
Supplementary Methods 
 
Chemical cross-links detected by mass spectrometry have been used to 
generate distance restraints, which help in determining the structure of soluble 
proteins and protein complexes. The output of the method is a list of pairs of 
residue positions that are sufficiently close to be cross-linked. The approach 
described below attempts to overcome several challenges. First, the 
heterogeneity of the Δ131Δ samples. Second, the use of quantitative information 
about cross-linked encoded in the ion intensity ratios between Hsp90 bound and 
unbound states. Third, the dependence of the cross-linked fraction on the 
structure. Fourth, the errors in the identification and quantitation of cross-links. 
 
Here, we build on the Inferential Structure Determination (ISD), a Bayesian 
framework that provides an objective way to interpret experimental data and 
integrate it with prior knowledge1. We generalized the original ISD approach 
allowing us to disentangle the effect of structural heterogeneity on the data from 
the measurement noise. As a result, we could compute multiple structural states 
of the Hsp90-bound and unbound Δ131Δ, as well as their populations, and the 
uncertainty of each cross-linked ratio. 
 
Theory. The Bayesian approach estimates the probability of a model, given 
information available about the system, including both prior knowledge and newly 
acquired experimental data. When modeling multiple structural states of a 
macromolecular system, the modelM  includes a set of N modeled structures 
X = Xi , their population fractions in the sample wi , and additional parameters 
introduced below. The posterior probability p M |D,  I( )  of modelM given data D  
and prior knowledge I is  
 p M |D,  I( )∝  p D |M, I( ) ⋅ p M | I( )  (1) 
where the likelihood function p D |M,  I( )  is the probability of observing dataD   
given M  and I ; and the prior p M | I  ( )  is the probability of model M  given I . 
The likelihood function is based on the forward model f (X)  that predicts the data 
point that would have been observed for structure(s) X in the absence of 
experimental noise, and a noise model that specifies the distribution of the 
deviation between the experimentally observed and predicted data points. The 
Bayesian scoring function is defined asS M( ) =  − log p D |M, I( ) ⋅ p M |  I( )⎡⎣ ⎤⎦which 
ranks the models the same as the posterior probability. The most probable 
models are found by selecting the best scoring models sampled from the 
posterior distribution. Next, we define the components of the Bayesian scoring 
function specifically for the binary and quantitative cross-linking data. 
 
System representation. The spatial proximity between molecular components   
could conceivably be resolved by chemical cross-linking at the residue resolution. 
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Therefore, a residue-level coarse-grained representation of the modeled 
structure is appropriate, allowing us to sample the posterior distribution more 
efficiently than with the atomic representation. To account for correct 
directionality of the cross-links, ε-amino groups of cross-linked lysines are 
explicitly modeled as a single bead centered on the nitrogen atom. 
 
Forward model for binary cross-linking data. The forward model predicts the 
presence of a given cross-linked lysine pair n  after reaction time t . Here, we 
assume that the reaction is unimolecular, that competitive reactions are 
negligible, and that the rate of interconversion between states is slower than the 
cross-linking rate. For a given structure Xi   the forward model of binary cross-link 
data is: 
 fn Xi( )  =   1− exp −kn Xi( )t{ }⎡⎣ ⎤⎦  (2) 

where kn Xi( ) is the conformation dependent first-order cross-linking rate 
discussed below. For multiple state modeling, the forward models for each 
individual state are mixed in the likelihood function (see below). 
 
Forward model for quantitative cross-linking data. The forward model 
predicts the ratio of ion intensities Rn
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where wk
(b)  and wi

(u)  are the population fractions of the structures. 
 
Cross-linking rate. Using a coarse-grained representation, the exponent in Eq. 
2 can be approximated by: 
 kn Xi( ) ⋅  t  αn ⋅ρ rn( )  
where the calibration parameter α n is the product of the reaction time ! and an 
unknown intrinsic reaction ratekn that depends on the local environment of lysine 
pair n , such as pK. The dependence of the rate on geometry is encoded into the 
cross-linking efficiency term ρ rn( ) , where rn is the distance between the two 
cross-linked ε-amino groups. ρ rn( )  approximates a complex function that in 
principle depends on all atomic coordinates of the system. It is computed by 
considering i) the uncertainty in the position of ε-amino groups, and ii) the cost of 
having a cross-linking geometry far from the ideal one. The uncertainty in the 
position of the ε-amino groups is accounted for by adding noise to their positions. 
Assuming that their coordinates are random variables xi  and x j distributed 



around the model coordinates xi  and x j  according to a 3D normal distributions 
with variances τ i

2 and τ j
2 , respectively, the efficiency can thus be expressed as:  

