

Supporting Information

Gold(I) Carbenoids: On-Demand Access to Gold(I) Carbenes in Solution

Juan M. Sarria Toro, Cristina García-Morales, Mihai Raducan, Ekaterina S. Smirnova, and Antonio M. Echavarren*

anie_201611705_sm_miscellaneous_information.pdf

Supporting Information

1.	General information	. 2
2.	Synthesis of gold carbenoid complexes	. 2
2.1.	(Chloromethyl)(2-(di- <i>tert</i> -butylphosphino)biphenyl)gold (1a)	. 2
2.2.	(Chloromethyl- <i>d</i>)(2-(di- <i>tert</i> -butylphosphino)biphenyl)gold (1a - <i>d</i> ₁)	. 3
2.3.	(Chloromethyl)(2-(di- <i>tert</i> -butylphosphino)-2',4',6'-triisopropylbiphenyl)gold (1b)	. 3
2.4. 2 E	(Chloromethyl)(1,3-bls(2,6-dllsopropylphenyl)Imidazole-2-ylideneJgold (1c)	.4
2.5.	((Tetrahydro-1 <i>H</i> -furan-1-ium-1-yl)methyl)(2-(di- <i>tert</i> -hutylnhosphino)hinhenyl)gold	. 4
hexa	fluoroantimonate (8)	. 5
2.7.	(Chloro(phenyl)methyl)(2-(di-tert-butylphosphino)biphenyl)gold (9)	. 5
3.	Activation of carbenoid complexes with chloride scavengers	. 6
3.1.	Formation of ethylene	. 6
3.2.	Quantification of ethylene	. 7
3.3.	Effect of the anion in the decomposition of gold carbenoids	11
3.4.	In presence of olefins, formation of cyclopropanes	12
3.5.	In benzene, formation of cycloheptatriene	19
3.6. 3.7	Activation of complex 9	21 22
5.7.	Activation of complex 9	23
4.	X-Ray crystallography	30
4.1.	Analysis of previously reported structures featuring a [MCH ₂ CI] motif as per May 2016 30	•
4.2.	Crystal data and structure refinement for complex 1a	32
4.3.	Crystal data and structure refinement for complex 1b	33 24
4.4. 4 5	Crystal data and structure refinement for complex B	34
4.6.	Crystal data and structure refinement for complex 9	36
F	DET coloulations	27
5 .	Fully dissociative mechanism	37
5.2.	Concerted cyclopropanation (Simmons-Smith's type TS)	39
5.3.	Cyclopropanation via a reductive elimination from metallacyclobutane structures	40
5.4.	Ethylene formation involving a neutral, three-coordinated carbene species	42
5.5.	Optimized structures of 7a and 15a	45
7.	References	47
8.	NMR spectra	48
8.1.	(Chloromethyl)(2-(di- <i>tert</i> -butylphosphino)biphenyl)gold (1a)	48
8.2.	$(Chloromethyl-d)(2-(di-tert-butylphosphino)biphenyl)gold (1a-d_1)$	51
8.3. o 4	(Chloromethyl)(2-(di- <i>tert</i> -butylphosphino)-2',4',6'-triisopropylbiphenyl)gold (1b)	54
0.4. 8 5	(Chloromethyl)(1,5-Dis(2,6-dilsopi opyipiteliyi)initidazoie-2-yildene)goid (1c)	57
8.6.	((Tetrahvdro-1 <i>H</i> -furan-1-ium-1-vl)methvl)(2-(di- <i>tert</i> -butvlphosphino)biphenvl)gold	57
hexa	fluoroantimonate (8)	62
8.7.	(Chloro(phenyl)methyl)(2-(di-tert-butylphosphino)biphenyl)gold (9)	65
9.	Mass spectrometry	68
9.1.	ESI-MS spectra of 1a	68

1. General information

All reactions under a N₂ atmosphere were conducted after preparation in the glove box, reactions carried out under Ar atmosphere were performed using standard Schlenk techniques. Anhydrous solvents for synthesis were obtained by passing them through an activated alumina column on a PureSolvTM solvent purification system (Innovative Technologies, Inc., MA). Deuterated solvents were purchased from Sigma-Aldrich and, unless otherwise stated, distilled over a suitable drying agent^[1] (Benzene- d_6 , Toluene- d_8 and THF- d_8 over molten K, CD₂Cl₂ and DCCl₃ over CaH₂) under Ar before use. Analytical TLC was performed on precoated neutral aluminum oxide plates (0.2 mm thick, Gf234, Merck, Germany) and observed under UV light. Column chromatography was performed on neutral aluminum oxide Carlo Erba. NMR spectra were recorded either on a Bruker Avance 300, 400 or 500 Ultrashield instruments. Chemical shifts are reported in parts per million and referenced to residual solvent. Coupling constants (*J*) are reported in hertz (Hz). Mass spectra were recorded on a Water LCT Premier Spectrometer (ESI and APCI), on an Autoflex Bruker Daltonics (MALDI and LDI), or on an AgilentMSD-5975B (GC-MS).

2-(Di-*tert*-butylphosphino)biphenyl gold(I) chloride, 2-Di-tert-butylphosphino-2',4',6'triisopropylbiphenyl gold(I) chloride. 1,3-Bis(2,6-diisopropylphenyl-imidazol-2ylidene)gold(I) chloride, (Trimethylsilyl)diazomethane (TMSCHN₂) (2M in hexanes), Silver hexafluoroantimonate(VI), bis(trifluoromethanesulfonyl)imide, Silver Trimethylsilyl Trimethylsilyl trifluoromethanesulfonate (TMSOTf), trifluoroacetate (TMSO₂CCF₃), Trimethylsilyl mathanesulfonate (TMSOSO₂CH₃) and Norbornene were purchased from Sigma-Aldrich and used without further purification. Trimethylsilyl bis(trifluoromethanesulfonyl)imide (TMSNTf₂) was purchased from TCI and used without further purification. Cyclohexene was purchased from Acros and used without further purification

Unless otherwise stated, all other reagents were purchased from commercial sources and used without further purification.

2. Synthesis of gold carbenoid complexes

General Procedure

A solution of TMSCHN₂ (2 M in hexane, 1 to 2 equiv.) was added to a solution of gold chloride complex (1 equiv.) and MeOH (6 equiv.) in anhydrous C_6H_6 (6 mL). After a few seconds, N₂ evolution started and it stopped after 30 min. The mixture was filtered through a small pad of silica gel in order to quench the excess TMSCHN₂ and rinsed three times with 2 mL of CH₂Cl₂. After evaporation of the volatiles in a rotary evaporator the complexes were purified by either recrystallization or column chromatography on neutral aluminum oxide. Single crystals suitable for XRay diffraction were obtained by slow diffusion of pentane into a solution of the pure carbenoid compounds in CH₂Cl₂.

2.1. (Chloromethyl)(2-(di-tert-butylphosphino)biphenyl)gold (1a)

2-(Di-*tert*-butylphosphino)biphenyl gold(I) chloride (200 mg, 0.377 mmol), MeOH (91 μ L, 2.26 mmol) and TMSCHN₂ (0.226 mL, 0.452 mmol) were used. Complex **1a** was purified by column chromatography on neutral aluminum oxide using a pentane/CH₂Cl₂/acetonitrile (100:10:2) mixture as eluent. Yield: 120 mg (58.5 %) of **1a** as a white solid.

¹H NMR (400 MHz, CD₂Cl₂) δ 7.91 – 7.86 (m, 1H, H_{arom}), 7.52 – 7.44 (m, 2H, H_{arom}), 7.42 – 7.35 (m, 3H, H_{arom}), 7.26 – 7.22 (m, 1H, H_{arom}), 7.18 – 7.14 (m, 2H, H_{arom}), 2.96 (d, *J*_{H-P} = 3.6 Hz, 2H, CH₂Cl), 1.39 (d, *J*_{H-P} = 14.5 Hz, 18H, PC(CH₃)₃).

³¹P NMR (162 MHz, CD₂Cl₂) δ 68.29 (s).

¹³C NMR (101 MHz, CD₂Cl₂) δ 150.67 (d, $J_{C-P} = 16.2$ Hz, C_{arom}), 143.98 (d, $J_{C-P} = 5.6$ Hz, C_{arom}), 135.58 (s, C_{arom}), 133.27 (d, $J_{C-P} = 7.6$ Hz, C_{arom}), 130.56 (d, $J_{C-P} = 2.2$ Hz, C_{arom}), 130.08 (s, C_{arom}), 129.22 (d, $J_{C-P} = 33.5$ Hz, C_{arom}), 128.63 (s, C_{arom}), 127.43 (s, C_{arom}), 127.17 (d, $J_{C-P} = 5.3$ Hz, C_{arom}), 53.58 (d, $J_{C-P} = 112.6$ Hz, AuCH₂Cl), 37.63 (d, $J_{C-P} = 19.7$ Hz, PC(CH₃)₃), 31.31 (d, $J_{C-P} = 7.0$ Hz, PC(CH₃)₃).

HRMS (ESI+) Calcd. for C₂₁H₂₉AuPClNa [M+Na]⁺: 567.1253 Found: 567.1274.

Anal. Calcd. for C₂₁H₂₉AuClP: C, 46.29; H, 5.37. Found: C, 46.23; H, 5.21.

2.2. (Chloromethyl-*d*)(2-(di-*tert*-butylphosphino)biphenyl)gold (**1a**-*d*₁)

2-(Di-*tert*-butylphosphino)biphenyl gold(I) chloride (200 mg, 0.377 mmol), CD₃OD (91 μ L, 2.26 mmol) and TMSCHN₂ (0.226 mL, 0.452 mmol) were used. Complex **1a-d**₁ was purified by column chromatography on neutral aluminum oxide using a pentane/ CH₂Cl₂/acetonitrile (100:10:2) mixture as eluent. Yield: 113 mg (54.9%) of **1a-d**₁ as a white crystalline solid.

¹H NMR (400 MHz CD₂Cl₂) δ 7.91 – 7.85 (m, 1H, H_{arom}), 7.52 – 7.43 (m, 2H, H_{arom}), 7.42 – 7.36 (m, 3H, H_{arom}), 7.26 – 7.22 (m, 1H, H_{arom}), 7.19 – 7.13 (m, 2H, H_{arom}), 2.96 (d, *J*_{H-P} = 3.6 Hz, 2H, AuC*H*₂Cl), 2.94 (dt, *J*_{H-P} = 3.2, *J*_{H-D} = 1.4 Hz, 1H, AuC*H*DCl), 1.39 (d, *J*_{H-P} = 14.5 Hz, 18H, PC(C*H*₃)₃).

³¹P NMR (162 MHz, CD₂Cl₂) δ 68.3.

