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Exploratory bioinformatics investigation reveals importance of “junk” DNA in
early embryo development

Steven Xijin Ge

Summary of observations

There is a small number of genes upregulated in early 2C, which are enriched with noncoding snoRNAs
and microRNAs. Major reprograming of gene expression occur at mid 2C stage during zygotic genome
activation (ZGA), when maternal RNAs are reduced and thousands of essential genes are upregulated.
Among the 10 gene clusters defined based on the dynamics of gene expressing during PD, a group of
3310 maternal transcripts are rapidly reduced and maps predominately to maternal allele. Others are
either transiently expressed, or activated and maintained during different stages.

Single-cell RNA-seq data also enables the estimation of retrotransposons activity during PD. Their
expression patterns mirror those of regular genes.

The promoters of group B genes are enriched in MT2_Mm and other long terminal repeats (LTRs),
while these of group D genes are overrepresented in MT2C_Mm LTRs. Short Interspersed Nuclear
Elements (SINEs) such as B1 and B2 are enriched in the promoters of group C, D, F, and G genes.
ERVL family LTRs are associated with mid 2C gene expression possibly by serving as promoters to
strongly induce transient expression of many nearby protein-coding genes and retro-genes. These
genes show expression pattern similar to those of LTRs. The regulatory roles of some of the LTRs has
been studied previously[1, 2]. One expressed LTR codes microRNA (miR-1194) from several genomic
loci.

Oocyte-specific homeobox (Obox) transcription factors (TFs), which are poorly understood but are
among the most drastically regulated TFs during PD, might induce transient gene expression during
PD. Obox factors may be the upstream regulator of Zscan4, as part of the cascades of TFs. This is
supported by their expression profiles and enrichment of TFBS in some LTRs upstream of genes
transiently expressed during PD.

Presence of mouse B1 retrotransposons, a Short Interspersed Nuclear Element (SINE) similar to
human Alu, in promoters are strongly associated with the upregulation of thousands of genes during
ZGA. B2 elements have significant but weaker correlation. The association is independent of CpG
dinucleotides and CpG islands, thus less likely to be explained entirely by DNA methylation. Genes
with multiple B1 and B2 elements in promoters are more highly expressed and more likely to be
evolutionarily conserved; many code for structural components of basic cellular machinery. It appears
that B1 and B2 elements promote expression of housekeeping genes similar to enhancers. It will be
interesting to study if the absence of some selected B1 elements from the genome will affect the
expression of downstream genes and embryo development.

B1 and B2 elements are stronger predictor of gene expression in embryonic stem cells (ESCs) than in
differentiated progenitor cells and adult tissues. Similar trend is observed in induced pluripotent stem
(iPS) cells.
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In human, gene expression change during ZGA is also correlated with the distribution of Alu SINE
elements in a dosage dependent fashion. In bovine, it is the tRNA family of SINE repeats. Thus SINEs
may play a role in ZGA in mammals. In Zebrafish, an AT-rich DNA transposon is a predictor of gene
expression after ZGA.

The frequency of various transposable elements (TEs) in the mouse genome follows log-normal
distribution. Some LTRs are enriched in the promoter regions in a strand-specific fashion. Many are
associated with PD gene expression. Most retrotransposons located in introns are more likely to be
on the opposite strand. It is likely some originated from introns spliced from RNAs. Simple repeats,
DNA transposons, and LINEs are enriched in introns. Most LTRs are depleted from introns. SINEs are
enriched in promoters, introns and downstream regions. While genes with SINEs in promoter are
more likely to code for proteins that constitute intracellular parts, LINEs are more often found in
promoters of genes related to G-protein coupled receptor activity, an extracellular signaling process.
Systematic analysis of the promoters of co-regulated genes at various stages identified many TFs that
might be involved in gene regulation during PD, including some well-known regulators of early embryo
development such as Oct4, KLF4, and Sox2. NOBOX and MECOM may drive gene expression at early
2C. Several homeobox factors (SEBOX, EMX1, HOXA7, and HOXA13) are downregulated together with
their target genes during 2-4C stage. At blastocyst stage, | divided the cells are into three groups and
identified enrichment of (a) SOX2, OCT4, HESX1, SIX1, and CDX1 binding sites in promoters of genes
upregulated in a group of cells resemble epiblast, (b) CUX1, MSX1, ISX, SOX17 binding sites in
promoters of genes upregulated in cells that may give rise to primitive endoderm, and (c) MLX, MSX2,
and STAT6 bindings sites in promoters of genes induced in trophoblast-like cells.

