exist ` > 0, such

that
∑

ij Λ
(k)
ij /n = `, for all k. The last requirement implies that the average interbank leverage is the same for

all the networks in the sequence. In absence of such requirement, one could easily build trivial pathways towards
instability, e.g. by arbitrary increasing the weights of the interbank leverage matrix. Suppose now that we have a

sequence of networks and want to check if such sequence is a pathway towards instability. First, we can check if λ̂
(0)
max

(the largest eigenvalue of Λ̂(0)) is smaller than one, implying that the corresponding dynamics is stable for all choices

of probabilities of default. Second, we can check if λ̂
(k)
max (the largest eigenvalue of Λ̂(k)) is larger than one, meaning

that it exists at least a choice for probability of defaults such that the dynamics is unstable. In fact, Λ̃(k) = Λ̂(k) if
we choose pj(h) = h, for all j. As a consequence in order to check if a sequence of networks is a pathway towards

instability we simply have to compute the largest eigenvalue of Λ̂ across the sequence of networks.

ADDING NODES

Erdős-Renyi

The crucial thereom that we will exploit is due to Silverstein [2] (Theorem 1.2). In a nutshell, let Λ be a n × n
matrix whose entries are random i.i.d. variables with mean µ > 0 and finite fourth moment. For sufficiently large n,
the largest eigenvalue λmax of Λ is:

λmax =
1

n

∑
i,j

Λij +O(n−1/2) . (16)

We will now specify the results of the theorem in the case in which the matrix Λ is the weighted adjacency matrix of a
random graph. We consider Erdős-Renyi graphs in which Λij = CijWij , with Cij ∈ {0, 1} andWij ∈ R+. The variables
Cij determine if an edge is present or not and have the bimodal distribution ρ(Cij) = pδ(Cij − 1) + (1 − p)δ(Cij).
The variables Wij are the weights associated with the edges and we leave their distribution unspecified (as long as
the fourth moment is finite).

We start with the case in which the network is not sparse, i.e. the case in which the average degree k̄ ≡∑ij Cij/n

is k̄ ' O(n), or equivalently p ' O(1) (in the sense that it does not scale with n). Let us define the variables Xi,
i = 1, . . . n, as the sums only over columns of Λ, i.e. Xi =

∑
j CijWij . As Cij and Wij are independent, we have:

〈Xi〉 = n〈Cij〉〈Wij〉 = np〈Wij〉 (17a)

varXi = n var(CijWij) = n
[
p〈W 2

ij〉 − p2〈Wij〉2
]
. (17b)

The next step is to compute
∑

iXi/n. As Xi are i.i.d. with finite variance, using (16) we have that λmax will be
normally distributed with

〈λmax〉 =
1

n
n〈Xi〉 = np〈Wij〉 (18a)
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varλmax =
1

n2
n varXi =

[
p〈W 2

ij〉 − p2〈Wij〉2
]
, (18b)

meaning that the relative fluctuation is
√

varλmax/〈λmax〉 ' 1/n.
In the case in which the graph is sparse, i.e. k̄ ' O(1) and p ' 1/n we know that the degree of each node has a

Poisson distribution with mean k̄. As a consequence, Xi will have a compound Poisson distribution with

〈Xi〉 = k̄〈Wij〉 (19a)

varXi = k̄〈W 2
ij〉 . (19b)

If we now compute the first two moments of
∑

iXi/n we find that:

〈λmax〉 =
1

n
n〈Xi〉 = k̄〈Wij〉 (20a)

varλmax =
1

n2
n varXi =

k̄〈W 2
ij〉

n
, (20b)

meaning that the relative fluctuation is
√

varλmax/〈λmax〉 ' 1/
√
n. Moreover, we can see that the fluctuation on

〈λmax〉 is of the same order of the correction in (16), therefore we are not able to compute the distribution of λmax in
this case.

In the previous derivation we assumed that all entries of the interbank leverage matrix are i.i.d., which is not
entirely true. In fact, in our networks a bank cannot extend a loan to itself, meaning that there are no loops (cycles of
length one), i.e. the diagonal of the weighted adjacency matrix is filled with zeros. To compute the relative correction
on 〈λmax〉 it will suffice to note that if λ is an eigenvalue of a matrix M , λ− a is an eigenvalue of the matrix M − aI.
As a consequence, in the case of sparse graphs, we have that 〈λmax〉 = np〈Wij〉 − p〈Wij〉 = (n− 1)p〈Wij〉. Since for
graphs without loops k̄ = (n − 1)p, we have that 〈λmax〉 = k̄〈Wij〉. In the case of sparse graphs the correction is
already accounted for in (20a), provided that the correct value of k̄ is used.

