1	
2	SUPPLEMENTARY DATA
3	
4	
5	The chaperone-like activity of the hepatitis C virus IRES and CRE
6	elements regulates genome dimerization
7	
8	
9	
10	Cristina Romero-López, Alicia Barroso-delJesus and Alfredo Berzal-Herranz
11	

Supplementary Table 1. Oligonucleotides used to construct DNA plasmids described in this
study.

14	Construct	Oligonucleotides	Sequence (5'-3')
	Construct	ADODI	
15	pGLI+CU_A288U	A200U	
16	pGLI+CU_U297A	0297A	
10			
	pGLI+CU_PK2R	A2880/0297A	GGUUTIGIGGTIUIGUUIGAAAGGGI
17		asHCV-276	
		G150C	
18	••••	asHCV-140	
10	pGLI+CU_Mut3 pGLI+CU_3R	C242A	GGGCGUGCCCCCGAAGACTGCTA
		asHCV-228	AAATCTCCAGGCATTGAGCGGGTT
19		C242G	GGGCGTGCCCCCGGAAGACTGCTA
		asHCV-228	AAATCTCCAGGCATTGAGCGGGTT
20		3c_BiloopAG	GGGCAGGCCCCCGCAAGACTGCTA
20		asHCV-228	AAATCTCCAGGCATTGAGCGGGTT
		asHCV-252	TAGCAGTCTTGCGGGGGGCACGCCCAA
21	politco_asa	HCV-284	GTGGTACTGCCTGATAGGGTGCTTGCGAGT
	pGLI+CU_dIL3d	HCVInser_275CT	GCCGAGTAGTGTTGGGTCGCGACTAGGCCTT
22		asHCV-252	TAGCAGTCTTGCGGGGGGCACGCCCAA
22	pGLI+CU_Pu	HCV-311mut319	GTGCCCCGCCTCCTCGTAGACCGT
•		asHCV-310	TCGCAAGCACCCTATCAGGCAGTA
23	pGLI+CU_Py	HCV-120mut125	CCCCCGGAGGCGGGAAAGCCATAGT
		asHCV-119	TCCTGGAGGCTGCACGACACTCAT
24	pGLI+CU_Py/Pu	HCV-311mut319	GTGCCCCGCCTCCTCGTAGACCGT
		asHCV-310	TCGCAAGCACCCTATCAGGCAGTA
25	pGLI+CU_d3.1	HCV-9260	TTACAGCGGGGGGAGACATATATCACAG
23		asHCV-9215	GATTGGAGTGAGTTTGAGCTTGGTCCT
		HCV-9311	GTTCATGTGGTGCCTACTCCTACTTTCTGTA
26	pGLI+CU_d3.2	asHCV-9262	TAACCAGCAACGAACCAGCTGGATAAATCCAA
		HCV-9352	TCTATCTACTCCCCAACCGATGAACGG
27	pGLI+CU_d3.3	asHCV-9320	CCACATGAACCAGCGGGGTCGGGCA
27	pGLI+CU_d3.4	HCV-9384	TAAACACTCCAGGCCAATAGGCCA
•••		asHCV-9358	GCTCCCCGTTCATCGGTT
28	pGLI+CU_dHV	HCV-9507	TATGGTGGCTCCATCTTAGCCCTA
		asHCV-9384muta	AGCTCCCCGTTCATCGGTTGGGGAGT
29	pGLI+CU_dimUU	HCV-9553	CGTGAGCCGCATGACTGCAGAGA
		Dim Mut UU	GACCTTTCACAGCAAGCCGTGATTA
20	pGLI+CU_d3'SL1	5'T7pHCV	TAATACGACTCACTATAGGGATGGAAGCCAAAAACA
30		asHCV-9560	GGCTCACGGACCTTTCACAGCTA
		401101-0000	

Supplementary Table 2. Oligonucleotides used in this study.

Oligonucleotide	Sequence (5'-3')
5'T7pHCV	TAATACGACTCACTATAGCCAGCCCCCTGATGG
5'T7pHCV-9181	TAATACGACTCACTATAGGGCAGTAAGGACCAAGCTCAA
3'HCV	ACTTGATCTGCAGAGAGGCCA
3'HCV_cassette	GAACCGGACCGAAGCCCGATTTGGATCCGGCGAACCGGATCGAACAT
	GATCTGCAGAGAGGCCAGTA
asHCV-9585	GTATCAGCACTCTCTGCAGT
Primer Std	GAACCGGACCGAAGCCCG

42 Promoter sequence for the T7 RNA polymerase is underlined.

Supplementary Figure S1. The 3'SLI interferes with the efficient dimer formation. Dimerization efficiency was assayed at increasing concentrations of 3'X and X55, which contains only the 3'SLIII and 3'SLII domains required for HCV genomic dimerization (40). Dimeric products were resolved by native TBM polyacrylamide gel electrophoresis. A representative image of the electrophoretic mobility shift assays is shown. Relative dimer formation for each transcript was quantified. M, monomer; D, dimer.

62 Supplementary Figure S2. Identification of nucleotides influencing dimer formation in the CRE 63 region of the HCV genome. Nucleotides required for dimer formation were identified by 2'-64 hydroxyl molecular interference (HMX). A) Molecule CU was modified with NMIA under 65 denaturing conditions. The monomeric and dimeric populations were then partitioned by native polyacrylamide gel electrophoresis. Modified positions were detected as stops in a reverse 66 transcription reaction. Histograms show the NMIA reactivity profile for each of the isolated pools, 67 68 M (monomer) and D (dimer). Data are the mean of three independent experiments ± standard 69 deviation. Different accessibility values are colour coded as indicated. HMX profiles shown in 70 the bottom panel correspond to difference in NMIA reactivity between the monomeric and the 71 dimeric conformations (M-D) for the CU transcript. HMX scores indicated at precise positions 72 were calculated from the reactivity profiles of the monomeric and dimeric isoform, as previously 73 described {Homan, 2014 #2794}. B) Sequence and secondary structure of CU, summarizing the 74 HMX results. Filled circles: increase (>0.25 units) in NMIA relative reactivity for the monomer 75 (M) compared to the dimer (D), with HMX score >0.55; open circles: increase (>0.25 units) in 76 NMIA relative reactivity for the dimer (D) compared to the monomer (M), with HMX score >0.55.

Supplementary Figure S3. Line graph showing the differential SHAPE reactivities for the
transcripts CU and I+CU calculated by scaling 1M6 to NMIA relative values and then subtracting
corrected 1M6 from NMIA reactivity data, under monomeric (A) or dimeric (B) conditions.

- 93
- 94
- 95

A)