This study also demonstrates that single-cell RNA-seq is a powerful method for study biological
pathways, especially when applied to normal developmental processes

There is limited evidence that organisms with longer generation time tend to have bigger genomes,
supporting the notion that the expansion of transposable DNA elements may be a necessary
mechanism for genotypic diversity and adaptation in slow-reproducing organisms. This may shed
some light on the “C-value paradox” that highlights the lack of association of genome size with
organismal complexity.
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Supplementary Tables S7-

Table S7. Association of Repeats and transcription factor binding sites with fold-change in 2-cell stage mouse embryo.

Rep. Rep. Repeat/TF strand Effect pvalue FDR  Target

Class Family Name Estimate genes
Simple_repeat (TG)n -0.19 9.7E-04 2.5E-02 816
Simple_repeat (TG)n -0.17 2.5E-03 4.7E-02 855
Simple_repeat (TTCC)n 0.98 7.7E-05 2.8E-03 50
Low_complexit GA-rich -0.47 3.5E-04 1.0E-02 145
Low_complexit T-rich -0.33 5.1E-03 7.5E-02 171

SINE Alu B1_Mm 0.35 4.9E-07 2.4E-05 577
SINE Alu B1_Mm 0.50 8.8E-12 8.6E-10 530
SINE Alu B1_Murl 0.21 1.6E-03 3.5E-02 611
SINE Alu B1_Mur2 0.24 2.9E-03 4.09E-02 437
SINE Alu B1_Mur4d 0.25 1.7E-04 5.6E-03 644
SINE Alu B1_Mur4d 0.37 2.7E-07 1.4E-05 537
SINE Alu B1_Musl 0.37 2.9E-16 8.5E-14 1369
SINE Alu B1_Musl 0.28 1.0E-08 6.8E-07 1174
SINE Alu B1_Mus2 0.52 1.0E-25 6.1E-23 1083
SINE Alu B1_Mus2 0.30 5.4E-08 3.2E-06 953
SINE Alu PB1D9 0.24 2.6E-03 4.8E-02 442
SINE B4 RSINE1 -0.16 3.3E-03 5.3E-02 899
LINE L1 L1MBS -0.87 1.6E-03 3.5E-02 16

LINE L1 L1IMD -1.10 3.8E-03 5.9E-02 15

LINE L1 Lx10 1.41 2.8E-03 4.8E-02 14

LINE L1 Lx2B2 2.13 1.3E-09 9.6E-08 22

LINE L1 Lx4A 0.98 1.2E-03 2.8E-02 21

LTR ERVL MERVL_2A-int
LTR ERVL MT2_Mm
LTR ERVL MT2B

LTR ERVL MT2B1

LTR ERVL MT2B2

LTR ERVL MT2C_Mm
LTR  ERVL- ORR1A3-int
LTR  ERVL- ORR1B1
LTR ERV1 RLTR14-int
LTR ERVK RLTR19

LTR ERVK RMER17C-int
LTR ERVK RMER19B

0.94 1.5E-03 3.4E-02 15
1.73 2.3E-04 7.3E-03 15
0.34 1.8E-03 3.7E-02 217
0.48 4.1E-03 6.2E-02 63
0.87 2.1E-05 9.0E-04 54
2.02 1.2E-12 1.4E-10 27
1.47 1.1E-04 3.9E-03 11
1.01 2.8E-05 1.1E-03 38
0.96 2.8E-03 4.8E-02 12
0.86 1.9E-03 3.9E-02 19
0.89 7.9E-06 3.6E-04 12
1.02 3.8E-04 1.1E-02 16

NVID>DULVLOUIDVLVLOLOIDVLOLOLOLLODOVLOLOIDNI>DnI>DunI>un>unl>onond>

TFBS c-Myc 0.33 5.2E-13 7.6E-11 2067
TFBS E2f1 0.17 1.6E-11 1.4E-09 7588
TFBS n-Myc 0.11 3.3E-03 5.3E-02 3918
TFBS STAT3 0.28 7.3E-04 2.0E-02 439
CpG island CpG island -0.09 2.3E-03 4.5E-02 9105
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Table S8. Repeats significantly associated with zygote genome activation in human.

