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Materials and Methods 

Cell culture and transfection 
HEK293, 293T, HeLa, U2OS, renal carcinoma cell lines including VHL-deficient 

cells (RCC4 and 786-O), and VHL-proficient cells (TK10, RXF393 and SN12C) (as gifts 
from Dr. Zhiyong Ding, University of Texas MD Anderson Cancer Center) were cultured 
in DMEM medium supplemented with 10% FBS, 100 units of penicillin and 100 mg/ml 
streptomycin. Mouse embryonic fibroblasts (MEFs) including EglN1-/-, EglN2-/-, EglN3-/-, 
VHLf/f were described previously (9, 31), and DLD1-AKT1-/-AKT2-/- (termed as AKT1/2-/-) 
was kindly provided by Dr. Bert Vogelstein (Johns Hopkins University School of 
Medicine), and these cells were also maintained in DMEM medium supplemented with 
10% FBS. The human immortalized renal cell line HK-2 was cultured in keratinocyte 
serum-free medium (K-SFM, Gibco Life Technologies), supplemented with epidermal 
growth factor (EGF; 5 ng/ml) and bovine pituitary extract (40 pg/ml). Cell transfection 
was performed using Lipofectamine and Plus reagents, as described previously (32, 33). 
Packaging of lentiviral shRNA or cDNA expressing viruses and retroviral cDNA 
expressing viruses, as well as subsequent infection of various cell lines were performed 
according to the protocols described previously (32). Following viral infection, cells were 
maintained in the presence of hygromycin (200 µg/ml) or puromycin (1 µg/ml), 
depending on the viral vectors used to infect cells. 

Kinase inhibitors Wortmannin (Selleck S2758), PP242 (Selleck S2218) and the 
proteasome inhibitor, MG132 (Enzo Life Science, BML-PI102) were used at the 
indicated doses. EGF (Sigma E9644), insulin (Invitrogen 41400-045) and 
hypoxia-mimetic agents, including Dimethyloxaloylglycine (DMOG) (Sigma D3695), 
Deferoxamine (DFO) (Sigma D9533) and Cobalt Chloride (COCl2) (Sigma 409332) were 
used at the indicated doses (34). Lambda Protein Phosphatase (λ-PP) (NEB P70153) was 
used according to the manufacturer’s instructions. Hypoxia treatment was performed in a 
hypoxic chamber containing 1% oxygen for 16 hrs (Laboratory Products, Inc), as 
described previously (6). PIP3 beads (P-B00Ss) were purchased from Echelon 
Biosciences. 
 
Plasmid construction 

Constructs of pcDNA3-HA-pVHL, pCMV-Flag-pVHL, pBabe-HA-pVHL, 
pLenti-Flag-EglN1, pCMV-Flag-EglN1, pCMV-Flag-EglN2, pCMV-Flag-EglN3, 
pCMV-Flag-HIF1α, pcDNA3-HA-HIF2α, pcDNA3-HA-HIF2α-P405A/P531A (PA) and 
pLenti-HIF2α-PA were described previously (9, 31). pcDNA3-HA-Akt1, 
pcDNA3-HA-Akt2, pcDNA3-HA-Akt3 and pcDNA3-HA-myr-Akt1, 
pcDNA3-HA-Akt1-E17K, pGEX-GSK3β, pCMV-Flag-PDK1 were previously described 
(33). pCMV-GST-PDK1, pCMV-GST-PP2AC, pCMV-GST-pVHL, pCMV-GST-Akt1, 
pCMV-GST-Akt1-PH (aa1-108), pCMV-GST-Akt1-Linker (aa109-150), 
pCMV-GST-Akt1-KD (aa151-408), pCMV-GST-Akt1-HM (aa409-481), 
pCMV-GST-EglN1, pCMV-GST-EglN1-N (aa1-180) and pCMV-GST-EglN1-C 
(aa181-425) were cloned into mammalian expression GST-fusion vectors. pET-28-EglN1 
and pET-28-EglN1-P317R were generated by sub-cloning EglN1 (WT or P317R) cDNAs 
into pET-28a constructs, respectively. Details of plasmid constructions are available upon 
request.  
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Various Akt1, Akt2, Akt3 and VHL mutants were generated using the QuikChange 
XL Site-Directed Mutagenesis Kit (Stratagene) according to the manufacturer’s 
instructions. All mutants were generated using mutagenesis PCR and the sequences were 
verified by DNA sequencing. sh-Akt1-resistant mutants were generated with the specific 
primers as previously described (35). sh-EglN1-resistant mutants were generated with the 
specific primers listed below:   
Forward: 5’-CCTGATACGCCATTGCAATGGGAAGCTGGGCAG-3’;  
Reverse: 5’-CTGCCCAGCTTCCCGTTACAGTGGCGTATCAGG-3’. 
 