In both cases we have that λmax = k̄〈Wij〉, as n → ∞, but with different relative fluctuations. It is worth noting
that, when Λ is the matrix of interbank leverage, k̄〈Wij〉 is precisely the average interbank leverage `. Therefore, for
n → ∞, if ` > 1 the system will be unstable, while if ` < 1 it will be stable. However, if n is not large, fluctuations
are relevant, and a system can be stable even if ` > 1, and vice versa. We now provide an example of how adding
nodes to such a network can make the system unstable. We start by randomly generating an Erdős-Renyi graph with
given p and using an exponential distribution of weights with mean 〈Wij〉, so that ` > 1, stopping as soon as we find
a stable graph. We then proceed to add a new node at a time, by preserving the property that all entries of the
weighted adjacency matrix are i.i.d. and by keeping the density of edges (i.e. k̄) constant. In fact, if we devised a
growth process in which k̄ increases, the system would trivially become unstable. We use the following algorithm. Let
n be the number of nodes before the addition of a new node i. (i) We randomly form edges from node i and each of
the other n nodes with probability p; (ii) we draw a weight from the weight distribution for each of the new outgoing
edges from i: (iii) we rescale such weights multiplying them by (n − 1)/n; (iv) we randomly form edges from each
of the other n nodes to node i with probability p; (v) we draw a weight from the weight distribution for each of the
new incoming edges for i; (vi) we rescale the weights of all edges starting from the new neighbours of i (including the
ones towards node i) so that the sum of all weights of the edges coming out from those nodes do not change after the
addition of node i. In Supplementary Figure 1 we see a realisation of such process in which both the density of edges
and the average interbank leverage are roughly constant, while λmax becomes larger than one, driving the system
towards the instability. Let us note that such algorithm is designed to keep all interbank leverages of the pre-existing
nodes constant. However, the probability distribution of single entries of the interbank leverage matrix may vary from
a step of the algorithm to the next one. We have checked that the simpler variant in which one keeps the probability
distribution of single entries constant and the interbank leverage constant only on average yields the same results.

Regular Random Graphs and Scale-Free Graphs

In the previous section we have used the Silverstein’s theorem to prove the existence of a pathway towards instability
for growing Erdős-Renyi networks with i.i.d. weights. In the cases in which the theorem does not hold we can still
perform numerical experiments to check for the existence of a similar mechanism. The basic idea is to start from a
stable graph with average interbank leverage larger than one, to increase the number of its nodes in a way that both
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the topology of the network and the average interbank leverage do not change, and to see if during the process the
graph becomes unstable. In the remainder of this section we discuss the details of the above process for two specific
topologies.

We start from the case of regular random graphs, i.e. graphs in which all nodes have the same in-degree kin and
out-degree kout, i.e. kin = kout = k. In order to generate a directed random regular graph we start by generating
an undirected random regular graph by using the algorithm introduced by Steger and Wormald [3]. Clearly, by
interpreting such graph as an undirected one, all edges would be reciprocated (meaning that for any edge i→ j there
exists also the edge j → i). We therefore perform random edge re-wirings until the fraction of reciprocated edges
fell under a certain threshold (we use 0.5 in our numerical experiments). The next step is devise a process to add
nodes to a regular random graph such that the new graph is still a regular random graph with the same in-degree
and out-degree. To describe how the algorithm works let us add a the new node i. We then randomly select k
different pre-existing nodes Nout = {j1, . . . , jk} and, for any of such nodes, we select a random successor to build the
set Nin = {l1, . . . , lk}, making sure that Nout ∩ Nin = ∅. We proceed to add the edges j1 → i, . . . , jk → i. However,
the out-degree of nodes has now increased to k + 1. Therefore, we remove the edges j1 → l1, . . . , jk → lk and add
the edges i → l1, . . . , i → lk, so that the in-degrees and out-degrees of all nodes do not change. In order to preserve
the interbank leverages of the nodes j1, . . . , jk we simply set Λj1i = Λj1l1 , . . .Λjki = Λj1lk . The interbank leverage of
nodes l1, . . . , lk has not changed, since none of their out-coming edges where modified. In order to keep the average
interbank leverage ` constant, we simply randomly partition the interval [0, `] in k sub-intervals and assign the length
of the subintervals to the weights Λil1 , . . .Λilk .

In Supplementary Figure 2 we plot a set of trajectories of the largest eigenvalue of the interbank leverage matrix
for growing directed random regular graphs that cross the threshold between stability and instability, showing that
also in this case pathways towards instability exist.