¹³C NMR (101 MHz, CD₂Cl₂) δ 150.1 (d, $J_{C-P} = 16.1$ Hz, C_{arom}), 143.4 (d, $J_{C-P} = 5.7$ Hz, C_{arom}), 135.0, 132.7 (d, $J_{C-P} = 7.7$ Hz, C_{arom}), 130.0 (d, $J_{C-P} = 2.2$ Hz, C_{arom}), 129.5, 128.6 (d, $J_{C-P} = 33.6$ Hz, C_{arom}), 128.0, 126.8, 126.6 (d, $J_{C-P} = 5.3$ Hz, C_{arom}), 53.0 (d, $J_{C-P} = 112.7$ Hz, AuCH₂Cl), 52.9 (dt, $J_{C-P} =$ overlapping, $J_{C-D} = 21.8$ Hz, AuCHDCl) (d, $J_{C-P} = 19.6$ Hz, $C(CH_3)_3$), 30.7 (d, $J_{C-P} = 7.0$ Hz, $C(CH_3)_3$).

2.3. (Chloromethyl)(2-(di-*tert*-butylphosphino)-2',4',6'-triisopropylbiphenyl)gold (**1b**)

2-(Di-*tert*-butylphosphino)-2',4',6'-triisopropylbiphenyl gold(I) chloride (197 mg, 0.300 mmol), MeOH (73 μ L, 1.80 mmol) and TMSCHN₂ (0.500 mL (0.6 M), 0.300 mmol) were used. Complex **1b** was purified by column chromatography on neutral aluminum oxide using a pentane/CH₂Cl₂/acetonitrile (100:10:2) mixture as eluent. Yield: 112 mg (55.9 %) of **1b** as a white solid.

¹H NMR (400 MHz, CD₂Cl₂) δ 7.89 (m, 1H, H_{arom}), 7.51 – 7.42 (m, 2H, H_{arom}), 7.22 (m, 1H), 7.05 (m, 2H), 3.03 – 2.86 (m, 1H, CH(CH₃)₂), 2.94 (d, J_{H-P} = 3.8 Hz, 2H, CH₂Cl), 2.40 (hept, J_{H-H} = 6.7 Hz, 2H, CH(CH₃)₂), 1.41 (d, J_{H-P} = 14.4 Hz, 18H, PC(CH₃)₃), 1.33 (d, J_{H-H} = 6.9 Hz, 6H, CH(CH₃)₂), 1.27 (d, J_{H-H} = 6.8 Hz, 6H, CH(CH₃)₂), 0.90 (d, J_{H-H} = 6.7 Hz, 6H, CH(CH₃)₂).

³¹P NMR (162 MHz, CD₂Cl₂) δ 68.85 (s).

¹³C NMR (101 MHz, CD₂Cl₂) δ 149.3 (s, C_{arom}), 148.7 (d, *J*_{C-P} = 16.9 Hz, C_{arom}), 147.0 (s, C_{arom}), 138.2 (d, *J*_{C-P} = 4.3 Hz, C_{arom}), 136.5 (s, C_{arom}), 135.3 (d, *J*_{C-P} = 8.4 Hz, C_{arom}), 131.6 (d, *J*_{C-P} = 31.2 Hz, C_{arom}), 130.3 (d, *J*_{C-P} = 2.2 Hz, C_{arom}), 126.8 (d, *J*_{C-P} = 5.4 Hz, C_{arom}), 121.8 (s, C_{arom}), 53.9 (d, *J*_{C-P} = 112.5 Hz, CH₂Cl), 38.3 (d, *J*_{C-P} = 20.1 Hz, PC(CH₃)₃), 34.7 (s, CH(CH₃)₂), 31.8 (d, *J*_{C-P} = 6.8 Hz, PC(CH₃)₃), 31.4 (s, CH(CH₃)₂), 26.4 (s, CH(CH₃)₂), 24.6 (s, CH(CH₃)₂), 23.3 (s, CH(CH₃)₂).

HRMS (ESI+) Calcd. for C₃₀H₄₇AuPClNa [M+Na]⁺: 693.2662 Found: 693.2688.

Anal. Calcd. for C₃₀H₄₇AuClP: C, 53.69; H, 7.06. Found: C, 53.69; H, 6.96.

2.4. (Chloromethyl)(1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene)gold (1c)

1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene gold(I) chloride (300 mg, 0.483 mmol), MeOH (117 μ L, 2.90 mmol) and TMSCHN₂ (531 μ L (2 M), 1.063 mmol) were used. Complex **3** was purified by column chromatography on neutral aluminum oxide using a pentane/EtOAc/acetonitrile (10:1:0.5) mixture as eluent. Yield: 180 mg (58.7 %) of **1c** as a white solid.

¹H NMR (300 MHz, CD₂Cl₂) δ 7.54 (t, *J*_{H-H} = 7.7 Hz, 2H, H_{arom}), 7.34 (d, *J*_{H-H} = 7.7 Hz, 4H, H_{arom}), 7.16 (s, 2H, H_{imid}), 3.34 (s, 2H, CH₂Cl), 2.60 (hept, *J*_{H-H} = 7.0 Hz, 4H, CH(CH₃)₂), 1.34 (d, *J*_{H-H} = 6.9 Hz, 12H, CH(CH₃)₂), 1.22 (d, *J*_{H-H} = 6.9 Hz, 12H, CH(CH₃)₂).

¹³C NMR (101 MHz, CD₂Cl₂) δ 195.2 (s, C-Au), 146.5 (s, C_{arom}), 135.1 (s, C_{arom}), 130.8 (s, C_{arom}), 124.5 (s, C_{arom}), 123.6 (s, C_{imid}), 47.2 (s, CH₂Cl), 29.3 (s, CH(CH₃)₂), 24.7 (s, CH(CH₃)₂), 24.2 (s, CH(CH₃)₂).

HRMS (ESI+) Calcd. for C₂₈H₃₉AuClN₂ [M+H]⁺: 635.2462 Found: 635.2475.

Anal. Calcd. for $C_{28}H_{38}AuClN_2$: C, 52.96; H, 6.03; N, 4.41. Found: C, 52.88; H, 6.09; N, 4.24.

2.5. (Chloromethyl)(tris(2,4-di-*tert*-butylphenyl)phosphite)gold (1d)

Tris(2,4-di-*tert*-butylphenyl)phosphite gold(I) chloride (300 mg, 0.341 mmol), MeOH (83 μ L, 2.05 mmol) and TMSCHN₂ (341 μ L (2 M), 0.682 mmol) were used. Complex **1d** could not be purified by conventional means as it would immediately decompose in the column. After TMSCHN₂ was consumed (as evidenced by the disappearance of the yellow color) the solvents were removed under reduced pressure and the residue redissolved in anhydrous Et₂O (2 mL) and filtered through 2 HPLC filters into a Schlenk flask. Anhydrous *n*-hexane (5 mL) were added over the solution and the solvents removed under vacuum. The off-white solid thus obtained was used without further purification.

¹H NMR (500 MHz, CD₂Cl₂) δ 7.49 (dd, $J_{H,H}$ = 8.5, 1.5 Hz, 3H_{arom}), 7.46 (dd, $J_{H,H}$ = 2.6, 1.1 Hz, 3H_{arom}), 7.17 (dd, $J_{H,H}$ = 8.5, 2.6 Hz, 3H_{arom}), 3.62 (d, $J_{H,P}$ = 5.7 Hz, 2H, CH₂Cl), 1.45 (s, 27H, C(CH₃)₃), 1.30 (s, 27H, C(CH₃)₃).

³¹P NMR (202 MHz, CD₂Cl₂) δ 143.2 (s).

¹³C NMR (126 MHz, CD₂Cl₂) δ 148.4 (s, C_{arom}), 148.1 (d, $J_{C,P} = 5.1$ Hz, C_{arom}), 139.7 (d, $J_{C,P} = 5.8$ Hz), 125.9 (s, C_{arom}), 124.5 (s, C_{arom}), 119.8 (d, $J_{C,P} = 9.5$ Hz, C_{arom}), 49.1 (d, $J_{C,P} = 180.5$ Hz, CH₂Cl), 35.6 (s, C(CH₃)₃), 35.1 (s, C(CH₃)₃), 31.7 (s, C(CH₃)₃), 30.8 (s, C(CH₃)₃).

2.6. ((Tetrahydro-1*H*-furan-1-ium-1-yl)methyl)(2-(di-*tert*-butylphosphino)biphenyl)gold hexafluoroantimonate (**8**)

Complex **8** was obtained as the product of an NMR scale experiment as follows: A solution of silver hexafluoroantimonate (16.40 mg, 0.048 mmol) in 0.4 mL of CD_2Cl_2 was added to a solution of **1a** (20 mg, 0.037 mmol) and tetrahydrofuran (30.0 μ L, 0.367 mmol) in 0.6 mL of CD_2Cl_2 contained in an NMR tube at -78 °C. The mixture was well mixed at this temperature and transferred to the NMR instrument. The reaction was monitored by multinuclear NMR as it was warmed up from -78 °C to -20 °C. At this temperature total conversion of **1a** into **8** was observed. Single crystals suitable for X-Ray diffraction were obtained by layering anhydrous *n*-hexane over the previously analyzed sample at -20 °C. After one day crystals suitable for diffraction were found in the NMR tube.

¹H NMR (500 MHz, -20 °C, CD₂Cl₂) δ 7.86 (m, 1H, H_{arom}), 7.55 – 7.48 (m, 2H, H_{arom}), 7.44 – 7.33 (m, 3H, H_{arom}), 7.23 (m, 1H, H_{arom}), 7.19 – 7.13 (m, 2H, H_{arom}), 4.66 (d, *J*_{H-P} = 3.5 Hz, 2H, C*H*₂(OC₄H₈)), 4.34 – 4.26 (m, 4H, CH₂(OC₄H₈)), 2.27 – 2.20 (m, 4H, CH₂(OC₄H₈)), 1.37 (d, *J*_{H-P} = 15.0 Hz, 18H, PC(C*H*₃)₃).

³¹P NMR (202 MHz, -20 °C, CD₂Cl₂) δ 64.4 (s).