Rep. Target

Rep. Family Class  Strand Coefficient P value FDR Genes
Alulb_a Alu SINE A 0.21 1.1E-03  7.6E-02 764
Alulb_s Alu SINE S 0.24 2.0E-04 2.1E-02 797
AluSp_s Alu SINE S 0.35 1.1E-03  7.6E-02 367
AluSg2_a Alu SINE A 0.31 1.3E-03  7.6E-02 435
AluSx_s Alu SINE S 0.39 5.4E-08 2.9E-05 732
AluSz6_s Alu SINE S 0.57 7.1E-05 1.3E-02 205
AluY_a Alu SINE A 0.30 1.2E-04 1.7E-02 630
MER5B_a hAT-Charlie DNA A -0.60 5.3E-04 4.8E-02 113

Table S9. Repeat elements associated with gene expression in zebrafish.

Rep. Rep. Std. Target A/T
Rep. Name Family Class Estimate err. FDR genes content
DNA-2-19 DR DNA DNA 0.27 0.08 6.88E-02 17 76.2%
DNA11TA1_DR TcMar-Tcl DNA  0.13 0.02 1.88E-09 813 70.1%
EnSpm-N4_DR En-Spm DNA 0.23 0.04 7.45E-06 251 73.1%
EnSpm-N7_DR En-Spm DNA 0.24 0.06 1.93E-02 123 61.1%
ERV1-N1-LTR_DR ERV1 LTR 0.25 0.07 1.93E-02 71 63.3%
ERV1-N4-LTR_DR LTR LTR 0.47 0.13 1.93E-02 21 61.8%
Gypsy50-LTR_DR Gypsy LTR 0.76 0.22 3.65E-02 11 60.6%
hAT-N36_DR hAT DNA 0.35 0.08 6.99E-04 25 61.9%
piggyBac-N3_DR PiggyBac DNA 0.35 0.08 3.29E-03 59 67.6%




Table S10. Confirmation of association with repeats in zebrafish.
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Rep. Rep. Std. Target
Rep. Name Family Class Estimate err. FDR genes
Anes et al. data [3], 3.5 hpf vs. 128 and 256 cell stage
CpG_island 0.18 0.03 6.55E-10 1127
DNA11TA1_DR TcMar-Tcl DNA  0.13 0.03 1.29E-04 417
EnSpm-N3_DR En-Spm DNA 0.58 0.16 2.09E-02 17
EnSpm-N4_DR En-Spm DNA 0.45 0.06 9.64E-10 128
EnSpm-N7_DR En-Spm DNA 0.34 0.09 2.09E-02 67
ERV1-N4-LTR_DR LTR LTR 0.60 0.18 7.37E-02 11
Mariner-N7_DR TcMar DNA 0.24 0.07 3.16E-02 96
Anes et al. data [3], 5.3hpf vs. 3.5hpf
DNA-2-18 DR En-Spm DNA  -0.60 0.18 6.67E-02 126
DNA-TA-2_DR DNA DNA  0.55 0.14 1.73E-02 150
DNA11TA1_DR TcMar-Tcl DNA  0.40 0.08 5.65E-05 417
EnSpm-N4_DR En-Spm DNA 0.75 0.18 9.07E-03 128
TDR16 DNA DNA 0.40 0.11 5.18E-02 236
Harvey et al. data [4], 6hpf vs. 3.5hpf
DNA11TA1_DR TcMar-Tcl DNA  0.20 0.04 5.65E-06 813
EnSpm-N4_DR En-Spm DNA 0.27 0.08 5.13E-02 251
ERV1-N8-LTR_DR ERV1 LTR -0.90 0.26 5.30E-02 19
hAT-N47_DR hAT DNA -0.34 0.09 2.99E-02 82
LSU-rRNA_Hsa rRNA rRNA 0.79 0.21 2.99E-02 24
TDR16 DNA DNA 0.20 0.05 2.99E-02 441
Harvey et al. data[4], 3.5hpf vs. 64 cell
DNA-2-19 DR DNA DNA 0.27 0.08 6.88E-02 17
DNA11TA1_DR TcMar-Tcl DNA  0.13 0.02 1.88E-09 813
EnSpm-N4_DR En-Spm DNA 0.23 0.04 7.45E-06 251
EnSpm-N7_DR En-Spm DNA 0.24 0.06 1.93E-02 123
ERV1-N1-LTR_DR ERV1 LTR 0.25 0.07 1.93E-02 71
ERV1-N4-LTR_DR LTR LTR 0.47 0.13 1.93E-02 21
Gypsy50-LTR_DR  Gypsy LTR  0.76 0.22 3.65E-02 11
hAT-N36_DR hAT DNA 0.35 0.08 6.99E-04 25
piggyBac-N3_DR  PiggyBac DNA  0.35 0.08 3.29E-03 59
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Supplementary Figures
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Figure 1. Density of allele-specific read mapping for cluster A genes. Note that the scales are different in (A) and (B). More
reads are mapped to the maternal allele (A) than paternal allele (B). Also expression levels are reduced in the order from
zygote to blastcyst as these transcripts are degraded (A). TSS, transcription starting site. TES, transcription ending site.