shRNAs and sgRNAs  

shRNA vectors to deplete endogenous HIF1β, EglN1, EglN2, EglN3, CULLIN2, 
AKT1 and HIF2α were previously described (16, 25, 35). The lentiviruses for 
CRISPR-Cas9 editing of HIF2α and AKT3 were generated by cloning the annealed short 
guide RNAs (sgRNAs) into BsmBI-digested pLenti-CRISPRv2 vector, which encodes 
both Cas9 and an sgRNA of interest, as previously described (36). The sgRNAs were 
designed by CRISPR Design tool (crispr.mit.edu) as listed below:  
sg-Ctr Forward: 5’-CACCGCTTGTTGCGTATACGAGACT-3’;  

Reverse: 5’-AAACAGTCTCGTATACGCAACAAG-3’;  
sg-HIF2α#4 Forward: 5’-CACCGAATCTCCTCATGGTCGCA-3’; 

Reverse: 5’-AAACTGCGACCATGAGGAGATTC-3’;  
sg-HIF2α#6 Forward: 5’-CACCGTCATGAGGATGAAGTGCA-3’;  

Reverse: 5’-AAACTGCACTTCATCCTCATGAC-3’;  
sg-AKT3 Forward: 5’-CACCGAAGACAGATGGCTCATTCAT-3’; 

Reverse: 5’-AAACATGAATGAGCCATCTGTCTTC-3’. 
 

Antibodies 
All antibodies were used at a 1:1000 dilution in TBST buffer with 5% non-fat milk 

for western blot. Anti-hydroxy-HIF1α (Pro564) antibody (3434), anti-pVHL antibody 
(2738), anti-HIF1β antibody (5537), anti-EglN1 antibody (4835), 
anti-phospho-Ser473-Akt antibody (4060), anti-phospho-Thr308-Akt antibody (2965), 
anti-Akt1 antibody (2938), anti-Akt total antibody (4691), anti-phospho-Ser9-GSK3β 
antibody (5558), anti-GSK3β antibody (12456), anti-phospho-FOXO1 (Thr24)/FOXO3A 
(Thr32) antibody (9464), anti-FOXO3A antibody (2497), anti-GST antibody (2625), 
anti-pS6K1 (Thr389) antibody (9205), anti-S6K1 antibody (2708), anti-Glut1 antibody 
(12939) were obtained from Cell Signaling Technology. Anti-pVHL antibody (564183) 
was obtained from BD Biosciences. Anti-Cul2 antibody (ab166917) was obtained from 
Abcam. Anti-HIF1α antibody (NB100-479), anti-HIF2α antibody (NB100-122), 
anti-EglN2 antibody (NB100-310SS) and anti-EglN3 antibody (NB100-139SS) were 
obtained from Novus Biologicals. Anti-PTEN antibody (sc-7974), anti-Akt1 agarose 
beads (sc-5298) and polyclonal anti-HA antibody (sc-805) were obtained from Santa 
Cruz. Polyclonal anti-Flag antibody (F-2425), monoclonal anti-Flag antibody (F-3165, 
clone M2), anti-Tubulin antibody (T-5168), anti-Flag agarose beads (A-2220), anti-HA 
agarose beads (A-2095), peroxidase-conjugated anti-mouse secondary antibody (A-4416) 
and peroxidase-conjugated anti-rabbit secondary antibody (A-4914) were obtained from 
Sigma. Monoclonal anti-HA antibody (MMS-101P) was obtained from Covance.  
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The polyclonal Akt1-Pro125-OH and Akt1-Pro313-OH antibodies generated by Cell 
Signaling Technology were derived from rabbit, with each hydroxylation residue 
produced four clones. The antigen sequence used for immunization was Akt1 aa124-130 
(SPSDNSG) for Pro125, and Akt1 aa310-316 (CGTPEYL) for Pro313. P stands for 
hydroxyl-proline residue in these two synthetic peptides. The antibodies were affinity 
purified using the antigen peptide column, but they were not counter selected on 
unmodified antigen.  
 