¹³C NMR (126 MHz, -20 °C, CD₂Cl₂) δ 149.5 (d, $J_{C-P} = 15.3$ Hz, C_{arom}), 143.9 (d, $J_{C-P} = 5.8$ Hz, C_{arom}), 135.1 (s, C_{arom}), 133.0 (d, $J_{C-P} = 7.6$ Hz, C_{arom}), 130.9 (d, $J_{C-P} = 2.3$ Hz, C_{arom}), 130.0 (s, C_{arom}), 128.6 (s, C_{arom}), 127.5 (d, $J_{C-P} = 38.8$ Hz, C_{arom}), 127.5 (d, $J_{C-P} = 5.9$ Hz, C_{arom}), 127.1 (s, C_{arom}), 116.2 (d, $J_{C-P} = 105.0$ Hz, $CH_2(OC_4H_8)$), 87.5 (s, $CH_2(OC_4H_8)$), 37.6 (d, $J_{C-P} = 21.6$ Hz, $PC(CH_3)_3$), 30.9 (d, $J_{C-P} = 6.6$ Hz, $PC(CH_3)_3$), 25.0 (s, $CH_2(OC_4H_8)$).

2.7. (Chloro(phenyl)methyl)(2-(di-*tert*-butylphosphino)biphenyl)gold (9)

Phenyldiazomethane^[2] (5 mL solution in benzene, approx. 1.8 mmol) was added directly over 2-(di-tert-butylphosphino)biphenyl gold(I) chloride (300 mg, 0.565 mmol) in a 25 mL Schlenk flask under Ar atmosphere (strict exclusion of oxygen and water are essential for the reproducibility of this reaction). The mixture was then stirred at 35 °C while reaction progress was monitored by ³¹P NMR. Once all the starting material has been consumed the heating was removed and the mixture concentrated to about 1 mL under reduced pressure. (Attention! Excess phenyldiazomethane is still present in the mixture, as evidenced by the intense red color, and a risk of explosion exists if all the solvent is removed) Anhydrous npentane (15 mL) is added over the mixture. The system is cooled down to -40 °C with constant stirring for 30 minutes in order to induce precipitation of the product as a white solid. Filtration of the supernatant is performed with a cannula at -40 °C. The product is washed with two portions of 2.5 mL anhydrous *n*-pentane at -40 °C. The combined supernatant is treated with 1M HCl in MeOH until all the red color of the remaining phenyldiazomethane has faded and then safely discarded. The obtained white solid is dried on the high vacuum overnight at 0 °C. Crystals suitable for X-Ray measurement were obtained by storing a solution of complex 9 in a mixture of toluene and pentane in a ratio of about 1:10 in the

freezer (-35 °C) for several days. Due to the handling and final characteristics of the product an accurate determination of the reaction yield is not possible, however conversion is complete as evidenced by ³¹P NMR evaluation during the synthesis.

¹H NMR (400 MHz, CD_2Cl_2) δ 7.90 – 7.85 (m, 1H, H_{arom}), 7.57 – 7.36 (m, 4H, H_{arom}), 7.25 – 7.19 (m, 3H, H_{arom}), 7.16 (s, 2H, H_{arom}), 7.15 (s, 2H, H_{arom}), 7.09 – 7.05 (m, 1H, H_{arom}), 6.96 (m, 1H, H_{arom}), 4.04 (d, *J*_{H-P} = 5.5 Hz, 1H, CHClPh), 1.42 (d, *J*_{H-P} = 14.7 Hz, 9H, PC(CH₃)₃), 1.30 (d, *J*_{H-P} = 14.6 Hz, 9H, PC(CH₃)₃).

³¹P NMR (162 MHz, CD₂Cl₂) δ 66.38 (s).

¹³C NMR (100 MHz, CD₂Cl₂) δ 151.9 (d, $J_{C-P} = 2.6$ Hz, C_{arom}), 150.7 (d, $J_{C-P} = 16.3$ Hz, C_{arom}), 143.7 (d, $J_{C-P} = 5.7$ Hz, C_{arom}), 135.4 (s, C_{arom}), 133.3 (d, $J_{C-P} = 7.5$ Hz, C_{arom}), 130.6 (d, $J_{C-P} = 2.2$ Hz), 130.1 (s, C_{arom}), 130.0 (s, C_{arom}), 128.8 (s, C_{arom}), 128.7 (d, $J_{C-P} = 33.6$ Hz, C_{arom}), 128.6 (s, C_{arom}), 128.2 (d, $J_{C-P} = 2.4$ Hz, C_{arom}), 128.0 (s, C_{arom}), 127.6 (s, C_{arom}), 127.2 (d, $J_{C-P} = 5.3$ Hz, C_{arom}), 124.3 (s, C_{arom}), 76.0 (d, $J_{C-P} = 105.0$ Hz, *C*HClPh), 37.6 (d, $J_{C-P} = 19.8$ Hz, PC(CH₃)₃), 37.5 (d, $J_{C-P} = 20.0$ Hz, PC(CH₃)₃), 31.3 (d, $J_{C-P} = 7.0$ Hz, PC(*C*H₃)₃), 31.1 (d, $J_{C-P} = 7.0$ Hz, PC(*C*H₃)₃).

3. Activation of carbenoid complexes with chloride scavengers

3.1. Formation of ethylene

In a glovebox, 0.018 mmol of carbenoid complex (either 10 mg **1a** or **1a**- d_1) was dissolved in 0.5 mL toluene- d_8 and transferred to a NMR tube capped with a rubber septum. Separately, TMSOTf (0.044 mmol, 8µL) was taken in a microsyringe and protected from air. Outside the glovebox TMSOTf was added over the mixture in the NMR tube and the sample transferred to the NMR instrument.

Figure S1. ¹H NMR spectra obtained after activation of complexes **1a** (top) and **1a**- d_1 (bottom) with TMSOTf in toluene- d_8 . The inserts show the signals corresponding to the starting carbenoid (around 3.45 ppm) and the formed ethylene (around 5.25 ppm).

3.2. Quantification of ethylene

Ethylene formation was quantified using a ManontheMoonTech X102 Gas Evolution device that monitors the gas evolution by measuring the pressure change versus time in closed reaction systems.

Figure S2. ManontheMoonTech X102 reaction flask.

Calibration Method

In a glass ampule, toluene was saturated in ethylene by bubbling the gas through anhydrous toluene for 15 minutes. The reaction flask was connected to the switchable 3-way valve via the *Torion* screw and capped with the septum cap. The closed reaction flask was filled with ethylene gas and 5.0 ml of the previously saturated toluene. The reaction flask was connected to the pressure transducer and controlled until the pressure reading stabilized at 0.390-0.400 bar. Separately, a high pressure reactor was charged with 1 bar of ethylene (total pressure = 1 bar + atmospheric pressure) and a known volume of gas was withdrawn using a Hamilton® SampleLock syringe. Ethylene was then injected through the septum cap and the change in pressure was determined. Applying the gas ideal equation SE1, the molar amount *n* of added ethylene was calculated which was then correlated to the observed change in pressure ΔP (bar).

$$PV = nRT \rightarrow n = \frac{PV}{RT}$$

Equation SE1. Ideal gas equation, where: P = pressure of the gas, V = volume of the gas, n = moles of the gas, R = the ideal gas constant, T = the absolute temperature of the gas.

Tuble 51. Cultoration of the pressure response to emplehe.					
Entry	V _{ethylene} (ml)	T (K)	Pethylene (bar)	n _{ethyelene} (mmol)	ΔP (bar)
1	2.50	298	2	0.2	0.128
2	2.50	298	2	0.2	0.123
Average: $\Delta P_{0.2 \text{ mmol}}$					0.125
3	1.25	298	2	0.1	0.071
4	1.25	298	2	0.1	0.077
	Average: $\Delta P_{0.1 \text{ mmol}}$ 0.074				

Table S1. Calibration of the pressure response to ethylene.

Ethylene quantification

The reaction flask was filled with toluene (5.0 mL, anhydrous and saturated in ethylene), **1a** and ethylene gas. Then, it was connected to the pressure transducer and controlled until the pressure reading stabilized at 0.390-0.400 bar. TMSOTf (2 equiv) was injected through the septum cap and the pressure change measured over time. The yield of ethylene at any time was calculated using equation SE2.

$$Yield (\%) = \frac{\Delta P_t}{\Delta P_{max}} * 100$$

Equation SE2. Where: ΔP_t = pressure difference along the reaction. ΔP_{max} = maximum pressure change expected given the amount of **1a** used (see calibration).

Conditions A: **1a** (0.2 mmol, 109 mg), TMSOTf (0.4 mmol, 72 μ L), $\Delta P_{max} = 0.074$ bar.

Figure S3. Left: yield profile measured for the reaction of **1a** (0.2 mmol) with TMSOTF. Right: corresponding first order linearization plot for the change of concentration of **7a** over time.

Figure S4. Left: yield profile measured for the reaction of **1a** (0.4 mmol) with TMSOTF. Right: corresponding first order linearization plot for the change of concentration of **7a** over time.

Gas phase analysis

In a closed reaction flask under argon, carbenoid **1a** (0.03 mmol, 16 mg) was dissolved in 0.5 mL of anhydrous toluene. In a glovebox, TMSOTf (0.06 mmol, 11 μ L) was taken in a microsyringe and protected from air. Outside the glovebox TMSOTf was added over the solution. The mixture was then stirred at 25°C for 30 minutes. A Hamilton® SampleLock syringe was filled with 250 μ L of gas from the gas phase of the reaction. The gas was injected in a GC-MS instrument.

Figure S5. GC-MS trace and MS spectrum from the gas phase during the activation of 1a with TMSOTf.

3.3. Effect of the anion in the decomposition of gold carbenoids

In a glovebox, carbenoid complex (0.018 mmol, 10 mg **1a** or 11 mg **1c**) was dissolved in 0.5 mL toluene- d_8 and transferred to a NMR tube capped with a rubber septum. Separately, 0.037 mmol of TMS-X compound (either 6.6 µL TMSOTf, 7.7 µL TMSO₂CCF₃, 8.4 µL TMSNTf₂, or 5.7 µL TMSOSO₂CH₃) was taken in a microsyringe and protected from air. Outside the glovebox TMSOTf was added over the mixture in the NMR tube at room temperature for **1a** or at 273 K for **1c** and the sample transferred to the NMR instrument.

Figure S6. Observable intermediates of the type (JohnPhos)AuCH₂X after the activation of complex **1a** with 1) TMSNTf₂, 2) TMSOSO₂CH₃, 3) TMSOOCCF₃ and 4) TMSOTf in toluene- d_8 at room temperature.

Figure S7. Observable intermediates of the type (IPr)AuCH₂X after the activation of complex **1c** with 1) TMSNTf₂, 2) TMSOSO₂CH₃, 3) TMSOOCCF₃ and 4) TMSOTf in toluene- d_8 at 273 K.