 ρ(rn ) = dτ p(τ ) drn∫ ρ(rn )∫ ⋅ p(rn | rn,τ )  (4) 

whereτ 2 = τ i
2 +τ j

2 . The function p(rn | rn,τ )  is the conditional probability of having 
a random distance rn  given rn  and τ , and corresponds to the Rice's distribution. 
We used an uniformative Jeffrey's prior for p(τ ) 2. The cost of having a cross-link 
geometry far from the ideal one is encoded into ρ(rn )  and it is calculated as the 
potential of mean force of a system consisting of the DSS cross-linker covalently 
attached to the two lysines, as a function of the distance of the two ε-amino 
groups rn . ρ(rn )  is obtained from the free energy F(rn )  after the Jacobian 
correction3: 
 ρ(rn )∝ (4π rn

2 )−1 exp(−F(rn ) / kBT )  (5) 
where kB is the Boltzmann constant and T  is the temperature. F(rn )  is estimated 
by atomistic molecular dynamics simulations carried on the solvated DSS 
molecule (Yannick Spill and Michael Nilges, personal communication). 
 
Likelihood function for binary cross-linking data. The likelihood function for a 
single observed cross-link dn  and a single structure Xi  equals the forward model 
of Eq. 2, i.e., p(dn | Xi, I ) = fn (Xi )  ) and spans the interval [0,1]. The likelihood of 
observing a cross-link given a set {Xi} of structures is: 
 p(dn | {Xi}, I ) =1− (1− fn (Xi ))

i
∏  (6) 

which is 1 when fn =1 for at least one conformation, and 0 when all fn =0. The 
joint likelihood function p(D |M, I ) for a dataset D = {dn}  of NXL  independently 
observed cross-links is a product of likelihood functions for each data point.  
 
Likelihood function for quantitative cross-linking data. The likelihood 
function p(D |M, I )  for the dataset D = {Rn

(b,u)} of NXL independently measured 
cross-linking ion intensity ratios is a product of likelihood functions for each data 
point:	
 p(D |M, I ) = p(Rn

(u,b) | {X (u)
k,  w(u)

k,  X (b)
i,  w(b)

i   }
n=1

NXL

∏ ,αn,σ n )  (7) 

where the uncertainty σ n shapes the likelihood function for data point dn . To 
account for varying levels of noise in the data, each data point has an individual 
σ n . Because the observed cross-linked ratios are non-negative numbers, we 
modeled the noise using a log-normal distribution: 
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Prior. The model prior p(M | I )  is defined as a product of the individual priors 
p(Xi ) , p(wi ) , p(σ n ) , and p(αn )  on the state coordinates, population fractions, 
data point uncertainties, and calibration parameters, respectively. The priors 
p(Xi )  include terms to maintain the correct stereochemistry of the backbone and 
the position of ε-amino groups, to avoid clashes between components, and to 
incorporate foldon information from hydrogen exchange data. The prior on a set 
of structures is defined as  p X$ ∝ exp	 - V(X$)$  where V is a sum of spatial 
restraints: 
 

V =Vexcl.vol. +VCa-bonds +VCa-angles +VCa-dihedrals +Vlysine sidechains +Vfoldons  
 
The excluded volume restraint was implemented as a pairwise hard-sphere 
repulsive potential, where the volume of each Cα particle equals the average 
volume of the corresponding amino acid residue. The bond, angle, and dihedral 
terms are statistical potentials derived from crystallographic structures (see 
below). To improve the accuracy of the crosslinking stereochemistry, the cross-
linked lysines are represented by an additional bead. This bead corresponds to 
the sidechain amino group position. Harmonic distance, angular, and improper 
restraints are applied between the sidechain bead and the Cα bead, calibrated to 
mimic the flexibility and the orientation of the sidechain with respect to the 
backbone. Foldons are encoded as distance restraints to enforce the native 
structure of Staphilococcal Nuclease (SN) around the corresponding backbone 
NH-CO hydrogen bonds.  
 
The priors p(wi )  are uniform distributions over the range from 0 to 1, with the 
constraint wi

i
∑ =1 . The priors p(σ n )  are unimodal distributions:  

 p(σ n |σ ) = 2σ ( πσ n
2 )−1 exp(−σ 2 /σ n

2 )  (9) 
where σ  corresponds to an unknown  experimental uncertainty; the heavy tail of 
the distribution allows for outliers. A single αn can be used for all detected cross-
links, assuming that the reaction rates kn  are averaged over all lysine pairs, and 
given that the total reaction time t  is identical for all cross-linking reactions. For 
quantitative modeling, the priors p(α n )are uniform distributions in the range [0,1].  
 