= A1 qALY T O [ a L&)
Stage Allele koo o | Az ; Aty , A28t u.l.b ainsin \ amm . s x )
=
zygote  CAST | (R R =
cs7 I . .
Mid2C  CAST ||~ |
cs7 -
ac CAST |~
cs7 i
8C casT ||
cs7 i~ '
16¢ cast "
cs7 .
Blastcyst CAST . N’G‘bun
cs7 |7 <ﬁ| |

Figure 2. Allele-specific mapping of reads in the Nobox gene locus. As a member of the A cluster, these transcripts originated
mostly from the maternal (CAST/Eij) allele. Also the expression is highest in zygote, and much reduced in 2C and 4C stage as
the read density is shown on a log-scale. These transcripts are likely carried over from oocyte and undergo decay in early
embryo development.
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Figure 3. Allele-specific mapping in the Obox3 locus. This gene is transiently expressed during the 2C to 4C stage from both

alleles.
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Figure 4. Allele-specific mapping in the Obox6 locus. This gene is transcribed from both alleles from the mid-2C stage to

blastocyst.
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Figure 5. Change in global expression profile as defined by (1-R), where R is the Pearson’s correlation coefficient. A lower bar
indicates global expression profile is more similar to the previous stage.
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Figure 6. Expression pattern of retrotransposon during PD. Red denotes expression level
is higher than average across samples. Green indicates below average gene expression.



Supplementary Document

Mid 2-Cell fold-change
01 2 3 4 5

_DDDDDEE__

Gl G2 G3 G4 G5 G6 G7 G8 G9 G10

RMER17C
] Bl Mm
ORR1A3-int
MERVL-int
GSAT_MM
MT2C_Mm
MT2B1
MLTR31D_MM
RMER2
ORR1AZ2-int
MT2_Mm
ORR1B1
L1 Mus4
MusHAL1
MT2B2
Bl Musl

{

Gl G2 G3 G4 G5 G6 G7 G8 GY9 G10

Genes grouped by fold-change
(mid vs. early 2 cell)

Figure 7. Enrichment of LTR elements in highly expressed genes in mid 2-cell stage. A) Genes are divided
into groups based on fold-change at mid 2C. B) Enrichment of repeats in the promoters of genes are marked
as red. As the first stage of zygotic genome activation, genes upregulated at mid 2-cell stage are more likely

than expected to contain LTR elements in their promoters in the same DNA strand.
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Figure 8. LTRs serve as promoters of nearby genes. A) The protein coding gene Gm9125 starts
at the middle of LTR element, MT2B1. B) This gene is highly induced at mid 2-cell stage, but
expression diminishes at 8 cell stage. C) MT2_Mm retrotransposons are expressed in a very