3.4. In presence of olefins, formation of cyclopropanes

General Procedure A, using silver salts:

In a glovebox, 0.017 mmol of carbenoid complex (either 9.3 mg **1a**, 10.5 mg **1c** or 15.2 mg **1d**) was put into a glass vial together with the corresponding olefin (20 equivalents, 0.340 mmol, 34.4 μ L cyclohexene or 31.1 mg norbornene) and the internal standard 0.018 mmol, 3.0 μ L diphenylmethane. The mixture was dissolved in 0.5 mL CD₂Cl₂ and transferred to a NMR tube capped with a rubber septum. Separately 0.020 mmol, 7.9 mg of AgNTf₂ was dissolved in 0.2 mL of toluene-*d*₈ and kept in a 1 mL plastic syringe protected from air. Outside the glovebox in a cooling bath kept at -40 °C the silver solution was added over the mixture in the NMR tube. The tube was shaken and left warming up to room temperature. The yield was calculated by integration of the ¹H NMR signals of the cyclopropanes and the internal standard using equation SE1.

General Procedure B, using TMS compounds:

In a glovebox, 0.017 mmol of carbenoid complex (either 9.3 mg **1a**, 10.5 mg **1c** or 15.2 mg **1d**) was put into a glass vial together with the corresponding olefin (20 equivalents, 0.340 mmol, 34.4 μ L cyclohexene or 31.1 mg norbornene) and the internal standard 0.018 mmol, 3.0 μ L diphenylmethane. The mixture was dissolved in 0.5 mL CD₂Cl₂ and transferred to a NMR tube capped with a rubber septum. Separately 0.035 mmol, 8 μ L of TMSNTf₂ were taken in a microsyringe protected from air. Outside the glovebox in a cooling bath kept at -80 °C the TMSNTf₂ was added over the mixture in the NMR tube. The tube was shaken and immediately transferred to the NMR instrument where ¹H NMR spectra were measured at temperatures ranging -80 to 25 °C. The yield was calculated by integration of the ¹H NMR

signals of the cyclopropanes and the internal standard at the temperature of maximum yield using equation SE3.

Chemical shifts of the formed cyclopropanes were in agreement to previously reported data.^[3] Mass spectra obtained from CGMS analysis of the reaction mixtures confirmed formation of the expected products.

$$Yield(\%) = \frac{\left(\frac{N_{I.S.}^{H} * n_{I.S.} * I_{prod}}{I_{I.S.} * N_{prod.}^{H}}\right)}{n_{carbenoid}} * 100$$

Equation SE3. Where: $N^{H}_{I.S.}$ = number of protons corresponding to the integrated signal of the internal standard (for diphenylmethane $N^{H}_{I.S.}$ = 2), $n_{I.S.}$ = amount of internal standard used (0.017 mmol), I_{prod} = Measured integral of the product, $I_{I.S.}$ = Measured integral of the internal standard, $N^{H}_{prod.}$ = number of protons corresponding to the integrated signal of the products (for cyclopropanes $N^{H}_{prod.}$ = 1, for cycloheptatrienes $N^{H}_{prod.}$ = 2), $n_{carbenoid}$ = amount of starting carbenoid complex (0.018 mmol).

Representative analytical data

Figure S8. Typical ¹H NMR spectrum obtained during the cyclopropanation of norbornene with complex **1a** and AgNTf₂. Diphenylmethane as internal standard.

Figure S9. GC-MS trace and MS spectrum obtained during the cyclopropanation of norbornene with complex 1a and AgNTf₂.

Figure S10. GC-MS trace and MS spectrum of an authentic sample of exo-tricyclo $[3.2.1.0^{2,4}]$ octane.

Figure S11. Typical ¹H NMR spectrum obtained during the cyclopropanation of cyclohexene with complex **1c** and AgNTf₂. Diphenylmethane as internal standard.

Figure S12. GC-MS trace and MS spectrum obtained during the cyclopropanation of cyclohexene with complex 1c and AgNTf₂.

Figure S13. GC-MS trace and MS spectrum of an authentic sample of bicyclo[4.1.0]heptane.

Table S2. Yields for cyclopropanation of cyclohexene and norbornene with complexes **1a**, **1c** and **1d.** Procedure A.

Entry	Complex	Olefin	Integral I.S.	Integral Cyclop.	Yield (%)
1	1a	Cyclohexene	1145.05	280.25	51.82
2	1a	Cyclohexene	1107.57	355.89	68.04
				Average	59.93
3	1a	Norbornene	791.24	294.48	78.81
4	1a	Norbornene	2181.91	712.04	69.11
				Average	73.96
5	1c	Cyclohexene	1164.31	231.19	39.71

6	1c	Cyclohexene	950.15	225.84		50.33
					Average	45.02
7	1c	Norbornene	935.02	183.28		41.51
8	1c	Norbornene	2045.81	583.02		60.34
					Average	50.92
9	1d	Cyclohexene	989.72	38.91		8.28
10	1d	Cyclohexene	1000^{+}	0		0
					Average	4.14
11	1d	Norbornene	1000†	0		0
12	1d	Norbornene	1000^{+}	0		0
					Average	0

[†]Arbitrary integral assigned when no product could be detected.

Table S3. Yields for cyclopropanation of cyclohexene and norbornene with complexes 1a, 1c and 1d. Procedure B.

Entry	Complex	Olefin	Integral I.S.	Integral Cyclop.	Yield (%)
1	1a	Cyclohexene	1551.35	367.39	50.15
2	1a	Cyclohexene	1101.78	270.75	52.04
				Average	51.10
3	1a	Norbornene	1174.46	550.38	99.23
4	1a	Norbornene	1012.27	454.01	94.97
				Average	97.10
5	1c	Cyclohexene	1310.17	462.89	74.81
6	1c	Cyclohexene	1787.82	496.93	58.86
				Average	66.84
7	1c	Norbornene	1409.69	428.74	64.40
8	1c	Norbornene	1399.73	570.28	86.27
				Average	75.34
9	1d	Cyclohexene	1000 [†]	0	0
10	1d	Cyclohexene	1000 [†]	0	0
				Average	0
11	1d	Norbornene	1000 [†]	0	0
12	1d	Norbornene	1000 [†]	0	0
				Average	0

[†]Arbitrary integral assigned when no product could be detected.

3.5. In benzene, formation of cycloheptatriene

General Procedure A:

In a glovebox, 0.017 mmol of carbenoid complex (either 9.3 mg **1a**, 10.5 mg **1c** or 15.2 mg **1d**) was put into a glass vial together with the internal standard 0.018 mmol, 3.0 μ L diphenylmethane. The mixture was dissolved in 0.5 mL benzene- d_6 and transferred to a NMR tube capped with a rubber septum. Separately 0.020 mmol, 7.9 mg of AgNTf₂ was dissolved in 0.2 mL of benzene- d_6 and kept in a 1 mL plastic syringe protected from air. Outside the glovebox the silver solution was added over the mixture in the NMR tube at room temperature. The conversion was calculated by integration of the ¹H NMR signals of the cycloheptatriene and the internal standard.

General Procedure B:

In a glovebox, 0.017 mmol of carbenoid complex (either 9.3 mg **1a**, 10.5 mg **1c** or 15.2 mg **1d**) was put into a glass vial together with the internal standard 0.018 mmol, 3.0 μ L diphenylmethane. The mixture was dissolved in 0.5 mL benzene- d_6 and transferred to a NMR tube capped with a rubber septum. Separately, 0.035 mmol, 8 μ L of TMSNTf₂ was taken in a microsyringe and protected from air. Outside the glovebox at room temperature TMSNTf₂ was added over the mixture in the NMR tube. The conversion was calculated by integration of the ¹H NMR signals of the cycloheptatriene and the internal standard using equation SE1.

Chemical shift of the formed cyclopropanes were in agreement to previously reported data.^[4] In order to confirm the identity of the product, the reaction was repeated in non-deuterated benzene and its proton spectrum acquired using an external C_6D_6 reference.

Figure S14. Comparison of ¹H NMR spectra of the reaction mixtures during ring expansion of C_6D_6 (top), C_6H_6 (middle) under conditions B and authentic cycloheptatriene (bottom).

Entry	Complex	Procedure	Integral I.S.	Integral CHT	Yield (%)
1	1a	А	3062.93	229.33	7.93
2	1a	А	2036.54	106.18	5.52
				Average	6.72
3	1a	В	3231.52	360.02	11.79
4	1a	В	3411.11	404.24	12.54
				Average	12.16
5	1c	А	2456.09	322.26	13.89

Table S4. Yields for the ring expansion of C_6D_6 complexes 1, 3 and 4.

6	1c	А	7337.91	675.81		9.75
					Average	11.82
7	1c	В	3050.78	795.20		27.60
8	1c	В	3006.99	780.7		27.49
					Average	27.56
9	1d	A	2331.99	32.99		1.41
10	1d	Α	1000†	0		0
					Average	0.70
11	1d	В	2432.51	102.76		4.47
12	1d	В	1000^{+}	0		0
					Average	2.23

[†]Arbitrary integral assigned when no product could be detected.

3.6. Kinetic measurements

Reaction of gold carbenoid **1a** with AgOTf in toluene- d_8 was monitored by ¹H NMR at various temperatures. The rate determined constants allowed the calculation of the activation parameters ΔH^{\ddagger} and ΔS^{\ddagger} for the initial exchange of chloride for triflate (**1a** to **7a**) and the subsequent decay of **7a** into **9a** and ethylene. In a typical experiment, inside the glovebox, 0.70 mL of a stock solution containing carbenoid complex **1a** (0.0262 mmol/mL) and diphenylmethane as internal standard (0.0262 mmol/mL) was put in a NMR tube and capped with a rubber septum. A syringe was loaded with 0.30 mL of a stock solution of AgOTf (0.613 mmol/mL) and protected from air. Outside the glovebox, either at room temperature (for runs at or above room temperature) or at 253 K (for all other cases), the solution of AgOTf was added over the mixture in the NMR tube and immediately transferred to the NMR instrument. ¹H NMR spectra were acquired every 3 minutes after the temperature of the sample had stabilized.

Figure S15. Left: typical concentration profiles measured for the reaction of **1a** with AgOTf at temperatures lower than room temperature. Right: corresponding first and second order linearization plots for the change of concentration of **1a** over time.

Figure S16. Left: typical concentration profiles measured for the reaction of **1a** with AgOTf at temperatures higher than room temperature. Right: corresponding first and second order linearization plots for the change of concentration of **7a** over time.

Table S5. Measured rate constants (average of two measurements).

		× U		/
T (K)	$k_{obs}(s^{-1})$	$k_1 (M^{-1}s^{-1})^*$	T (K)	$k_2 (s^{-1})$
263	5.44E-04	5.85E-03	288	3.13E-04
268	9.71E-04	1.04E-02	293	4.77E-04
273	1.29E-03	1.38E-02	296	7.47E-04
278	2.33E-03	2.50E-02	303	1.19E-03

*Under pseudofirst order conditions $k_1 = k_{obs}/[AgOTf]_0$ where $[AgOTf]_0 = 0.09302$ M

Figure S17. Eyring plots constructed with data from table S4.

