Mediation pathways and effects of green structures on respiratory mortality via reducing air pollution

Yu-Sheng Shen^a Shih-Chun Candice Lung^{a, b, c, *}

^a Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan.

^b Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan ^c Institute of Environmental Health, National Taiwan University, Taipei, Taiwan

*Corresponding author, Research Center for Environmental Changes, Academia Sinica, No. 128, Sec. 2, Academia Rd, Nangang, Taipei, Taiwan 11529; Tel: 886-2-26539885 ext. 277, Fax: 886-2-27833584, Email: sclung@rcec.sinica.edu.tw.

Supplementary Information

<u>1.Indicators of landscape metrics</u>

Table S1. Indicators of landscape metrics (class level)		
Indicator	Formula	Unit
Percentage of Landscape (PLAND)	$\left(\sum_{j=1}^{n} a_{ij} / A\right) (100)$ a_{ij} : area of patch <i>j</i> (class <i>i</i>). <i>A</i> : total landscape area.	%
Aggregation Index (AI)	$[g_{ss}/(\max \rightarrow g_{ss})](100)$ g_{ss} : number of like adjacencies between pixels of patch type (class) <i>s</i> obtained using the single-count method. $\max \rightarrow g_{ss}$: maximum number of like adjacencies between pixels of patch type (class) <i>s</i> obtained using the single-count method.	%
Percentage of Like Adjacencies (PLADJ)	$\left(g_{ii} / \sum_{k=1}^{m} g_{ik}\right)$ (100) g_{ii} : number of like adjacencies between pixels of patch type (class) <i>i</i> obtained using the double-count method. g_{ik} : number of adjacencies between pixels of patch types (classes) <i>i</i> and <i>k</i> obtained using the double-count method.	%
Patch Density (PD)	$(n_i/A)(10,000)(100)$ n_i : number of patches in the landscape of patch type (class) <i>i</i> . <i>A</i> : as previously defined.	Number per 100 hectares
Mean Nearest Neighbor Distance (ENN_MN)	$\sum_{j=1}^{n'} h_{ij} / n'_i$ h_{ij} : distance between patch <i>j</i> (class <i>i</i>) and patch of the corresponding class. n'_i : number of patches in the landscape of patch type (class) <i>i</i> with nearest neighbor distance.	Meters
Area-Weighted Mean Nearest Neighbor Distance (ENN_AM)	$\sum_{j=1}^{n} \left[h_{ij} \left(a_{ij} / \sum_{j=1}^{n} a_{ij} \right) \right]$ <i>h_{ij}</i> , <i>a_{ij}</i> : as defined above.	Meters
Largest Patch Index (LPI)	$(MAX (a_{ij})/A)(100)$ a_{ij}, A : as defined above.	%
Source: Leitão et al. (2006); McGarigal and Marks (1995).		

Table S1. Indicators of landscape metrics (class level)

2.Calculation of the ratio of secondary aerosols to primary aerosols

The detail calculation of secondary aerosols/primary aerosols includes four steps. Those steps are as follow:

Step 1: Obtaining the SOC/OC and POC/OC from results of Chou et al. (2010).

SOC/OC = SOC/(SOC+POC) = five-years mean of SOC/(five-years mean of SOC+ five-years mean of POC) = $2.12/(2.12+4.78) \approx 0.307$

 $POC/OC = 1 - (SOC/OC) \approx 0.693$

Step 2: Using the SOC/OC and POC/OC ratios to calculate the approximate concentration of SOC and POC in OC component in Chang et al. (2010)

 $SOC = 0.307 \times 5 = 1.535$ $POC = 0.693 \times 5 = 3.465$

Step 3: Summing up the primary aerosols from EC and POC, and summing up the secondary sources from SOC, SO_4^{2-} , and NO_3^{-} in Chang et al. (2010)

primary aerosols = EC+POC = 1.6+3.465 = 5.065

secondary aerosols = $SOC+SO_4^2+NO_3^- = 1.535+6.4+1.8 = 9.735$

Step 4: Calculating the ratio of secondary aerosols to primary aerosols

secondary aerosols/primary aerosols = 9.735/5.065 = 1.9