similar pattern.
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Figure 9. Obox family binding motifs according to CIS-BP.
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Figure 10. Genes with more Obox3 binding motifs in promoters tend to be expressed at higher levels.
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Figure 11. Expression of Obox genes in the dataset of [5].
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Figure 12. Identification of motifs and TFs enriched in genes upregulated in 2C using data from [5]. This agrees with the result
reported in the main paper, especially in the “TAATC” motif.
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Figure 133. Alignment of Alu family repeats in mouse. A) Sequences are very similar. The “TAATC” motifs that could be
bound by Obox transcription factors are highlighted. B) Phylogenetic tree.
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Figure 14. Confirmation using different mouse gene expression data of PD [5]. A) Significantly correlated repeats from
regression analysis. B). Presents of Alu in gene groups predict fold-change during ZGA.
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Figure 15. Change in methylation levels in promoter regions of 1495 genes. Data from Ref. [6]. Groups of genes show
dynamic change in gene expression during early development. This pattern does not seem to correlate with the change in
gene expression, as the gene groups show little overlap.
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Figure 16. Expression levels in liver is higher in genes with CpG islands and multiple Alu family repeats in promoter region.
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Figure 17. Correlation of the number of B2 family repeats in promoters and genome-wide gene expression.
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Figure 18. A group of mESC specific genes identified by k-means clustering. This is Cluster 13 in Fig. 6 in the main text.
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Figure 19. Repeats significantly associated with gene upregulation during ZGA in zebrafish are AT-rich sequences. Adenine (A)
and thymine (T) are colored as red and green, respectively.
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Figure 20. Distribution of repeats by number of occurrences on the genome. A) Distribution of the 1554 types of repeats
according to how many times each repeat is observed in the mouse genome. After log-transformation, the distribution is bell-
curved. B) The distribution is close to log-normal on a QQ plot. C) The distribution does not follow a power law.
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Figure 17. Distribution of repeats near genes. A) Enrichment of repeats in promoters and other regions. B) Strand-specificity
of the repeats relative to genes. Note that the height of the bar represents the count of repeat types, not absolute repeat
occurrence in the genome.
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Figure 22. A) Low_complexity repeats are enriched in genes related to RNA metabolic process. B) Mouse genes with multiple
Alu elements are more likely to have yeast orthologs in a dosage-dependent manner. C) The effect of SINE elements and the
CpG islands are independent.
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Figure 23. Human genes with Alu elements in promoters are more likely to have yeast orthologs.
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Early 2C, upregulated

A. Expression B. Motif enrichment
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Figure 24. Enriched TF binding motifs in promoters of genes upregulated at early 2C stage. A. Expression levels of genes
coding for TFs. Dark indicates higher expression. B. Corresponding TF binding motifs. Enrichment is shown in red and
depletion in green.
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Mid 2C, downregulated
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Figure 25. Enriched TF binding motifs in promoters of genes downregulated at mid 2C stage. A. Expression levels of genes
coding for TFs. Dark indicates higher expression. B. Corresponding TF binding motifs. Enrichment is shown in red and
depletion in green.

Late 2C, upregulated

A. Expression

i

Mid Blast.
Late Blast.

Early Blast.

ZSCAN10
MYPOP
E2F2
NAIF1
CXXC1
KDM2B
GMEB1
GMEB2
NR2C2
* SPDEF
ELF1
ETV3
ELF3
ETVE
EHF
ELF2
ERG
ELK4
GABPA
ETVS

* ELK1

B. Motif enrichment

G1
G501
G1001
G1501
G2001
G250
G3001
G3501
G4001
G4501

aGGAAGTGCaa
tTTTGCGCCa
tHGGCGCgt
ctTACGcaa
ttagCGg
gCGtaaata
tgtaCGTca
gtACGTca
accaCTTCCGGGTCa
acCCGGALtgt
gAACCAGGAAGTG
aaccGGAAgt
acccGGAAgt
aacCGGAAGT
accCGGAAGT
aacCGGAAgt
aacCGGAAgt
aaCCGGAAgt
aACCGGAAGT
aCCGGAAGE
aaCCGGAAGT

Figure 26. Enriched TF binding motifs in promoters of genes upregulated at late 2C stage. A. Expression levels of genes
coding for TFs. Dark indicates higher expression. B. Corresponding TF binding motifs. Enrichment is shown in red and
depletion in green.
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Late 2C, downregulated

A. Expression B. Motif enrichment
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Figure 27. Enriched TF binding motifs in promoters of genes downregulated at late 2C stage. A. Expression levels of genes
coding for TFs. Dark indicates higher expression. B. Corresponding TF binding motifs. Enrichment is shown in red and
depletion in green.
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Figure 28. Enriched TF binding motifs in promoters of genes upregulated at 4C stage. A. Expression levels of genes coding for
TFs. Dark indicates higher expression. B. Corresponding TF binding motifs. Enrichment is shown in red and depletion in
green.
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4C, downregulated
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A. Expression B. Motif enrichment
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Figure 29. Enriched TF binding motifs in promoters of genes downregulated at 4C stage. A. Expression levels of genes coding
for TFs. Dark indicates higher expression. B. Corresponding TF binding motifs. Enrichment is shown in red and depletion in

green.
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Figure 30. Enriched TF binding motifs in promoters of genes upregulated at 8C stage. A. Expression levels of genes coding for