Using the linearized Eyring equation^[5] $ln\left(\frac{k}{T}\right) = \frac{-\Delta H^{\ddagger}}{R} \cdot \frac{1}{T} + ln\left(\frac{k_B}{h}\right) + ln\left(\frac{\Delta S^{\ddagger}}{R}\right)$ the activation parameters for the first $(k_I: \Delta H^{\ddagger} = 12.9 \pm 0.5 \text{ kcal} \cdot \text{mol}^{-1} \text{ and } \Delta S^{\ddagger} = -19.2 \pm 2 \text{ cal} \cdot \text{mol}^{-1} \text{K}^{-1})$ and

second (k_2 : $\Delta H^{\ddagger} = 15.0 \pm 0.7 \text{ kcal} \cdot \text{mol}^{-1}$ and $\Delta S^{\ddagger} = -21.5 \pm 2 \text{ cal} \cdot \text{mol}^{-1} \text{K}^{-1}$) processes were calculated.

3.7. Activation of complex 9

In a glovebox, complex **9** (0.016 mmol, 10.0 mg) was put into a glass vial together with the internal standard (diphenylmethane, 0.02 mmol, 3.4 μ L), dissolved in 0.5 mL CD₂Cl₂ and transferred to a NMR tube capped with a rubber septum. Separately, TMSOTf (0.022 mmol, 4 μ L) was taken in a microsyringe and protected from air. Outside the glovebox at room temperature TMSOTf was added over the mixture in the NMR tube. After NMR monitoring was finished, the mixture was filtered through a small pad of silica gel and rinsed with two portions of 0.5 mL CH₂Cl₂. The resulting solution was analyzed by GC-MS. The yield was calculated by integration of the GC-FID signals of the *cis*-stilbene, *trans*-stilbene, 1,2,3-triphenylcyclopropane and internal standard using equation SE4, the areas were correlated to the data obtained in an equimolar mixture of the products and the internal standard (0.02 mmol of every compound).

$$Yield(\%) = \frac{\left(\frac{A_{prod} * n_{I.S.} * A_{I.S.}^{eq.mix.}}{A_{I.S.} * A_{prod}^{eq.mix.}}\right)}{n_{prod}^{max}} * 100$$

Equation SE4. Where: A_{prod} = area corresponding to the integrated signal of the product, n_{LS} = amount of internal standard used (0.02 mmol), $A^{eq.mix.}{LS}$ = area corresponding to the integrated signal of the internal standard in the equimolar mixture used for the calibration, $A_{LS.}$ = area corresponding to the integrated signal of the product in the equimolar mixture used for the calibration, $n^{max}_{prod.}$ = maximum amount of product, 0.008 mmol for *cis* and *trans*-stilbene, 0.005 mmol for 1,2,3-triphenylcyclopropane.

Figure S18. Comparison of ¹H NMR spectra of **9** before (top) and after activation with TMSOTf (bottom). Signal corresponding to *cis*-stilbene is clearly visible at 6.62 ppm. Other products were more reliably detected by GC-MS and GC-FID.

Figure S19. GC-MS chromatogram obtained after the activation of 9 with TMSOTf.

Figure S20. MS spectrum of peak at 5.096 min.

Figure S21. MS spectrum of peak at 5.663 min.

Figure S22. MS spectrum of peak at 6.954 min.

Figure S23. GC-MS trace and MS spectrum of authentic *cis*-stilbene.

Figure S24. GC-MS trace and MS spectrum of authentic *trans*-stilbene.

Figure S25. GC-MS trace and MS spectrum of authentic 1,2,3-triphenylcyclopropane.

Figure S26. GC-FID chromatogram of the equimolar mixture of *cis*-stilbene, *trans*-stilbene, 1,2,3-triphenylcyclopropane and diphenylmethane.

Figure S27. GC-FID chromatogram obtained after the activation of 9 with TMSOTf.

Table S6. Yields for cis-stilbene, trans-stilbene and 1,2,3-triphenylcyclopropane ob	tained
after activation of 9 with TMSOTf.	

Entry	Compound	Area I.S.	Area compound	Yield (%)
1	eig stilhono	5206.00	88.48	4.06
2	<i>cis</i> -stildene	4401.37	85.99	4.31
			Average	4.19
3	tugua stilhono	5206.00	197.12	11.11
4	trans-stillbelle	4401.37	156.97	9.70
			Average	10.4
5	1,2,3-	5206.00	138.48	7.13
6	triphenylcyclopropane	4401.37	174.76	9.70
			Average	8.41

4. X-Ray crystallography

4.1. Analysis of previously reported structures featuring a [MCH₂Cl] motif as per May 2016.

Figure S28. Histogram showing the distribution of M–C bond distances found in all currently published crystal structures featuring a [MCH₂Cl] (blue), new chloromethyl complexes **1a**, **1b** and **1c** (orange) and chloro(phenyl)methyl complex **9** (grey).

Figure S29. Histogram showing the distribution of C–Cl bond distances found in all currently published crystal structures featuring a [MCH₂Cl] (blue), new chloromethyl complexes **1a**, **1b** and **1c** (orange) and chloro(phenyl)methyl complex **9** (grey).

Figure S30. Histogram showing the distribution of M-C-Cl bond angles found in all currently published crystal structures featuring a [MCH₂Cl] (blue), new chloromethyl complexes **1a**, **1b** and **1c** (orange) and chloro(phenyl)methyl complex **9** (grey).

4.2. Crystal data and structure refinement for complex **1a**

4.3. Crystal data and structure refinement for complex 1b

Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta =29.95 $^{\circ}$ Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole

C30 H47 Au Cl P 671.06 100(2) K 0.71073 Å Monoclinic P2(1)/c a = 20.5365(8) Å α 90.00 °. b = 8.9497(4) Å $\beta = 104.0760(10)^{\circ}$. c = 16.4737(6) Å $\gamma = 90.00$ °. 2936.9(2) Å³ 4 1.518 Mg/m³ 5.170 mm⁻¹ 1352 0.30 x 0.30 x 0.30 mm³ 1.02 to 29.95 °. -25 <=h<=26 ,-12 <=k<=11 ,-22 <=l<=16 30282 7571 [R(int) = 0.0611]0.888 % Empirical 0.224 and 0.212 Full-matrix least-squares on F² 7571 / 0 / 310 1.071 R1 = 0.0512, wR2 = 0.1431R1 = 0.0570, wR2 = 0.14935.340 and -3.785 e.Å⁻³

4.4. Crystal data and structure refinement for complex **1c**

Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta $=35.077^{\circ}$ Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole

C28 H38 Au Cl N2 635.02 100(2) K 0.71073 Å Triclinic P-1 a = 9.8883(11)Å $\alpha = 88.838(3)^{\circ}$. b = 11.5073(13)Å $\beta = 88.638(3)^{\circ}$. c = 12.2747(14)Å $\gamma = 83.728(3)^{\circ}$. 1387.7(3) Å³ 2 1.520 Mg/m³ 5.414 mm⁻¹ 632 0.30 x 0.20 x 0.20 mm³ 2.072 to 35.077°. -15<=h<=12,-14<=k<=18,-19<=l<=19 23948 11088[R(int) = 0.0177]90.3% Multi-scan 0.411 and 0.337 Full-matrix least-squares on F² 11088/ 0/ 297 1.073 R1 = 0.0190, wR2 = 0.0454 R1 = 0.0216, wR2 = 0.04622.151 and -1.303 e.Å-3

4.5. Crystal data and structure refinement for complex 8

Volume Ζ

F(000)

R indices (all data) Largest diff. peak and hole

R1 = 0.0307, wR2 = 0.0456

1.766 and -0.676 e.Å-3

- PIA AMA PIA AMA CIA
- 4.6. Crystal data and structure refinement for complex 9

Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta $=27.349^{\circ}$ Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole

C56.33 H68.67 Au2 Cl2 P2 1272.55 100(2) K 0.71073 Å Monoclinic P2(1)/n a = 20.8103(14)Å $\alpha = 90^{\circ}$. b = 10.4355(6)Å $\beta = 103.897(2)^{\circ}$. c = 36.623(3)Å $\gamma = 90^{\circ}$. 7720.6(9) Å³ 6 1.642 Mg/m³ 5.896 mm⁻¹ 3772 0.20 x 0.12 x 0.03 mm³ 1.033 to 27.349°. -20<=h<=26,-12<=k<=13,-47<=l<=40 53754 17186[R(int) = 0.0812]98.299995% Multi-scan 0.843 and 0.385 Full-matrix least-squares on F² 17186/120/893 0.941 R1 = 0.0598, wR2 = 0.1542 R1 = 0.0883, wR2 = 0.17025.522 and -2.700 e.Å-3

5. DFT calculations

All density functional calculations were performed using the Gaussian09 suit.^[6] The functional B3LYP was used in conjunction with Grimme's D3 dispersion correction using a 6-31G(p,d) + SDD(f,g) for Au basis set. Additionally, the Polarizable Continuum Model (PCM) was used to simulate toluene as solvent throughout all calculations. All structures were fully optimized prior frequency analysis. No imaginary frequencies for minima and a single imaginary frequency corresponding to the reaction coordinate in the case of the transition states were found.

5.1. Fully dissociative mechanism

Figure S31. Fully dissociative mechanism for the cyclopropanation of norbornene.

