Supplemental Information

TubZ filament assembly dynamics requires the flexible C-terminal tail.

María E. Fuentes-Pérez^{2,3}, Rafael Núñez-Ramírez¹, Alejandro Martín-González², David Juan-Rodríguez¹, Oscar Llorca¹, Fernando Moreno-Herrero², María A. Oliva¹*.

¹ CSIC – Centro de Investigaciones Biológicas, Department of Chemical and Physical Biology. Madrid, 28040, Spain

² CSIC – Centro Nacional de Biotecnología, Department of Macromolecular Structures, Cantoblanco - Madrid, 28049, Spain

³ Imperial College, London, W120NN, UK

^{*}Correspondence: marian@cib.csic.es

Figure S1: a. Negative stain EM showing wild type CbTubZ filaments grown in the presence of GTP- γ -S, and CbTubZ_{T100A} and CbTubZ_{E200A} assembled in the presence of GTP. Insets correspond to the averaged filaments and its Fourier transform, where arrow indicates a 4.8 nm longitudinal spacing between molecules **b.** Refinement of the filament helical Z value (left) and the azimuthal angle (middle) showing the convergence to ~46 Å and ~12° when starting from very different points. Further, the projections of the reconstructed filament are very similar to the experimental filament averages (right)

Figure S2: a-b. EM images of wild type CbTubZ filaments assembled with GTP/Mg²⁺ in diluted buffer and in buffer with Ficoll (200 g/L), showing 2- and 4-stranded filaments and the bundling trend (bars 90 nm). **c.** Critical concentration measurements, light scattering profiles and GTPase activity determination in buffer with Ficoll (black) vs. diluted buffer (grey).

Figure S3: a. Sequences of wild type and C-tail truncated constructs. Light grey denotes the known structure and colors refer to the C-tail sequence in each different construct: wild type (black), $TubZ_{350}$ (blue), $TubZ_{331}$ (grey) and $TubZ_{316}$ (red). The coloring is conserved along all figures in this study **b.** Circular dichroism spectra showing similar secondary structure composition. The lines have been shifted 2000 units in the Y-axis in order to distinguish them **c.** GTP binding affinity (K_B) calculated using GTP fluorescent analog mant-GTP **d.** Critical concentration measurements **e.** GTPase activity analysis using the malachite green assay **f-g.** Negative stain EM of CbTubZ₃₃₁ and CbTubZ₃₁₆ stiff filament assembled in the presence of GTP/Mg²⁺ (f) and CbTubZ₃₅₀ flexible filaments polymerized with GDP/Mg²⁺ (g)

Figure S4: a. Sedimentation experiments (S supernatant and P pellet) showing the percentage of precipitated protein under assembling conditions of wild type $(TubZ_{wt})$ and mutants $(TubZ_{E200A})$ and $TubZ_{T100A}$ in the presence or absence of TubY. The co-sedimentation denotes interaction since TubY alone did not precipitate under those conditions (Oliva et al., 2012) **b.** Light scattering of proteins assembled at a concentration 8-fold above the critical concentration, showing the increase of the scattered signal when TubY is added to pre-assembled wild type (black), $TubZ_{350}$ (blue), $TubZ_{331}$ (grey) and $TubZ_{316}$ (red) filaments. Arrows points to the moment TubY was added **c.** EM images showing the detail of rings formation upon disassembly from filament tips when $TubZ_{350}$ filaments are in the presence of TubY.

Table S1: Data collection and refinement

			Native TubZ ₃₁₆ -GDP (4XCQ)	
Data collection			· · · · · ·	
Space gro	up		C2	
Unit cell parameters		<i>a, b, c</i>	104.970, 86.342,	
		(Å)	44.734	
		α, β, γ (°)	90.00, 92.49, 90.00	
Resolution range (Å)		` '	44.69 - 2.39	
No. of reflections*			104624 (14464)	
No. of unique reflections*			15852 (2479)	
Completeness (%)*			99.4 (96.8)	
Redundancy*			6.6 (5.8)	
$C(1/2)^*$			99.1 (48.9)	
I/σ (I)*			7.7 (0.98)	
Refinement				
No. reflections			15655	
R_{work}/R_{free}^{a}			0.19/0.24	
No.				
atoms				
	Protein		2381	
	Water		43	
	Ligand (GDP)		28	
B-factor				
	Protein		51.20	
	Water		46.33	
r.m.s devi	ation			
	Bond lengths		0.009	
	(Å)		0.009	
	Bond angles (°)		1.181	

^{*} Highest resolution shell is shown in parenthesis

SUPPLEMENTAL REFERENCES

Oliva, M.A., Martin-Galiano, A.J., Sakaguchi, Y., and Andreu, J.M. (2012). Tubulin homolog TubZ in a phage-encoded partition system. Proceedings of the National Academy of Sciences of the United States of America *109*, 7711-7716.