Immunoblot (IB) and immunoprecipitation (IP) analyses 

Cells were lysed in EBC buffer (50 mM Tris pH 7.5, 120 mM NaCl, 0.5% NP-40) 
supplemented with protease inhibitors (Complete Mini, Roche) and phosphatase 
inhibitors (phosphatase inhibitor cocktail set I and II, Calbiochem). The protein 
concentrations of whole cell lysates were measured by the Beckman Coulter DU-800 
spectrophotometer using the Bio-Rad protein assay reagent as described previously (32). 
Equal amounts of whole cell lysates were resolved by SDS-PAGE and immunoblotted 
with indicated antibodies. For immunoprecipitation analysis, 1000 µg lysates were 
incubated with the indicated antibody (1-2 µg) for 3-4 hrs at 4oC followed by 1 hr 
incubation with Protein A/G sepharose beads (GE Healthcare). The recovered 
immuno-complexes were washed five times with NETN buffer (20 mM Tris, pH 8.0, 150 
mM NaCl, 1 mM EDTA and 0.5% NP-40) before being resolved by SDS-PAGE and 
immunoblotted with indicated antibodies. Quantification of the immunoblot band 
intensity was performed with Image J software. 
 
Immunohistochemistry (IHC) 

Immunohistochemistry was performed on 4 micron-thick, FFPE sections using an 
anti-pT308-Akt monoclonal antibody (Cell Signaling Technology #2965). FFPE sections 
were deparaffinized using xylene and rehydrated in graded ethanol. Sections were heated 
with a pressure cooker to 125°C for 30 seconds and 90°C for 10 seconds in citrate buffer 
(pH 6.0) for antigen retrieval. All sections were incubated with peroxidase (Dako #S2003) 
and protein blocking reagents (Dako #X0909) for 5 minutes each. Sections were then 
incubated with anti-pT308-Akt (1:50) antibody diluted in Dako diluent with background 
reducing components (Dako #S3022) for 1 hr at room temperature. Following primary 
antibody incubation, sections were incubated with monoclonal mouse anti-rabbit 
immunoglobulins (Dako #M0737) for 30 minutes at room temperature. Afterwards, 
sections were incubated with Envision+ System-HRP Labeled Polymer Anti-Rabbit 
(Dako #K4003) for 30 minutes. All sections were developed using the DAB chromogen 
kit (Dako #K3468) and lightly counterstained with hematoxylin.  

Validation of the anti-pT308-Akt monoclonal antibody in FFPE samples was 
performed using SignalSlide Phospho-Akt (Ser473) IHC Controls (Cell Signaling 
Technology, #8101) containing LNCaP cells with and without treatment of the 
phosphoinositide 3-kinase (PI3K) inhibitor, LY294002. 
 