С	0.087819000	-1.128290000	0.324015000
С	1.280193000	-0.670254000	-0.505730000
н	1.919352000	1.328980000	-1.084701000
н	1.919226000	-1.328390000	-1.085253000
С	0.037184000	0.000113000	1.381419000
н	-0.884190000	-0.000037000	1.975943000
н	0.904543000	0.000348000	2.048100000
С	-1.189701000	0.780848000	-0.518893000
н	-2.086811000	1.176791000	-0.031203000
н	-1.141814000	1.207261000	-1.524461000
С	-1.189254000	-0.781347000	-0.518934000
н	-2.086230000	-1.177785000	-0.031403000
н	-1.141001000	-1.207692000	-1.524513000
н	0.118227000	2.156855000	0.689794000
н	0.119014000	-2.156709000	0.690136000

13 (PMe₃AuCH₂)

G_{298K} = -635.899159 Ha

Р	1.580538000	0.003347000	0.002855000
С	2.314033000	-0.996481000	-1.346168000
н	1.979713000	-2.032560000	-1.257326000
н	1.997217000	-0.601924000	-2.314196000
н	3.405082000	-0.958584000	-1.277579000
С	2.312704000	1.673861000	-0.161017000
н	1.999277000	2.120503000	-1.107507000
Н	1.968559000	2.306392000	0.660812000
н	3.403915000	1.605315000	-0.135174000
С	2.270782000	-0.687758000	1.553621000
н	1.940279000	-0.085135000	2.402602000
н	1.920093000	-1.713632000	1.687392000
н	3.363411000	-0.678915000	1.504847000
Au	-0.806141000	0.000180000	-0.010961000
С	-2.767685000	0.003961000	0.041115000
н	-3.387210000	0.908212000	0.046865000
н	-3.392303000	-0.895602000	0.087069000

13 (OTf)

0	1.242651000	1.296023000	-0.639995000
S	0.916521000	0.000114000	0.000117000
С	-0.944517000	0.000551000	0.000453000
F	-1.438711000	1.074203000	0.650698000
F	-1.435651000	0.026545000	-1.255498000
F	-1.436099000	-1.100633000	0.604879000
0	1.238902000	-1.202490000	-0.802977000
0	1.243061000	-0.094305000	1.442309000

14

 $G_{298K} = -1558.321249$ Ha

-2.559/40000	2.000002000	-0.313/0/000
-3.142950000	1.780204000	-1.719432000
-4.252448000	2.174790000	-0.376047000
-4.060029000	-0.874941000	-0.348064000
-3.984831000	-1.036956000	-1.425754000
-3.900594000	-1.827940000	0.161514000
-5.054589000	-0.489884000	-0.103947000
-0.667928000	-0.352044000	-0.252034000
1.279194000	-0.997315000	-0.705400000
2.412621000	-0.746837000	0.312991000
2.823471000	1.032614000	-0.064549000
3.176135000	1.170772000	-1.346159000
1.748598000	1.811686000	0.167765000
3.825897000	1.446033000	0.715221000
1.933355000	-0.738580000	1.701854000
3.607864000	-1.514318000	-0.033330000

4b

P C H

H H H H H H H H H A U O S C F F

F 0 0

СННССССННСННСННСННН

G_{298K} = -311.908741 Ha

2.120119000	0.000072000	0.015055000
2.331188000	-0.001037000	1.080337000
3.016114000	-0.000411000	-0.599445000
0.945609000	0.762156000	-0.551365000
-0.244419000	1.135453000	0.339681000
-0.244119000	-1.135653000	0.339188000
0.945588000	-0.761477000	-0.551979000
1.081472000	1.323274000	-1.472542000
1.081761000	-1.322258000	-1.473303000
-0.275372000	-0.000303000	1.385620000
-1.201519000	-0.000641000	1.969561000
0.562769000	-0.00090000	2.085451000
-1.511270000	0.784942000	-0.491157000
-2.412935000	1.180568000	-0.011413000
-1.465704000	1.204681000	-1.501196000
-1.511206000	-0.784916000	-0.491183000
-2.412724000	-1.180683000	-0.011286000
-1.465846000	-1.204598000	-1.501246000
-0.232318000	2.154513000	0.736504000
-0.231834000	-2.154978000	0.735423000

5.2. Concerted cyclopropanation (Simmons-Smith's type TS)

C H H H S O O O C F F

F

ССССННСННСНННН

0.002119000	4.080903000	-0.583020000
-0.920069000	4.239090000	-0.018019000
0.644368000	4.960993000	-0.481694000
-0.254066000	3.939288000	-1.636083000
2.423154000	-1.601118000	0.883556000
1.071359000	-2.264203000	0.781106000
2.391200000	-0.186711000	1.321394000
3.437375000	-2.461521000	1.506299000
2.956825000	-1.484034000	-0.901492000
1.987951000	-0.936417000	-1.670534000
4.046904000	-0.706360000	-1.007509000
3.239654000	-2.693666000	-1.395589000
-3.000375000	-0.868963000	-1.037314000
-3.783137000	0.258496000	-0.383976000
-4.241759000	-1.633680000	0.766986000
-3.284831000	-2.004931000	-0.352051000
-2.509287000	-0.800021000	-2.000847000
-3.045028000	-3.019656000	-0.648703000
-3.772465000	-0.196431000	1.092846000
-4.484517000	0.353489000	1.716773000
-2.780396000	-0.150406000	1.548031000
-5.282951000	-0.019877000	-0.753553000
-5.909186000	0.813354000	-0.420333000
-5.426705000	-0.132978000	-1.831416000
-5.602003000	-1.324891000	0.043932000
-6.386723000	-1.156237000	0.787823000
-5.923028000	-2.149958000	-0.597341000
-3.434845000	1.268924000	-0.601105000
-4.317675000	-2.341391000	1.593612000

5.3. Cyclopropanation via a reductive elimination from metallacyclobutane structures.

Figure S33. Cyclopropanation via a reductive elimination from metallacyclobutane structures.

It was found that cyclopropane **4b** could easily be formed from a stable auracyclobutane **19** over **TS-V**, however attempts at forming this intermediate from norbornene-coordinated carbenoid complex **18** led to the concerted Simmons-Smith-type transition state **TS-I**, from which the products can directly be formed. Conceivably, **19** could arise from the [2+2] cycloaddition between a gold methylidene with norbornene as a ligand in a process reminiscent of olefin metathesis, however intermediate **20** lies far above **TS-I**, presumably due to the charge separation.

F	4.065930000	0.550193000	-1.311044000
F	5.400179000	-1.080232000	-0.756311000
0	4.070336000	0.399762000	1.637768000
0	3.450756000	-2.064763000	1.396250000
С	-3.045499000	0.033026000	-0.806951000
С	-4.112464000	0.257707000	0.267402000
С	-3.498649000	-1.917260000	0.448984000
С	-2.664820000	-1.341531000	-0.696078000
н	-3.135925000	0.541631000	-1.765045000
н	-2.430773000	-1.968157000	-1.553811000
С	-3.651087000	-0.700434000	1.388537000
н	-4.417330000	-0.853155000	2.155784000
н	-2.716186000	-0.399643000	1.872199000
С	-5.375723000	-0.505260000	-0.245811000
н	-6.239244000	-0.285457000	0.390881000
н	-5.638616000	-0.219695000	-1.268734000
С	-4.950959000	-2.007061000	-0.123856000
н	-5.599696000	-2.546959000	0.573670000
н	-4.982024000	-2.537209000	-1.080325000
н	-4.294306000	1.297323000	0.548978000
н	-3.126472000	-2.842845000	0.891938000

19

G_{298K}: -1870.210985 На

Р	-0.122508000	2 103609000	0 105694000
		2.403003000	0.193004000
С	1.389638000	3.447315000	0.275743000
н	2.062934000	3.058241000	1.043837000
н	1.906299000	3.421832000	-0.687045000
н	1.129781000	4.482547000	0.516105000
С	-1.178160000	3.218516000	-1.061334000
н	-0.720905000	3.110028000	-2.047918000
н	-2.148737000	2.720479000	-1.059001000
н	-1.302130000	4.280565000	-0.829174000
С	-0.961021000	2.712629000	1.797720000
н	-1.917322000	2.187109000	1.782640000
н	-0.344230000	2.321671000	2.611424000
н	-1.124626000	3.784041000	1.948205000
Au	0.330128000	0.030601000	-0.174224000
С	0.962200000	-1.959219000	-0.269872000
н	1.013484000	-2.270869000	-1.315858000
н	0.235752000	-2.554707000	0.283913000
0	-1.622442000	-0.247100000	-1.267018000
S	-2.983995000	-0.235114000	-0.587658000
С	-2.806398000	-1.595992000	0.678654000
F	-2.359714000	-2.722096000	0.105324000
F	-1.922512000	-1.235572000	1.635196000
F	-3.981818000	-1.839824000	1.262780000
0	-3.215400000	0.974327000	0.226063000
0	-4.054941000	-0.679446000	-1.482517000
С	2.215688000	-0.240568000	0.671164000
С	3.380516000	0.350123000	-0.134433000
С	3.573483000	-1.890245000	-0.457105000
С	2.316678000	-1.770045000	0.429770000
н	2.138967000	0.095923000	1.707378000
н	2.407423000	-2.365020000	1.344137000
С	3.491153000	-0.618344000	-1.332924000
н	4.397111000	-0.453030000	-1.924815000
н	2.626390000	-0.588474000	-2.001910000
С	4.663396000	-0.019061000	0.665061000
н	5.523043000	0.527452000	0.263698000
Н	4.579197000	0.239943000	1.725415000
С	4.800899000	-1.560906000	0.426277000
н	5.730346000	-1.794752000	-0.102016000
Н	4.801659000	-2.132482000	1.359807000
Н	3.296336000	1.411552000	-0.370789000
н	3.640865000	-2.841910000	-0.991323000

TS-V G298K: -1870.199314 Ha

Ρ

C H H

Н

C H

H H C H

H Au C H H O

S C F

F

FOOCCCCHHCHHCHHCHHH

20 (cation)

G_{298K}: -908.530086 На

3.373539000

4.069406000

1.392279000

-2.350585000

0.413531000

-1.618869000

>	1.901968000	1.080296000	0.028835000
2	1.306773000	2.802611000	-0.170868000
ł	0.782339000	2.916055000	-1.121947000
ł	0.627205000	3.055679000	0.644708000
ł	2.160659000	3.486222000	-0.147831000

С	2.779384000	1.089866000	1.638902000
н	2.055406000	1.228802000	2.445824000
н	3.284842000	0.132240000	1.780511000
н	3.512588000	1.901475000	1.666015000
С	3.205443000	0.895717000	-1.247936000
н	3.691782000	-0.075612000	-1.133832000
н	2.752319000	0.948902000	-2.241144000
н	3.947852000	1.692762000	-1.146397000
Au	0.417206000	-0.811896000	-0.067727000
С	0.901270000	-2.644759000	0.319148000
н	0.871953000	-3.095117000	1.316124000
н	1.318517000	-3.343555000	-0.412467000
С	-1.306636000	0.693316000	-0.805210000
С	-2.018241000	1.501911000	0.274342000
С	-2.865565000	-0.599385000	0.373043000
С	-1.850818000	-0.586533000	-0.755163000
н	-0.901690000	1.140952000	-1.707730000

н	-1.884622000	-1.282986000	-1.587074000
С	-2.268816000	0.430645000	1.357493000
н	-2.987504000	0.754606000	2.114813000
н	-1.358291000	0.084019000	1.858312000
С	-3.472185000	1.683300000	-0.284273000
н	-4.027803000	2.369854000	0.360224000
н	-3.477091000	2.099504000	-1.294898000
С	-4.057569000	0.238026000	-0.216372000
н	-4.908247000	0.180595000	0.467952000
н	-4.387917000	-0.138194000	-1.187812000
н	-1.538092000	2.429144000	0.582672000
н	-3.141244000	-1.578298000	0.763268000

5.4. Ethylene formation involving a neutral, three-coordinated carbene species.

Figure S34. Ethylene formation via a neutral, three-coordinated carbene species.