TFs. Dark indicates higher expression. B. Corresponding TF binding motifs. Enrichment is shown in red and depletion in

green.
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8C, downregulated

A. Expression B. Motif enrichment
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Figure 18. Enriched TF binding motifs in promoters of genes downregulated at 8C stage. A. Expression levels of genes coding
for TFs. Dark indicates higher expression. B. Corresponding TF binding motifs. Enrichment is shown in red and depletion in

green.

Type 1: Early blastocyst, upregulated.
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Figure 32. Enriched TF binding motifs in promoters of genes upregulated at early blastocyst stage in type 1 cells. A.

Expression levels of genes coding for TFs. Dark indicates higher expression. B. Corresponding TF binding motifs. Enrichment

is shown in red and depletion in green.
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Type 1: Mid. blastocyst, upregulated.

A. Expression

Color Key

_l_l_*

Vil

Q
0
-

earlyblast
midblast
lateblast

B. Motif enrichment

Supplementary Document

atTTCTCAGGAAatg

tGGGCGtgge

GGGGGCGGyY

Figure 33. Enriched TF binding motifs in promoters of genes upregulated at mid blastocyst stage in type 1 cells. A. Expression

levels of genes coding for TFs.
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Figure 34. Enriched TF binding motifs in promoters of genes upregulated at late blastocyst stage in type 1 cells. A. Expression
levels of genes coding for TFs. Dark indicates higher expression. B. Corresponding TF binding motifs. Enrichment is shown in

red and depletion in green.
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Type 2: Early blastocyst, upregulated.
A. Expression  B. Motif enrichment
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Figure 35. Enriched TF binding motifs in promoters of genes upregulated at early blastocyst stage in type 2 cells. A.
Expression levels of genes coding for TFs. Dark indicates higher expression. B. Corresponding TF binding motifs. Enrichment
is shown in red and depletion in green.
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Figure 36. Enriched TF binding motifs in promoters of genes downregulated at early blastocyst stage in type 2 cells. A.
Expression levels of genes coding for TFs. Dark indicates higher expression. B. Corresponding TF binding motifs. Enrichment
is shown in red and depletion in green.
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Type 2: Late blastocyst, upregulated.
A. Expression B. Motif enrichment
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Figure 37. Enriched TF binding motifs in promoters of genes upregulated at late blastocyst stage in type 2 cells. A. Expression
levels of genes coding for TFs. Dark indicates higher expression. B. Corresponding TF binding motifs. Enrichment is shown in
red and depletion in green.
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Figure 38. Enriched TF binding motifs in promoters of genes upregulated at early blastocyst stage in type 3 cells. A.
Expression levels of genes coding for TFs. Dark indicates higher expression. B. Corresponding TF binding motifs. Enrichment
is shown in red and depletion in green.
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Type 3: Early blastocyst, Downregulated.
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Figure 39. Enriched TF binding motifs in promoters of genes downregulated at early blastocyst stage in type 3 cells. A.
Expression levels of genes coding for TFs. Dark indicates higher expression. B. Corresponding TF binding motifs. Enrichment
is shown in red and depletion in green.

Type 3: Mid blastocyst, Downregulated.

A. Expression

FOXJ3

*TFDP2

16C

earlyblast
midblast

7
©
|
L
o

AHCTF1

*ZFP105

ARID3B

B. Motif enrichment
tGTAAACAaa
AAATARAT
TTGTTtattg
aTATTAATtaa

AAATGGCGGGAAAC

Figure 40. Enriched TF binding motifs in promoters of genes downregulated at early blastocyst stage in type 3 cells. A.
Expression levels of genes coding for TFs. Dark indicates higher expression. B. Corresponding TF binding motifs. Enrichment
is shown in red and depletion in green.
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Type 3: Late blastocyst, upregulated.

A. Expression B. Motif enrichment
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Figuredl. Enriched TF binding motifs in promoters of genes upregulated at late blastocyst stage in type 3 cells. A. Expression
levels of genes coding for TFs. Dark indicates higher expression. B. Corresponding TF binding motifs. Enrichment is shown in
red and depletion in green.
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