Purification of GST-tagged proteins 

Recombinant GST-conjugated pVHL or GSK3β was generated by transforming the 
BL21 (DE3) E. coli strain with pGEX-pVHL, pGEX-GSK3β or pGEX-4T (Empty vector 
control). Starter cultures (5 ml) grown overnight at 37°C were inoculated (1%) into larger 
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volumes (500 ml). Cultures were grown at 37°C until an O.D. of 0.8, following which 
protein expression was induced for 12-16 hrs using 0.1 mM IPTG at 16°C with vigorous 
shaking. Recombinant proteins were purified from harvested pellets. Pellets were 
re-suspended in 5 ml EBC buffer and sonicated (5 cycles of 10 sec each at 50% output). 
Insoluble proteins and cell debris were discarded following centrifugation in a table-top 
centrifuge (13000 rpm/4°C/15 min). Each 1 ml supernatant was incubated with 50 µl of 
50% Glutathione-sepharose slurry (Pierce) for 3 hrs at 4°C. The Glutathione beads were 
washed 3 times with EBC buffer (1 ml per wash) and stored at 4°C in EBC buffer 
containing 10% glycerol or eluted by elution buffer. Recovery and yield of the desired 
proteins (or complexes) was confirmed by analyzing 10 µl of beads by coomassie blue 
staining, and quantified against BSA standards. 
 
Purification of His-tagged proteins 

The recombinant wild type or mutant pVHL-Elongin B/C (VBC) complex was 
generated by co-transforming either wild type or mutant VHL expressing pET-pVHL 
(aa1-213) constructs with pACYCDuet-based Elongin B (aa1-118) and Elongin C 
(aa17-112) (as a gift from Dr. Yong Xiong, Yale University) by the same strategy as 
GST-tagged proteins. The difference was that each 1 ml supernatant was incubated with 
50 µl of 50% Nickel resin slurry (Qiagen) for 3 hrs at 4°C. The Nickel resins were 
washed 4 times with TBS buffer (50 mM Tris pH 8.0, 120 mM NaCl) with 10 mM 
imidazole (Sigma) and eluted by TBS buffer with 100 mM imidazole. Recovery and yield 
of the desired proteins (or complexes) was confirmed by analyzing 10 µl of beads by 
coomassie blue staining, and quantified against BSA standards. 
 
In vitro kinase assays 

In vitro Akt kinase assays were adapted from a protocol described previously (35). 
Briefly, 1 µg of the bacterially purified GST-GSK3β fusion proteins were incubated with 
immunoprecipitated Akt from different cell lysates in the presence of 200 µM ATP (with 
[γ-32P]ATP) in the kinase reaction buffer (50 mM Tris pH 7.5, 1 mM MnCl2, 2 mM DTT, 
1 mM EGTA) for 30 minutes at 30oC. The reaction was subsequently stopped by the 
addition of 3 x SDS loading buffer and resolved by SDS-PAGE. Phosphorylation of 
GST-GSK3β was detected by autoradiography. 
 
Reactive Oxygen Species (ROS) assays 

Cells were collected by trypsinization, re-suspended in pre-warmed 
phosphate-buffered saline (PBS) containing 10 µM CM-H2DCFDA (Invitrogen), and 
incubated for 10 min at 37oC. Mean fluorescence was determined by flow cytometry as 
described previously (21).  
 
In vitro PP2A dephosphorylation assays 

For dephosphorylation of Akt1 by PP2A, the activated GST-fusion full-length Akt1 
proteins were purified from insulin-stimulated HEK293 cells serving as the substrate, and 
the recombinant active PP2A was obtained from BPS Bioscience (30056). The 
dephosphorylation assays were performed in the PP2A phosphatase assay buffer (20 
mM HEPES, pH 7.2, 100 mM NaCl and 3 mM DTT) and the reactions were incubated at 
30°C for indicated time periods in the presence or absence of recombinant pVHL proteins 
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(Origene, TP316151). The reactions were stopped by adding 3 x SDS loading buffer and 
subjected to western blot analyses. 
 