G_{298K}: -3195.133997 На

Р	-0.455392000	0.089431000	2.646474000
С	-0.993029000	1.656393000	3.429203000
н	-0.320067000	2.451385000	3.107414000
н	-2.007935000	1.898430000	3.106171000
н	-0.963997000	1.562052000	4.518771000
С	-1.419773000	-1.208920000	3.516337000
н	-2.474450000	-1.114818000	3.248022000
н	-1.071807000	-2.197606000	3,208307000
н	-1.305178000	-1.109803000	4,599645000
С	1.273198000	-0.154292000	3.198007000
н	1.631603000	-1.120255000	2.833688000
н	1.875811000	0.641556000	2.758252000
н	1.339180000	-0.120295000	4.289633000
Au	-0.797394000	0.047107000	0.255519000
C	-1.284250000	0.031249000	-1.778758000
н	-0.815614000	0.894422000	-2,247383000
н	-1 011001000	-0 887526000	-2 298408000
0	-2 719285000	0.296459000	-2 018228000
Š	-3 793998000	-0 851730000	-1 717164000
ć	-4 251500000	-0 528637000	0 095236000
F	-3 589120000	-1 369923000	0.0000000
F	-3 957878000	0 728265000	0.039024000
F	-5 557623000	-0 733425000	0.334960000
0	-1 084718000	-0.500250000	-2 477067000
0	-3 185276000	-2 1759/9000	-1 767409000
D	3 9/9/28000	-0 858689000	-0 468167000
Ċ	5 321563000	-2.030351000	-0.115610000
н	5 258125000	-2.881130000	-0.798698000
н	5 229646000	-2.301130000	0 908819000
н	6 290958000	-1 537655000	-0 238216000
Ċ	1 283176000	0 576972000	0.530471000
н	4.205170000	0.370372000	1 672514000
н	3 515213000	1 338253000	0 472921000
н	5 27/193000	0 996522000	0 432176000
Ċ	1 3328/1000	-0 218558000	-2 1/7985000
н	3 636312000	0.588480000	-2 382429000
н	1 208559000	-1 016717000	-2 883787000
н	5 358697000	0 159919000	-2 188974000
Λ	1 755503000	-1 618602000	-0 195956000
C C	-0 277299000	-1 97/021000	0 101205000
L L	-0.277255000	-2 465250000	1 021/11000
	-0.374033000	-2.403233000	-0 720324000
0	1 272264000	2.403997000	1 225367000
ç	0 133363000	3 078602000	0 283196000
c c	1 234710000	2 761405000	-1 373569000
F	1 536222000	1 447518000	-1 512811000
F	2 37/06/000	3 452885000	-1 /7/175000
F	0 117392000	3 102865000	-1.4/41/3000
0	0 26/75/000	1 531624000	0 346822000
0	0.204/34000	4.331024000 3.325961000	0.340022000
0	-0.00/00/00/00	5.33280T000	0.109351000

TS-III

G_{298K}: -3195.085890 На

Au	-0.777944000	0.297108000	0.332249000
2	0.488932000	-0.886369000	-0.768455000
1	1.085884000	-0.455919000	-1.569624000
1	0.207083000	-1.930401000	-0.885484000
2	-0.042955000	-1.111479000	1.686632000
1	-0.133715000	-0.745308000	2.711707000
1	-0.608210000	-2.027539000	1.508834000
λu	1.892937000	-1.162603000	0.909695000
>	4.031068000	-0.996061000	-0.160236000
2	3.908309000	-0.882241000	-1.985969000
ł	4.908196000	-0.837061000	-2.426929000
ł	3.378390000	-1.754782000	-2.375633000
1	3.353714000	0.017751000	-2.259638000
2	4.947664000	0.514157000	0.337538000
ł	4.329373000	1.387241000	0.116787000
ł	5.147203000	0.487320000	1.411784000
ł	5.894454000	0.585475000	-0.205625000
2	5.176160000	-2.393802000	0.155729000
ł	4.720187000	-3.320901000	-0.200461000
ł	6.126423000	-2.233734000	-0.361812000
ł	5.358941000	-2.483403000	1.229570000
>	-2.205823000	1.488142000	1.823523000
2	-1.271488000	2.539773000	2.994809000
4	-0.693045000	3.259857000	2.414503000
ł	-1.955933000	3.061327000	3.670022000
ł	-0.592713000	1.913589000	3.580099000
2	-3.217499000	0.382814000	2.876562000
4	-2.558869000	-0.279635000	3.444025000
ł	-3.824912000	0.973499000	3.568061000
ł	-3.859485000	-0.231296000	2.244706000
2	-3.391716000	2.586997000	0.972549000
4	-4.088917000	3.020689000	1.695292000
ł	-2.830504000	3.377355000	0.472852000
4	-3.939944000	2.007985000	0.226272000
)	-1.044555000	1.794880000	-1.290790000
5	-0.298789000	3.120075000	-1.212412000
)	-0.346055000	3.730406000	0.129739000
)	-0.550383000	3.969534000	-2.375398000
2	1.493243000	2.596672000	-1.391823000
=	1.926912000	1.970112000	-0.268414000
=	2.272959000	3.656617000	-1.598210000
=	1.646257000	1.737342000	-2.415238000
)	-1.669842000	-1.148595000	-2.194808000
5	-2.347691000	-2.414881000	-1.785667000
)	-1.480951000	-3.327570000	-0.998051000
)	-3.183947000	-3.035331000	-2.824130000
2	-3.605402000	-1.833016000	-0.504834000
=	-3.085029000	-1.891784000	0.747271000
=	-3.973584000	-0.550180000	-0.712923000
=	-4.704040000	-2.592104000	-0.520471000

17 G_{298K}: -3195.127713 Ha

D	2 2421 (0000	2 20500000	0 070052000
r C	-2.343100000	2.393099000	-0.0/9952000
с 	-2.4/4869000	3.793049000	-1.25/284000
н	-1.504110000	3.94/444000	-1./35053000
н	-3.211354000	3.5518/0000	-2.02//06000
н	-2.773461000	4.709201000	-0.739654000
C	-3.978978000	2.254001000	0.728892000
н	-4.730506000	1.984100000	-0.016514000
н	-3.931946000	1.455112000	1.470653000
н	-4.254278000	3.198002000	1.208158000
С	-1.187426000	2.972039000	1.220978000
н	-1.106767000	2.198447000	1.986560000
н	-0.198197000	3.134287000	0.785242000
н	-1.549561000	3.900895000	1.671392000
Au	-1.531190000	0.358365000	-1.063559000
С	-0.436134000	-1.253835000	-1.807459000
н	-0.394487000	-1.282142000	-2.897134000
н	-0.684707000	-2.208892000	-1.350638000
Р	2.278852000	-2.432504000	-0.100048000
С	1,196141000	-3,906727000	-0.180980000
H	0.233516000	-3.678167000	0.284475000
н	1.017825000	-4.174430000	-1.225467000
н	1 664924000	-4 749991000	0 334316000
Ċ	3 87/388000	-2 931703000	-0 850959000
н	3 722926000	-3 160554000	-1 908811000
	1 576479000	-2.009102000	-1.908811000
	4.370479000	2.098192000	0.708331000
п С	4.204514000	-3.809204000	-0.542752000
C	2.0382/8000	-2.204142000	1.081208000
	3.3190/0000	-1.361003000	1.803310000
п	1.706809000	-1.981519000	2.204868000
H	3.08/441000	-3.110356000	2.09/94/000
AU	1.338383000	-0.454811000	-1.101/95000
C	0.206986000	1.120121000	-1.884084000
н	0.123708000	1.086539000	-2.971266000
н	0.474189000	2.098322000	-1.491329000
0	-3.194714000	-0.743564000	-0.090944000
S	-3.000273000	-1.966877000	0.802456000
0	-2.245784000	-3.060257000	0.168915000
0	-4.224356000	-2.289471000	1.536881000
С	-1.815510000	-1.316695000	2.097145000
F	-2.168293000	-0.080217000	2.497824000
F	-0.565673000	-1.241122000	1.587484000
F	-1.787228000	-2.122300000	3.157226000
0	3.095608000	0.634419000	-0.274896000
S	3.038399000	1.995968000	0.418846000
0	2.070726000	2.932648000	-0.176768000
0	4.377629000	2.487853000	0.743964000
С	2.264210000	1.554608000	2.058297000
F	3.106844000	0.826741000	2.802695000
F	1.140010000	0.829863000	1.867442000
F	1.936443000	2.663463000	2.727106000
•	111100.0000		1.1.2.200000

TS-IV G_{298K}: -3195.115855 Ha

-		4 074070000	0 070447000
Ρ	-3.266653000	-1.8/42/0000	-0.2/211/000
С	-3.256842000	-3.367999000	-1.341456000
н	-3.634457000	-3.112167000	-2.334748000
н	-2.231544000	-3.734389000	-1.440648000
н	-3.881104000	-4.155687000	-0.909103000
С	-2.737808000	-2.483024000	1.374447000
н	-1.699715000	-2.819475000	1.315940000
н	-2.806809000	-1.650951000	2.077699000
н	-3.373767000	-3,309453000	1,705044000
C	-5.032865000	-1.426069000	-0.095017000
H	-5.102596000	-0.603912000	0.618992000
н	-5 423827000	-1 098138000	-1 061475000
н	-5 6102/2000	-2 28/186000	0 261790000
A	-1 754530000	-0.166462000	-1 034169000
Au C	0.005010000	0.000402000	1 500214000
L L	0.175407000	1 9402020000	-1.333314000
п 	-0.1/340/000	1.040202000	-0.934217000
н	-0.093105000	1.236563000	-2.65/390000
P	3.266614000	1.8/4303000	-0.2/2210000
C	3.256/03000	3.368080000	-1.341481000
н	3.634266000	3.112303000	-2.334805000
Н	2.231389000	3.734447000	-1.440597000
н	3.880968000	4.155766000	-0.909129000
С	2.737862000	2.482973000	1.374415000
н	1.699765000	2.819422000	1.315984000
н	2.806909000	1.650868000	2.077622000
Н	3.373836000	3.309390000	1.705014000
С	5.032847000	1.426128000	-0.095243000
н	5.102641000	0.603946000	0.618730000
н	5.423753000	1.098239000	-1.061739000
н	5.610233000	2.284242000	0.261557000
Au	1.754480000	0.166512000	-1.034257000
C	0.085832000	-0.981981000	-1.599369000
H	0.175350000	-1.840162000	-0.934322000
н	0.092960000	-1.236433000	-2.657458000
0	-3 025301000	1 622614000	-0 372383000
s	-3 188879000	1 898901000	1 115029000
0	-3 517180000	0 689568000	1 893557000
0	-3 045110000	2 124742000	1 279202000
c	-1 427299000	2 202600000	1 654560000
C F	-1.43/300000	2.295009000	1.034300000
r r	-0.8/4316000	3.215684000	0.845571000
r r	-0.662/19000	1.189165000	1.603019000
F	-1.429348000	2.758501000	2.90248/000
0	3.025302000	-1.622569000	-0.3/2653000
S	3.188953000	-1.898925000	1.114739000
0	3.517232000	-0.689615000	1.893312000
0	3.945263000	-3.124744000	1.377818000
C	1.437503000	-2.293748000	1.654325000
F	0.874433000	-3.215790000	0.845298000
F	0.662779000	-1.189337000	1.602902000
F	1.429547000	-2.758729000	2.902220000

С	0.00000000	0.00000000	0.665692000
н	0.00000000	-0.923666000	1.239156000
н	0.00000000	0.923666000	1.239156000

5.5. Optimized structures of 7a and 15a

7a

15a

Figure S35. Optimized structures of 7a and 15a.

