CHEMBIOCHEM

Supporting Information

Copper is a Cofactor of the Formylglycine-Generating Enzyme

Matthias Knop,^[a] Thanh Quy Dang,^[a] Gunnar Jeschke,^[b] and Florian P. Seebeck^{*[a]}

cbic_201600359_sm_miscellaneous_information.pdf

Instruments. HPLC analysis was carried out on a Shimadzu system, using a Gemini-NX C18 column (5 μ m, 110 Å, 250 x 4.6mm). UV/vis measurements were performed on a Cary 300Bio UV-Visible Spectrophotometer from Varian at T = RT. LC/MS-TOF experiments were performed on a Agilent 1100 Series instrument coupled to a micrOTOF ESI-TOF from Bruker, using a Jupiter C4 300A column (50 x 2 mm, 5 Microns, Phenomex). Protein concentrations were determined using a NanoDrop2000 from Thermo Scientific. Protein purification via SEC was performed on a GE Healthcare Äkta prime FPLC instrument using a SuperdexTM 200 5/150 GL column.

Mutagenesis. Genes for FGE_{S266A}, FGE_{C269S}, FGE_{C274S} and FGE_{S290K} were constructed by primer extension PCR using the primers listed in Tab. S1. The gel-purified fragments were digested using Ndel and Xhol restriction enzymes and ligated into a pET28a expression vector (\rightarrow pET28a_FGE_{xxx}).

Primer Name	Sequence
tFGE-S266As	AAGGGCGGCGCTTTCCTGTGCCACGAGT
tFGE-S266Aa	GGCACAGGAAAGCGCCGCCCTTGGTGAC
tFGE-S290Ks	CCGACTCCAAAGCCGCCCA
tFGE-S290Ka	TGGGCGGCTTTGGAGTCGG
tFGE-C269Ss	GTTCCTGTCCCACGAGTC
tFGE-C269Sa	GACTCGTGGGACAGGAAC
tFGE-C274Ss	AGTCGTACTCCAACCGCTA
tFGE-C274Sa	TAGCGGTTGGAGTACGACT

Protein production. All FGE variants were produced in BL21 pLys cells. The cells were cultured at 37 °C in LB medium in shaker flasks. Gene expression was induced by addition of 0.1 mM IPTG. Protein production was carried out at 37 °C for 3-4 h. The proteins were purified following standard NTA-agarose affinity chromatography protocols. The final protein samples were then dialyzed into 50 mM Tris-HCl pH 8.0, 50 mM NaCl and stored at -80 °C. Reduced FGE (Figure S1) was produced by treatment with 5 mM DTT at 0°C for 20 min, followed by size exclusion chromatography to remove DTT, immediately before use in the Cu (I) binding assay.

Determination of *in vitro* **FGE activity.** We described this assay in detail in a previous paper.² Briefly, the activity of FGE was determined in 50 mM Tris buffer containing 2 μ M CuSO₄, 200 μ M substrate (peptide sequence: Abz-SAL-Cys-SPTRA-NH₂, Abz: o-amino benzoic acid), 50 mM EDTA, 50 mM NaCl at pH 8 as well as 2 mM of DTT or other thiol reducing agents (Figure S2). Reactions were initiated by addition of the enzyme. Reaction aliquots were quenched by addition of 1 volume equivalent of 1 % TFA in 4 M urea. Product formation was quantified by RP-HPLC.

BCS Cu(I) competition assay. This method used to determine apparent Cu (I) binding affinities was adapted with minor modifications from Ref. [1]. To limit autooxidation of cysteine residues or low LMW thiols all

samples were prepared using N₂ bubbled buffers and solutions. Protein samples were diluted in a 50 mM Tris buffer pH 8 containing 20 μ M CuSO₄, 200 μ M bathocuproinedisulfonic acid (BCS), 2 mM cysteamine, 4 mM Na₂S₂O₄. The concentration of BCS was determined using a molar extinction coefficient of $\epsilon_{BCS, 483nm} = 13000 \text{ M}^{-1}$ ¹cm⁻¹. Dissociation constants were estimated for Cu (I) complexes according to Eq. 1.^[1] In order to fit the measured UV absorbance data this equation was linearized to Eq. 2. From the slope of this plot (m) a K_D value was calculated using $\beta_2 = 10^{19.8} \text{ M}^{-2}$.^[1] For measurements using reduced FGE, the protein was incubated with 5 mM DTT on ice for 20 min and the purified by size exclusion chromatography immediately before the measurements. The Cu (I) affinity for FGE_{4C} and FGE_{S266A} was also determined in the presence of 200 μ M of Sercontaining substrate analog (peptide sequence: Abz-SAL-Ser-SPTRA-NH₂). The presence of this peptide did not significantly change the Cu (I) affinities.