Gel filtration chromatography analyses 

Cells were washed with PBS, lysed in EBC buffers containing protease inhibitors 
and phosphatase inhibitors, and filtered through a 0.45 µm syringe filter. Total 4 mg 
proteins were loaded onto a Superdex 200 10/300 GL column (GE Lifesciences Cat. 
No.17-5175-01). Chromatography was performed on the AKTA-FPLC (GE Lifesciences 
Cat. No. 18-1900-26) with EBC buffer as described previously (37). One column volume 
of elutes was fractionated with 500 µl in each fraction, at the elution speed of 0.3 ml/min. 
40 µl aliquots of each fraction were loaded onto SDS-PAGE gels and detected with 
indicated antibodies. 
 
Peptide synthesis 

N-terminal biotinylated peptides used for pull-down assays were synthesized at Tufts 
Medical School. N- and C-terminal free peptides used for in vitro competing assays were 
synthesized at LifeTein. The sequences were listed below:  

Akt1-Pro313-WT (aa307-328): KTFCGTPEYLAPEVLEDNDYGR; 
Akt1-Pro313Ala: KTFCGTAEYLAPEVLEDNDYGR;  
Akt1-Pro318Ala: KTFCGTPEYLAAEVLEDNDYGR;  
Akt1-Pro313-OH: KTFCGTP*EYLAPEVLEDNDYGR;  
Akt1-Pro318-OH: KTFCGTPEYLAP*EVLEDNDYGR;  
Akt1-Pro125-WT (aa115-144): EEEMDFRSGSPSDNSGAEEM;  
Akt1-Pro125-OH: EEEMDFRSGSP*SDNSGAEEM;  
HIF1α-WT (aa556–575): DLDLEMLAPYIPMDDDFQLR; 
HIF1α-ΟΗ: DLDLEMLAP*YIPMDDDFQLR (*denotes hydroxylation). 
The FOXO3A-WT, FOXO3A-Pro426-OH and FOXO3A-Pro426/Pro437-OH peptides 

were previously described (25). Peptides were diluted into 1 mM for further biochemical 
assays. 
 
Dot immunoblot assays 

Peptides were spotted onto nitrocellulose membrane allowing solution to penetrate 
(usually 3-4 mm diameter) by applying it slowly as a volume of 1 µl. The membrane was 
dried, and blocked in non-specific sites by soaking in TBST buffer with 5% non-fat milk 
for immunoblot analysis as described previously (37). 
 
Peptide-binding assays 

Peptides (1 µg) were incubated with 1 mg of EBC extracts prepared from cells in a 
total volume of 500 µl for 4 hrs at 4°C and then added 10 µl Streptavidin agarose 
(Thermo Scientific 20353) for another 1 hr. The agarose was washed four times with 
NETN buffer. Bound proteins were eluted by boiling in SDS loading buffer, and resolved 
by SDS-PAGE, then detected with immunoblot analysis. 
 
In vitro hydroxylation assays 

In vitro hydroxylation assays were modified from a previously published in vitro 
hydroxylation assay (25, 28). In brief, peptides (10 µg) or purified recombinant proteins 
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(1 µg) were mixed with 50 mM HEPES (pH 7.4), 1500 U/µl Catalase, 100 µM FeSO4, 1 
µM ascorbic acid, 0.2 µM α-ketoglutarate (α-KG), and 1 µg of purified recombinant 
EglN1 proteins in a 30 µl reaction volume. After incubation for 2 hrs at 37oC, the 
reactions were subjected to immunoblot analysis or mass spectrometry analysis.   
 