7 a				н	-5.199080000	-1.623386000	-2.236897000
/u				Н	-5.133130000	-1.825622000	-0.487294000
G298	к: -2255.989	9805 Ha		C	-2.815568000	-0.336220000	-2.612046000
- 270	-2 233245000	-0 660727000	0 061530000	н	-1.740426000	-0.376203000	-2.808790000
Ċ	-2 996429000	0.000727000	0.001330000	Н	-3.342840000	-0.645364000	-3.522122000
c	-2.308423000	2 2036/8000	0.365906000	н	-3.089248000	0.702977000	-2.404576000
c	-2.300423000	1 001/78000	0.9953/1000	С	-3.852690000	-2.353703000	1.853782000
c	-2 962101000	3 393368000	0.732209000	Н	-3.828274000	-2.951184000	2.772695000
c	-4 945793000	2 188285000	1 356806000	Н	-4.614987000	-1.586502000	1.996677000
ц	-1 868782000	0 079688000	1 101587000	н	-4.170467000	-3.017280000	1.045895000
Ċ	-4.263665000	3 396876000	1 22/271000	С	-1.462521000	-2.966882000	1.488131000
L L	-2.421804000	1 320091000	0 624456000	Н	-1.566690000	-3.597292000	2.379137000
н	-2.421834000	2 16/397000	1 737767000	Н	-1.663238000	-3.590879000	0.614864000
н	-7.738869000	1 333312000	1 5007/7000	Н	-0.423689000	-2.632090000	1.431418000
Λ	0 066607000	-0 667629000	-0 188968000	C	-2.012511000	-0.916763000	2.815021000
C Au	-0 010442000	2 364926000	-0.141307000	Н	-2.720317000	-0.110202000	3.021562000
c	-0.510442000	2.504820000	-1 503456000	Н	-1.953355000	-1.553831000	3.704854000
c	0.169/20000	2.392438000	0 75/1//000	Н	-1.022671000	-0.475430000	2.654550000
c	0.105420000	2.330412000	1 964297000	C	2.090581000	-0.781183000	-0.959975000
L L	1 503570000	2.528040000	-1.304287000	Н	2.369190000	-1.603528000	-1.623103000
C	1 465571000	2.584105000	-2.200370000 0.202422000	Н	2.459358000	0.157577000	-1.381333000
L L	0.010656000	2.030843000	1 011107000	0	2.835522000	-1.005777000	0.331889000
п С	1 605621000	2.224249000	1.01110/000	S	4.431957000	-1.070101000	0.311488000
L L	0 709032000	2.848171000	-1.00/021000	0	4.863017000	-1.730207000	1.536450000
и Ц	2 20502000	2.555025000	0 00050000	0	4.954515000	-1.449937000	-0.997191000
н ц	2.233333000	2.023961000	1 424502000	C	4.845768000	0.737547000	0.536957000
п С	2.704907000	1 270771000	-1.424502000	F	4.225199000	1.217366000	1.619722000
c	-3.223049000	1 779429000	-1.451475000	F	6.163654000	0.872604000	0.688147000
C C	-2.445/41000	-1.776456000	1.778207000	F	4.453029000	1.436561000	-0.537042000
L L	-2.778020000	-2.709435000	-1.//820/000				
п	-3.190391000	-3.000091000	-2.746722000				
п	-1.00000000	-2./92218000	-1.041020000				
н	-3.139066000	-3.429094000	-1.038364000				
C	-4./5/865000	-1.2231/1000	-1.316416000				
н	-5.1232/9000	-0.200/85000	-1.19/9/4000				

15 a			
G298	sк: -2255.943	839 Ha	
Au	0.450324000	0.022848000	-0.943581000
С	0.609949000	0.977352000	-2.588873000
н	0.590786000	0.510879000	-3.579440000
н	0.473693000	2.061020000	-2.655861000
0	1.690433000	-0.837884000	0.720070000
S	3.115785000	-1.303975000	0.426474000
С	4.057661000	0.292855000	0.618323000
F	3.657797000	1.191230000	-0.297808000
F	3.844394000	0.815174000	1.838691000
F	5.368897000	0.081001000	0.465772000
0	3.622684000	-2.178339000	1.489232000
0	3.320183000	-1.701393000	-0.974255000
Р	-1.568793000	-0.894895000	0.095567000
С	-2.779115000	0.430956000	0.568718000
С	-2.471519000	1.813940000	0.670742000
С	-4.113913000	0.032747000	0.787250000
С	-3.512216000	2.714026000	0.972211000
С	-5.125273000	0.938928000	1.089856000
н	-4.378601000	-1.011819000	0.714300000
С	-4.821507000	2.295867000	1.180958000
н	-3.266015000	3.768066000	1.054754000
н	-6.138323000	0.583152000	1.250115000
н	-5.593418000	3.022099000	1.416977000
С	-1.131593000	2.438817000	0.469086000
С	-0.982436000	3.423070000	-0.521880000
С	-0.031658000	2.138816000	1.287885000
С	0.240984000	4.067141000	-0.709058000
н	-1.830024000	3.670215000	-1.154713000
С	1.194260000	2.780637000	1.097978000
н	-0.132486000	1.404735000	2.075908000
С	1.335470000	3,741287000	0.095440000

0.339515000	4.820530000	-1.485451000
2.040703000	2.508698000	1.718203000
2.291861000	4.231843000	-0.057237000
-2.353541000	-1.860215000	-1.382839000
-1.380919000	-1.988894000	1.657159000
-1.223395000	-2.625957000	-2.113133000
-1.668398000	-3.199418000	-2.934353000
-0.480693000	-1.951001000	-2.544104000
-0.700187000	-3.329254000	-1.462583000
-3.445315000	-2.887841000	-1.024088000
-4.307093000	-2.450913000	-0.518048000
-3.816672000	-3.328969000	-1.956221000
-3.055697000	-3.705449000	-0.414412000
-2.938306000	-0.808384000	-2.347575000
-2.198222000	-0.044284000	-2.606897000
-3.240532000	-1.309486000	-3.274101000
-3.815971000	-0.309446000	-1.929849000
-2.706909000	-2.484915000	2.269268000
-2.459372000	-3.115351000	3.131307000
-3.319954000	-1.659644000	2.637894000
-3.304923000	-3.090403000	1.588338000
-0.491595000	-3.195879000	1.298203000
-0.245261000	-3.734430000	2.220273000
-1.004744000	-3.900666000	0.638461000
0.447331000	-2.885546000	0.837586000
-0.678650000	-1.123599000	2.725431000
-1.293873000	-0.261482000	3.003599000
-0.543732000	-1.732164000	3.627111000
0.305045000	-0.789760000	2.397594000

Н Н Н С С С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С

7. References

- [1] W. L. F. Armarego, C. L. L. Chai, in *Purification of Laboratory Chemicals (Fifth Edition)*, Butterworth-Heinemann, Burlington, **2003**, pp. 80-388.
- [2] D. S. Wulfman, S. Yousefian, J. M. White, *Synth. Commun.* **1988**, *18*, 2349-2352.
- [3] a) E. C. Friedrich, J. M. Domek, R. Y. Pong, J. Org. Chem. 1985, 50, 4640-4642; b)
 T. d. Hartog, J. M. S. Toro, P. Chen, Org. Lett. 2014, 16, 1100-1103.
- [4] U. M. Dzhemilev, V. A. Dokichev, S. Z. Sultanov, R. A. Sadykov, G. A. Tolstikov, O. M. Nefedov, *Russ. Chem. Bull.* 1991, 40, 945-950.
- [5] H. Eyring, J. Chem. Phys. **1935**, *3*, 107-115.
- [6] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford, CT, USA, 2009.

8. NMR spectra

8.1. (Chloromethyl)(2-(di-*tert*-butylphosphino)biphenyl)gold (**1a**)

¹H NMR

*t*Bu

*t*Bu

S52

8.3. (Chloromethyl)(2-(di-tert-butylphosphino)-2',4',6'-triisopropylbiphenyl)gold (1b)

8.4. (Chloromethyl)(1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene)gold (1c)

S60

8.6. ((Tetrahydro-1*H*-furan-1-ium-1-yl)methyl)(2-(di-*tert*-butylphosphino)biphenyl)gold hexafluoroantimonate (8)

*t*Bu ¹H NMR *t*Bu Ph H (dd) 7.11 B (d) 1.45 E (m) I (p) 7.50 6.99 C (d) 4.08 D (m) 7.91 F (m) 7.26 A (d) 1.33 G (d) 7.19 1.00-± 3.72 2.75 3.33 0.96 4 0.81 4 8.71<u>⊣</u> 9.28⊣I 0.86-≖ 4.5 f1 (ppm) 9.5 8.5 6.5 5.0 4.0 3.5 2.5 2.0 1.5 0.0 -0.5 -1).0 9.0 8.0 7.5 7.0 6.0 5.5 3.0 1.0 0.5

8.7. (Chloro(phenyl)methyl)(2-(di-*tert*-butylphosphino)biphenyl)gold (9)

³¹P NMR

140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	-240
									f1 (pj	om)									

¹³C NMR

Mass spectrometry 9.1. ESI-MS spectra of 1a

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name	W:\Data\160610\160610_CGJS190-1_RE3_01_10680.d
Method	tune_low_hplc-exactas3min-noe.m
Sample Name	160610_CGJS190-1
Comment	0.5 uL starting sol. MeOH injection. END PLATE700V

Acquisition Date 10/06/2016 14:29:32

Operator	ICIQ	
Instrument / Ser#	micrOTOF	213750.10
		394

