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SUPPLEMENTAL	FIGURES	

	

Figure	S1:	Tumor	type	breakdown.	

Pie	charts	show	the	breakdown	of	tumor	types	across	all	tumors	(n=63,220)	and	within	the	

KRAS	G12C	containing	tumors	(n=1,799).		The	top	11	tumor	types	are	shown	with	all	others	

being	categorized	as	‘other.’	
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Figure	S2:	Antigenicity	is	HLA-subtype	dependent	

MHC-I	binders	were	determined	across	12	common	HLA-subtypes.	The	total	number	of	HLA-

subtypes	predicted	to	bind	a	given	peptide	were	counted.	Most	peptides	bind	to	a	single	HLA-

subtype.	
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Figure	S3:	Applicability	of	poly-neoantigen,	non-individualized	targeted	cancer	

immunotherapies	MHC-II	binding	predictions	

Top	additive	“and/or”	alterations	predicted	to	produce	an	MHC-II	neoantigen	are	shown	for	all	

tumors	using	‘low’	and	‘high’	affinity	thresholds	(500nM	and	50nM).	This	was	done	for	two	

common	HLA-DRB1	subtypes	(DRB1*15:01	and	DRB1*07:01).	
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