Mass spectrometry analyses 

For mass spectrometry analysis, anti-HA immunoprecipitations (IP) were performed 
with the whole cell lysates derived from three 10 cm dishes of HEK293 cells 
co-transfected with Flag-EglN1 and HA-Akt1. The IP proteins were resolved by 
SDS-PAGE, and identified by Coomassie staining. The band containing Akt1 was 
reduced with 10 mM DTT for 30 minutes, alkylated with 55 mM iodoacetamide for 45 
minutes, and in-gel-digested with trypsin enzymes. The resulting peptides were extracted 
from the gel and analyzed by microcapillary reversed-phase (C18) liquid 
chromatography-tandem mass spectrometry (LC-MS/MS), using a high resolution 
Orbitrap Elite (Thermo Fisher Scientific) in positive ion DDA mode (Top 6) via higher 
energy collisional dissociation (HCD) coupled to a Proxeon EASY-nLc II nano-HPLC 
(38). MS/MS data were searched against the Uniprot Human protein database (version 
20151209 containing 21,024 entries) using Mascot 2.5.1 (Matrix Science) and data 
analysis was performed using the Scaffold 4.4.8 software (Proteome Software). Peptides 
and modified peptides were accepted if they passed a 1% FDR threshold.   
 
Colony formation assays  

Cells were seeded into 6-well plates (300 or 600 cells/well) and left for 8-12 days 
until formation of visible colonies. Colonies were washed with PBS and fixed with 10% 
acetic acid/10% methanol for 20 minutes, then stained with 0.4% crystal violet in 20% 
ethanol for 20 minutes. After staining, the plates were washed and air-dried, and colony 
numbers were counted. Three independent experiments were performed to generate the 
standard error of the difference (SED). 
 
Soft agar assays 

The anchorage-independent cell growth assays were performed as described 
previously (33). Briefly, the assays were preformed using 6-well plates where the solid 
medium consists of two layers. The bottom layer contains 0.8% noble agar and the top 
layer contains 0.4% agar suspended with 1 x 104 or 3 x104 cells. 500 µl complete DMEM 
medium was added every 7 days to keep the top layer moisture and 4 weeks later the cells 
were stained with iodonitrotetrazolium chloride (1 mg/ml) (sigma I10406) for colony 
visualization and counting. Three independent experiments were performed to generate 
the standard error of the difference (SED). 
 
Mouse xenograft assays 

Mouse xenograft assays were performed as described previously (33). Briefly, 2 x 
106 DLD1-AKT1/2-/- cells stably expressing EV, WT or P125/313A mutant form of Akt1 
were injected into the flank of 8 female nude mice (NCRNU-M-M from Taconic, 4-5 
weeks of age). Tumor size was measured every three days with a caliper, and the tumor 
volume was determined with the formula: L x W2 x 0.52, where L is the longest diameter 
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and W is the shortest diameter. After 18 days, mice were sacrificed and xenografted solid 
tumors were dissected, then tumor weights were measured and recorded post-necropsy.  
 
Statistics 

Differences between control and test conditions were evaluated by Student's t test or 
one-way analysis of variance (ANOVA) test using the SPSS 11.5 Statistical Software. 
Values of P < 0.05 were considered statistically significant.  
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Fig. S1 
pVHL suppresses Akt kinase activity. (A-B) VHL-deficient 786-O (A) or RCC4 (B) cells 
that were engineered via retroviral infection to stably express pVHL (with EV as a 
negative control), were serum starved for 24 hrs followed by stimulation with insulin (0.1 
µM). At the indicated time points, whole cell lysates (WCL) were harvested for 
immunoblot (IB) analysis. (C-D) In vitro Akt kinase assays were performed with 
bacterially purified GST-GSK3β as a substrate and immunoprecipitated Akt1 from the 
cells in (A) and (B) as the source of kinase. 
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Fig. S2 
Inhibition of Akt by pVHL is independent of the HIF pathway. (A-B) IB analysis of 
WCL derived from VHL-deficient (RCC4 and 786-O) (A) or VHL-proficient (TK10 and 
RXF393) (B) renal carcinoma cells lentivirally infected with sh-Scramble (sh-Scr) or 
multiple independent HIF1β shRNAs (sh-HIF1β). Infected cells were selected with 
puromycin (1 µg/ml) for 72 hrs before harvesting. (C) IB analysis of WCL derived from 
VHL-deficient 786-O cells lentivirally infected with sh-Scr or multiple independent 
HIF2α shRNAs (sh-HIF2α). Infected cells were selected with puromycin (1 µg/ml) for 
72 hrs before harvesting. (D) IB analysis of WCL derived from VHL-deficient 786-O 
cells knocked out HIF2α by the CRISPR/Cas9 system with different sgRNAs (labeled 
with #4 and #6). (E-F) IB analysis of WCL derived from TK10 cells (E) or 786-O cells (F) 
engineered via retroviral infection to stably express pVHL (with EV as a negative 
control), which were then infected with lentivirus encoding a non-degradable 
HA-HIF2α mutant, in which the two characterized critical proline residues in the two 
oxygen-dependent degradation (ODD) motifs were mutated to alanine (termed as 
HIF2α-PA). (G) IB analysis of WCL derived from VHL-proficient TK10 and RXF393 
cells that were lentivirally infected with sh-Scr or multiple independent shRNAs against 
CULLIN2 (sh-Cul2). 
 

