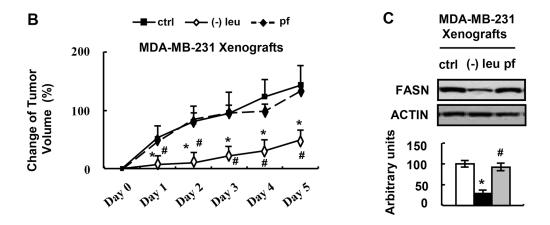
Leucine deprivation inhibits proliferation and induces apoptosis of human breast cancer cells via fatty acid synthase

Supplementary Materials

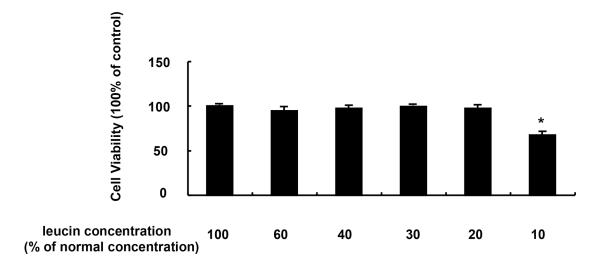
Tumor fatty acid composition in leucine-deprived mice

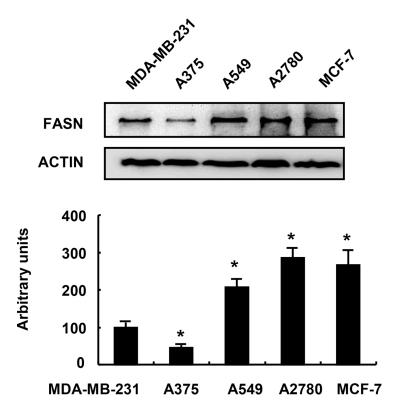

fatty acid	control diet	(-) leu diet	р	fatty acid	control diet	(-) leu diet	р
14:0	0.70 ± 0.03	0.65±0.08	0.603	20:1n9	0.60±0.03	0.57 ± 0.04	0.636
15:0	0.18 ± 0.01	0.13±0.01*	0.026	20:2n6	0.98±0.31	0.63 ± 0.05	0.308
16:0	18.9±0.49	16.9±0.64*	0.047	20:3n6	1.75±0.11	1.2 ± 0.15*	0.02
16:1n7	1.3 ± 0.17	2.88±0.57*	0.029	20:4n6	14.96±0.95	14.39±1.16	0.718
16:1n9	1.17 ± 0.13	0.98±0.10	0.272	20:5n3	0.24 ± 0.03	0.12±0.01*	0.009
17:0	0.35 ± 0.02	0.30 ± 0.02	0.062	22:0	0.54 ± 0.05	0.36±0.03*	0.011
18:0	17.13 ± 0.63	15.03±1.00	0.126	22:4n6	4.25±0.38	3.08±0.17*	0.024
18:1n7	3.06±0.15	2.61±0.09*	0.026	22:5n3	0.53 ± 0.03	0.44 ± 0.05	0.173
18:1n9	16.85 ± 0.70	19.99±1.62	0.132	22:5n6	1.53±0.14	1.04±0.14*	0.038
18:2n6	9.04±0.78	11.29±0.52*	0.036	22:6n3	3.57±0.25	3.17±0.32	0.363
18:3n3	0.08±0.08	0.08±0.01	0.968	23:0	0.51±0.05	0.57 ± 0.04	0.377
18:3n6	0.18±0.02	0.15±0.01	0.146	24:0	1.08±0.09	0.82 ± 0.06	0.051
20:0	0.40±0.03	0.35±0.02	0.26	24:1n9	0.62 ± 0.03	0.47±0.05*	0.045

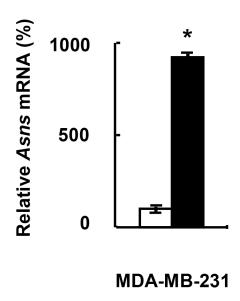
Data is % of total fatty acids.