Secondary structure terms. The bond, angle, and dihedral terms VCα bonds, VCα 

angles, and VCα dihedrals, respectively, are statistical potentials that enforce the 
correct stereochemistry, as well as the correct secondary structure propensity, of 
the flexible backbone. The input information is the predicted secondary structure 
(using DSSP secondary structure symbols4) calculated on the Staphylococcal 
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Nuclease crystallographic structure (PDB entry code 1STN). These terms were 
computed by estimating the probability that residues in a given secondary 
structure sequence adopts a given configuration, defined by residue-residue 
distances, angles, and torsion angles. The probability is derived from the MRS 
database of crystallographic structures with assigned secondary structure5. For 
each sequence-contiguous residue pair (n,n +1) , triplet (n,n +1,n + 2) and 
quintuplet (n,n +1,n + 2,n + 3,n + 4) , the potentials are calculated as: 
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where rn  , α n  , and τ n   are respectively the distance, the angle, and the torsion 
angle between sequence-contiguous residue pairs, triplets, and quadruplets 
starting from residue n ; n  , i , and k  are respectively indexes for the residue in 
the model, the residue in the database structure, and the structure number in the 
database; δ  is the Kronecker delta function; Sn ∈{H,E,C} is the secondary 
structure symbol for residue n , where H,E,C  correspond to helical, beta, and 
random coil. The denominator on the left side of each equation is the 
normalization term over the given secondary structure sequence. 
The dihedral term corresponds to the joint probability of having the torsion angles 
τ n  and τ n+1  at given values, given that the secondary structure sequence is 
Sn,Sn+1,Sn+2,Sn+3,Sn+4 . This term enforces the secondary structure geometry on the  
Cα model more effectively than a term that depends on a single torsion angle τ n . 
To increase the flexibility of the backbone, every native secondary structure 
potential term was mixed with a random coil secondary structure potential term. 
The mixing factors were determined by trial and error to have reversible folding of 
secondary structure elements along the sampling calculation (30% native and 
70% random coil). 
 
 
 
 
Bayesian scoring function. The multi-state Bayesian scoring function for binary 
cross-linking data is:	  

 S(M ) = − log[p(dn | {Xi})]
n=1

NXL

∑ − log[p(Xi )]
i=1
∑  
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For quantitative cross-linking data, to facilitate the sampling of the posterior 
probability distribution, we eliminate its dependence on uncertainties σ n . This 
goal was achieved by numerical integration  (i.e., marginalization) of the posterior 
distribution with respect to uncertainties σ n . 
Thus, the marginal likelihood function is:	
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Hence, the multi-state Bayesian scoring function for quantitative cross-linking 
data is:	  
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Sampling. Metropolis Monte Carlo enhanced by replica exchange with 16 
replicas was used to generate a sample of coordinates {Xi} from the posterior 
distribution defined on binary cross-linking data. The moves for {Xi}  are random 
translation of individual beads by a maximum of 0.15 Å for each Monte Carlo 
step. A Gibbs sampling scheme with Metropolis Monte Carlo was applied to 
sample the values of the parameters N3, bB, and σ  for the posterior distribution 
defined on quantitative cross-linking data. The multi-state pairs consisting of 
{X (b)

k   }  and {X (u)
i   }  were enumerated from the pool of highly probable multi-state 

structures {Xi}  generated from the binary cross-linking data modeling. 
 
Modeling Protocol. The modeling was organized into two steps. We initially 
generated multi-state models based on the crosslinking binary data using the 
likelihood function defined by Eq. 6, combined with the priors discussed above. 
Three foldon priors were defined: the first used only the red foldon, the second 
combined the red and the yellow foldons, the third used all four (red, yellow, 
green and blue) foldons. For each foldon prior, the models were generated using 
1, 2, 3, and 4 states, for a total of 12 modeling runs. Models were generated by 
Monte Carlo sampling of coordinates. About 1.5 106,  8.0 105 , 5.0 105  and 4.0 
105 models were generated for each of the 1-, 2-, 3- and 4-state modeling, 
respectively. Finally, from each of the 12 sampling runs, the 100 best scoring 
multi-state models were selected, for a total of 1200 models.  
 
We used all possible pairs of the selected models to quantitatively assess the 
quantitative crosslinking likelihood (Eq. 7). Each selected model was used either 
as a bound or unbound state, for a total of 1.44 106 combinations. In the second 
modeling step, we fixed the coordinates of the bound and unbound structures, 
and determined the values of the population fractions, the uncertainties, and the 
calibration parameters by maximizing the posterior probability. We finally 



selected the three best scoring models (which are pairs of models derived from 
the first modeling step, Figs. S4 and S5). 
 
Solvent accessible surface area calculation. Atomistic models were generated 
from coarse grained structure by using the program PULCHRA 6 . Atomistic 
degrees of freedom were subsequently relaxed using CHARMM force field7 by 
running 50 steps of steepest descents and 100 steps of conjugated gradient. 
Residue solvent accessible areas were computed using the CHARMM program. 
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