  

              

A B 

F 

C 

- + HA-HIF2αα-PA 
IB: pT308-Akt 

TK10 

IB: HA-HIF2αα 

IB: Tubulin 

IB: Akt1 

HA-HIF2αα-PA 
pVHL EV 
- + 

IB: Glut1 

IB: HIF2αα 

- + 
IB: pT308-Akt 

IB: Tubulin 

IB: Akt1 

IB: HA-pVHL 

786-O 
E TK10 RXF393 

IB: Cul2 

IB: pT308-Akt 

IB: Akt1 

IB: HIF2αα

IB: Tubulin 

sh-Cul2 sh
-S

cr
 

sh
-S

cr
 

#1
 

#2
 

#1
 

#2
 

IB: pT308-Akt 

IB: Akt1 

IB: HIF1ββ

IB: Tubulin 

sh
-S

cr
 

sh
-H

IF
1ββ

-2
 

sh
-H

IF
1ββ

-1
 

sh
-S

cr
 

sh
-H

IF
1ββ

-2
 

sh
-H

IF
1ββ

-1
 

RCC4 786-O 

IB: Glut1 

IB: PTEN 

TK10 RXF393 

sh
-S

cr
 

sh
-H

IF
1ββ

-2
 

sh
-H

IF
1ββ

-1
 

sh
-S

cr
 

sh
-H

IF
1ββ

-2
 

sh
-H

IF
1ββ

-1
 

IB: pT308-Akt 

IB: Akt1 

IB: HIF1ββ

IB: Tubulin 

IB: PTEN 

D 786-O 

IB: pT308-Akt 

IB: Akt1 

sh
-S

cr
 

sh
-H

IF
2αα

-1
 

IB: Tubulin 

IB: HIF2αα 

sh
-H

IF
2αα

-2
 

sh
-H

IF
2αα

-3
 

IB: Glut1 

IB: EglN1 

G 

786-O 

C
tr

 

IB: pT308-Akt 

IB: Akt1 

IB: Tubulin 

IB: HIF2αα 

IB: Glut1 

sg-HIF2αα #4
 

#6
 

IB: EglN1 



 
 

11 
 

 

  

        

A D B 

IB: HA-Akt1 

In
pu

t 

G
ST

 
G

ST
-p

VH
L 

IB: GST-pVHL 

GST pull-down C 

IB: Flag-HIF1αα

F 

IB: pT308-Akt 

EV
 

W
T 

C
16

2F
 

L1
58

S 
Y9

8N
 

Y1
12

N
 

W
11

7R
 

Y9
8H

 
Y1

12
H

 