Supplementary Figure S1: Tumor fatty acid composition in leucine-deprived mice. Nude mice bearing MDA-MB-231 xenografts were fed with control (ctrl) or (–) leu diet for 4 days. Means \pm SEMs shown are representative of at least two independent experiments *in vivo*. Statistical significance was calculated using the two-tailed student t test for the effects of (–) leu vs. the control treatment (*p < 0.05).

A Body weight change and food intake in leucine-deprived mice


	Mice with M Xenog		Mice with MCF-7 Xenografts		
	ctrl	(-) leu	ctrl	(-) leu	
body weight change (%)	0.52±2.59	-13.38±0.85*	0.9±1.08	-13.29±0.65 *	
food intake (g/day)	4.52 ± 1.53	3.58±0.23 *	4.37 ± 0.67	3.42±0.06 *	


Supplementary Figure S2: The effect of leucine-deficient diet on body weight and food intake. (A) Nude mice bearing MDA-MB-231 or MCF-7 xenografts were fed with control (ctrl) or (-) leu diet for 4 days. (B and C) Nude mice bearing MDA-MB-231xenografts were fed with control (ctrl), (-) leu or pair-fed (pf) diet for 5 days, followed by measurement of the tumor volume at the indicated time point in B, examination of FASN protein abundance in C. Means \pm SEMs shown are representative of at least two independent *in vivo* experiments. Statistical significance was calculated using the two-tailed student *t* test for the effects of (-) leu vs. control diet (*p < 0.05) in A, or using the one-way ANOVA followed by the Student-Newman-Keuls (SNK) test for the effects of (-) leu vs. the control treatment (*p < 0.05) or (-) leu diet vs. pair-fed diet (*p < 0.05) in B and C.


Supplementary Figure S3: The effect of amino acid deprivation on cell viability. MDA-MB-231 cells were incubated in control, valine-deficient (-Val), isoleucine-deficient (-Ile), phenylalanine-deficient (-Phe) or glycine-deficient (-Gly) medium for indicated time, followed by MTT assay. Statistical significance was calculated using the two-tailed Student t test for the effects of the amino acid-deficient medium vs. control medium (*p < 0.05).

Supplementary Figure S4: The effect of different leucine concentration medium on cell viability. MDA-MB-231 cells were incubated in medium with different leucine concentration for 48 h, followed by MTT assay. Means \pm SEMs shown are representative of at least three independent experiments *in vitro*. Statistical significance was calculated using the two-tailed Student *t* test for the effects of the different leucine concentration medium vs. control medium (*p < 0.05).

Supplementary Figure S5: FASN protein abundance in different cancer cells. FASN protein abundance was examined in the indicated cells. Means \pm SEMs shown are representative of at least three independent *in vitro* experiments. Statistical significance was calculated using the two-tailed Student *t* test for the effects of the indicated cells vs. MDA-MB-231 cells (*p < 0.05).

Supplementary Figure S6: The effect of leucine deprivation on asparagine synthetase (Asns) mRNA abundance. MDA-MB-231 cells were incubated in control (+leu) or leucine-deficient (-leu) medium for 48 h, followed by examination of the Asns mRNA abundance. Statistical significance was calculated using the two-tailed student t test for the effects of (-) leu vs. the control treatment (*p < 0.05).

List of oligonucleotide primer pairs used in RT-PCR analysis

Target gene	Forward Primer (5'-3')	Reverse Primer (5'-3')		
Fasn	GCAAATTCGACCTTTCTCAGAAC	GGACCCCGTGGAATGTCA		
Srebp1c	TGTGCAGACAGGGCCTTTG	CAGTGGGACTGTTGCCAAGA		
Asns	TGAGAGGCTTCTGAGGGAACTC	ATGGGCAGCAGTAGTTCGATCT		

Supplementary Figure S7: List of oligonucleotide primer pairs used in RT-PCR analysis.