We proceed to analyse the case of scale-free graphs. In order to generate random directed scale-free graphs we use
the algorithm introduced by Bollobás et al. [4]. Such algorithm implements a growth process that asymptotically leads
to directed scale-free graphs. As a consequence, in order to add nodes to our graphs we simply need to iterate it. Due
to distribution of the degree of nodes, if we drew all weights from the same distribution, interbank leverages would also
have a scale-free distribution whose average would be dominated by the few nodes with a very large degree. If both
degrees and interbank leverages have a scale-free distribution unstable cycles appear with a high probability and it is
not easy to find a graph that has both average interbank leverage larger than one and the largest eigenvalue smaller
than one. Therefore, we tune the distribution of the weights of outgoing edges such that the interbank leverages are,
on average, the same. For example, if weights are drawn from an exponential distribution, it will suffice that the mean
of the distribution from which the weights of the outgoing edges of any node are drawn is inversely proportional to
the out-degree of that node. Every time a new node is added the weights of its outgoing edges are assigned in the
same way. However, when a new node is added the algorithm in [4] can also introduce new edges between pre-existing
nodes. Therefore, for any node the weights of its pre-existing outgoing edges are rescaled by the ratio between the
new and the old degree of the node. Such procedure does not guarantee that the average interbank leverage stays
perfectly constant and, in fact, in the numerical experiments we observe that it weakly fluctuates. In order to remove
such residual fluctuations, it suffices to simply rescale the weights of all edges by the ratio between the new and the
old average interbank leverage.

In Supplementary Figure 3 we plot a set of trajectories of the largest eigenvalue of the interbank leverage matrix
for growing scale-free networks that cross the threshold between stability and instability, showing that also in this
case pathways towards instability exist.

Core-Periphery with Balance Sheets Data

In this section we consider a more realistic model of interbank networks. We start from the observation that
empirical studies [5, 6] have found that real interbank networks are compatible with a core-periphery topology. In
such graphs nodes belong to two disjoint sets, the core C and the periphery P. By properly ordering nodes, the
adjacency matrix of such graphs is a block matrix: [

CC CP

PC PP

]
,

where the block CC contains the edges from nodes in the core to nodes in the core, the block CP contains the edges
from nodes in the core to nodes in the periphery, and so on. The diagonal blocks correspond to two different Erdős-
Renyi sub-graphs. The off-diagonal blocks correspond to two bipartite random sub-graphs in which edges between
nodes in the core and in the periphery are independent and occur with the same probability. Hence, for a graph of
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given number of nodes, the core-periphery topology is fully determined by the fraction between nodes in core and
nodes in the periphery, and by the densities ρcc, ρcp, ρpc, ρpp of the edges in the four blocks.

We start by generating a random core-periphery network whose number of nodes matches the number of banks in
our dataset and by using the parameters estimated in [5] for the Italian interbank network. In order to assign weights
we proceed in the following way. Interbank exposures is considered very sensitive information to which only regulating
authorities might have access. In contrast, balance sheets of banks are public, but contain only a partial information
about interbank exposure. More specifically, the balance sheet of a bank lists the total interbank assets (i.e. the
amount of money lent to other banks) and the total interbank liabilities (i.e. the amount of money borrowed from
other banks). Apart from a few selected studies on data held by regulating authorities, the literature on interbank
networks approaches this problem by making some assumptions that allow to reconstruct the interbank exposures
from the limited information contained in the balance sheets. The choice of the right reconstruction technique is
dictated by several considerations, the most important of which is the kind of partial information available. In the
case in which the topology and the marginal interbank assets and liabilities are known, exposures can be reconstructed
by using the RAS algorithm [7]. The algorithm assigns exposures by assuming that, bank by bank, their distribution
maximises the entropy, consistently with the constraints on interbank assets and liabilities.

Generating a core-periphery graph is easy, one simply generates four Erdős-Renyi sub-graph, one for each block. It
is slightly more complicated to let the graph grow while the topology does not change. In order to keep the fraction
of nodes in the core and in the periphery constant, we assign a new node to the core with probability equal to the
desired fraction of nodes in the core and to the periphery with the complementary probability. In order to keep the
density of the four blocks we proceed in the following way. Let us denote with Nc (Np) the number of nodes in the
core (periphery) before the new node is added and with N ′c (N ′p) the the number of nodes in the core (periphery) after
the new node is added. Analogously, Ecc and E′cc are the number of edges between nodes in the core before and after
the new node has been added. We use similar notations for the number of edges corresponding to the other blocks.
Let us now suppose that a new node is added to the core, therefore in order to keep the density of the core-core block
constant we have:

ρcc =
Ecc

Nc(Nc − 1)
=

E′cc
N ′c(N

′
c − 1)

=
E′cc

(Nc + 1)Nc
, (21)

meaning that the number of edges to add between nodes belonging to the core is:

E′cc − Ecc = Ecc
Nc + 1

Nc − 1
− Ecc = 2Ecc

1

Nc − 1
= 2ρccNc . (22)

Hence after the node has been added, we also add 2ρccNc edges randomly chosen among the 2Nc possible edges
between the new node and all other nodes in the core. In order to keep the density of the core-periphery block
constant we have instead:

ρcp =
Ecp

NcNp
=

E′cp
N ′cN

′
p

=
E′cp

(Nc + 1)Np
, (23)

meaning that the number of edges to add from the core to the periphery is:

E′cp − Ecp = Ecp
Nc + 1

Nc
− Ecp = Ecp

1

Nc
= ρcpNp . (24)

Hence after the node has been added, we also add ρcpNcp edges randomly chosen between the possible Np edges
from the new node in the core to the nodes in the periphery. Similarly one finds that number of edges to add from
nodes in the periphery and the new node is ρpcNp, while no edges needs to be added between nodes in the periphery.
Proceeding in the same way one can derive the number of edges to add in all blocks when the new node belongs to
the periphery.