$$K_D \beta_2 = \frac{\frac{[P]_{total}}{[MP]} - 1}{\left(\frac{[L]_{total}}{[ML_2]} - 2\right)^2 [ML_2]}$$
Eq. (1)

$$\left(\frac{[L]_{total}}{[ML_2]} - 2\right)^2 [ML_2]([M]_0 - [ML_2]) = \frac{1}{K_D \beta_2} ([P]_{total} - ([M]_0 - [ML_2]))$$
 Eq. (2)

with

and

 $y = \left(\frac{[L]_{total}}{[ML_2]} - 2\right)^2 [ML_2]([M]_0 - [ML_2])$

Figure. S1: Left: Qualitative assessment of the Cu(I) binding ability of reduced vs. oxidized FGE_{4C}. A 50 mM Tris buffer at pH 8 containing 200 μ M BCS, 20 μ M CuSO₄, and 4 mM Na₂S₂O₄ was titrated with reduced and oxidized FGE_{4C} and BSA. The concentration of the Cu(I):(BCS)₂ complex was monitored at 483 nm. **Right:** The oxidized form of FGE_{4C} has been characterized in our previous paper.² To confirm that the reduced form of FGE_{4C} contains two reduced active site cysteines the protein treated with the thiol-specific electrophile iodoacetamide (IAA). The reduced and the alkylated protein were then characterized by HRMS-ESI: a) reduced FGE_{4C} (\Box : MW_{calc} = 35195.5 Da, MW_{obs} = 35194.5 Da); b) reduced and alkylated FGE_{4C} (O: MW_{obs} = 35309.7 Da),

indicating that reduced FGE_{4C} was alkylated twice. Additional signals correspond to His-tag glyconylated FGE_{4C} (*),³ and to tris-alkylated FGE_{4C} (**).

Figure S2. Top: Selected reducing agents for the analysis of the dependency of activity on the structure of the reducing agent. **Left:** The ability of different thiols to support FGE catalysis was determined using the titration assay described above, substitution DTT with other thiols. **Right:** Thiols that support FGE activity were tested for their Cu(I) binding abilities. Absorbance of CuBCS₂ complex at λ = 483 nm in the presence of different reducing agents acting as ligands. Samples have been prepared by diluting the reducing agent to a final concentration of 0 – 2 mM in a Tris buffer pH 8 containing 20 μ M CuSO₄, 200 μ M BCS, 4 mM Na₂S₂O₄. *K*_D values were determined as described above.

Figure. S3: FGE_{4c} catalyzed substrate turnover in the presence of a substrate analogue containing serine instead of cysteine (peptide sequence: Abz-SAL-**Ser**-SPTRA-NH₂). Reactions containing 2 μ M FGE 2 μ M CuSO₄, 2 mM DTT, 50 mM EDTA, 50 mM NaCl and 50 mM Tris pH8 were supplemented with a) 200 μ M substrate, b) 200 μ M substrate analogue, c) 200 μ M of each substrate and substrate analogue or d) with 200 μ M substrate and 2000 μ M substrate analogue. Product formation in these reactions was monitored by RP-HPLC. This analysis showed that even a ten-fold excess of substrate analogue does not significantly inhibit substrate plays an important role in stabilizing the ternary enzyme:copper:substrate complex. **Peptide synthesis.** The substrate analogue was synthesized using standard protocols for Fmoc solid phase peptide synthesis. SPPS building blocks were purchased from Bachem. The peptide was purified to homogeneity by C₁₈ RP-HPLC and analyzed by ESI-MS (m/z = 1007.5, calc.: 1006.52 (+H⁺)).

Figure S4: Reactivation of FGE_{S266A} inhibited FGE_{4C} by addition of excess Cu (I). Reaction containing 200 μ M substrate, 0.5 μ M CuSO₄, 2 mM DTT, 50 mM EDTA, 50 mM NaCl and 50 mM Tris pH 8 were initiated by addition of 0.5 μ M FGE_{4C}. After one minute incubation we added a 4.5 μ M FGE_{S266A}. After 40 min we added 4.5 μ M CuSO₄ to one reaction (black spheres). Addition of Cu (I) immediately increased the rate of product formation, suggesting that in presence of 4.5 μ M FGE_{S266A} 0.5 μ M Cu (I) is the limiting factor. Product formation was monitored by RP-HPLC.

References.

- 1. Z. Xiao, J. Brose, S. Schimo, S. M. Ackland, S. La Fontaine and A. G. Wedd, *J. Biol. Chem.*, 2011, **286**, 11047-11055.
- 2. M. Knop, P. Engi, R. Lemnaru and F. P. Seebeck, *Chembiochem*, 2015, **16**, 2147 2150.
- K. F. Geoghegan, H. B. Dixon, P. J. Rosner, L. Hoth, R,, A. J. Lanzetti, K. A. Borzilleri, E. S. Marr, L. H.
 Pezzullo, L. B. Martin, P. K. LeMotte, A. S. McColl, A. V. Kamath and J. G. Stroh, *Anal. Biochem.*, 1999, 267, 169 184.