In order to check the existence of pathways towards instability here we proceed in a slightly different way. First, we
generate a sequence G0, . . . ,Gn of unweighted core-periphery graphs of increasing number of nodes so that the number
of nodes of the final graph Gn matches the number of banks in our dataset. We assign weights to such graph by using
the RAS algorithm (see above). Second, we remove the node in Gn, but not in Gn−1 and all its incoming and outgoing
edges. This is equivalent to transferring all the weights of the other edges on the unweighted graph Gn−1. In this way
the topology of the new graph is left unchanged. Third, in order to keep also the average interbank leverage constant
we rescale the weights of all edges by the ratio between the new and the old average interbank leverage. We iterate
the procedure until we reach the initial graph G0.

In this case we are traversing the pathway in the opposite directions, from instability to stability. Hence we only
keep those sequences such that the graph Gn is unstable. The reason why in this case we follow the pathway in the
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opposite direction is that, in order to proceed in the usual direction (i.e. by adding nodes) we would need to sample a
subset of banks in the dataset and to randomly add the other banks, one at a time. However, the average interbank
leverage would not remain constant along such process. In Supplementary Figure 4 we plot a set of trajectories of
the largest eigenvalue of the interbank leverage matrix for growing core-periphery networks that cross the threshold
between instability and stability, showing that also in this case pathways towards instability exist.
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Supplementary Figures
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Supplementary Figure 1. Adding nodes to an Erdős-Renyi graph. Example of growth process in which a stable network
with average interbank leverage larger than one becomes unstable as new banks are added to the system. We stress that the
crossing to the unstable regime is genuinely driven by the fact that fluctuations in the asymptotic distribution of λmax shrink
as n becomes larger: in fact the density of edges in the network stays roughly constant. Here the initial network has n = 20
and the weight distribution is exponential with mean ' 0.79.
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Supplementary Figure 2. Adding nodes to regular random graphs. Analogous of Supplementary Figure 1, but for
(directed) regular random graphs with in-degree and out-degree equal to ten. Here we show 10 different trajectories of networks
crossing from the stable to the unstable regime. For all trajectories both the topology and the average interbank leverage (which
is always larger than one) are constant along the whole trajectory. The initial network has n = 20 and the weight distribution
is exponential with mean ' 0.58.
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Supplementary Figure 3. Adding nodes to scale-free graphs. Analogous of Supplementary Figure 2, but for scale-free
graphs with tail exponents for the in-degree and out-degree distributions respectively equal to 2.15 and 2.7. Here we show 10
different trajectories of networks crossing from the stable to the unstable regime. For all trajectories both the topology and
the average interbank leverage (which is always larger than one) are constant along the whole trajectory. The initial network
has n = 1000 and the weight distribution of the outgoing of node i is exponential with mean 2/kout. Trajectories are prolonged
either until 500 nodes have been added or until the largest eigenvalue becomes larger than one.
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Supplementary Figure 4. Adding nodes to core-periphery graphs. Pathway towards instability travelled backwards,
i.e. from instability to stability as the number of banks decreases. The topology of graphs is core-periphery with realistic
parameters (see [5]). Here we show 10 different trajectories of networks crossing from the unstable to the stable regime. For
all trajectories both the topology and the average interbank leverage (which is always larger than one) are constant along the
whole trajectory. Initial weights are assigned using the RAS algorithm (see [7]) and are consistent with the balance sheets of
the Top 176 European banks for the year 2012 (source: Bankscope dataset). We have chosen the year 2012 as it is the year with
the smallest average interbank leverage (hence the year for which it is more difficult to observe unstable networks) larger than
one. Trajectories are prolonged until the largest eigenvalue becomes smaller than one. Pathways have been built backwards
for technical reasons, namely to keep the average interbank leverage constant while maintaining consistency with real balance
sheets (see main text).
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Supplementary Figure 5. Adding edges to the network of the top 50 European banks. Analogous of Figure 3 for years
from 2008 to 2013. For λmax < 1 the interbank network is stable (yellow region), while for λmax > 1 it is unstable (red region).
For comparison we also plot (dashed blue line) the average interbank leverage.
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