IB: Akt1 

786-O 

IB: Tubulin 

HA-pVHL 

IB: HA-pVHL 

G 

IB: HA-Akt1 

HA-Akt1 
Flag-pVHL 

- + + 
+ + - 

IP
: F

la
g 

W
C

L 

IB: Flag-pVHL 

IB: Flag-pVHL 

IB: HA-Akt1 

In
pu

t 

Ig
G

 
αα

-H
A 

IgG-HC 

IB: Akt1 

786-O-pVHL 

IB: HA-pVHL 

IP 

HA-pVHL W
T 

M
3 

IB: Flag-Akt1 

IB: HA-pVHL 

EV
 

IP
:H

A 
W

C
L 

IB: HA-pVHL 

IB: Flag-Akt1 

Flag-Akt1 + + + 

IP
: H

A 
W

C
L 

IB: HA-pVHL

hydroxyl-proline binding pocket  

Y9
8N

 
W

88
R

 

S1
11

C
 

H
11

5N
 

W
11

7R
 

W
T 

EV
 

IB: Flag-Akt1 

HA-pVHL 

IB: Flag-Akt1 

IB: HA-pVHL

Flag-Akt1 + + + + + + + 

M 

Type 1 

W
T 

ΔΔ
76

F 

C
16

2F
 

S6
5W

 

L1
88

Q 

EV
 

IB: Flag-Akt1 

IB: HA-pVHL

HA-pVHL 

IP
: H

A 

IB: HA-pVHL

IB: Flag-Akt1 

W
C

L 

Flag-Akt1 + + + + + + 

N 

HEK293 

In
pu

t 

Ig
G

 
αα

-p
VH

L 

IP 

IB: pVHL(r) 

IB: Akt1 

IgG-LC 

IB: Flag-HIF1αα

IB: Flag-HIF1αα

IB: HA-pVHL

IB: HA-pVHL

Type 1 

W
T 

ΔΔ
76

F 

C
16

2F
 

S6
5W

 

L1
88

Q 

EV
 

IP
: H

A 
W

C
L 

HA-pVHL 
Flag-HIF1αα+ + + + + + 
MG132+ + + + + + 

IB: Flag-HIF1αα 

IB: HA-pVHL IP
: H

A 
W

C
L 

EV
 

W
T 

C
16

2F
 

1-
16

8 
L1

58
S 

Y9
8N

 
Y1

12
N

 
W

11
7R

 

Y1
12

H
 

Y9
8H

 

IB: HA-pVHL 

HA-pVHL 
Flag-HIF1αα 

A
14

9T
 

IB: Flag-HIF1αα 

+ + + + + + + + + + + MG132 
+ + + + + + + + + + + 

H I J K 

L 

G
ST

 
 p

ul
l-d

ow
n 

W
C

L 

CMV-GST-pVHL 
HA-Akt	
	


+ + + + 

EV
	
	


A
kt

1	
	

A

kt
2	
	


A
kt

3	
	


IB: HA-Akt	
	

IB: GST-pVHL 

IB: HA-Akt	
	

IB: GST-pVHL 

IB: HA-pVHL IP
: H

A 
W

C
L 

EV
 

W
T 

C
16

2F
 

1-
16

8 
L1

58
S 

Y9
8N

 
Y1

12
N

 
W

11
7R

 

Y1
12

H
 

Y9
8H

 

IB: HA-pVHL 

HA-pVHL 

IB: Flag-Akt1 

A
14

9T
 

IB: Flag-Akt1 

Flag-Akt1 + + + + + + + + + + + 

IB: Flag-HIF-1αα

IB: HA-pVHL 

IB: HA-pVHL 

HA-pVHL W
T 

M
3 

EV
 

Flag-HIF-1αα+ + + 

IP
:H

A 
W

C
L 

+ + + MG132

IB: Flag-HIF1αα

IB: Flag-HIF1αα

hydroxyl-proline binding pocket  

Y9
8N

 
W

88
R

 

S1
11

C
 

H
11

5N
 

W
11

7R
 

W
T 

EV
 

HA-pVHL 
Flag-HIF1αα+ + + + + + + 

IP
: H

A 
W

C
L 

MG132+ + + + + + + 

IB: HA-pVHL

IB: HA-pVHL

E 



 
 

12 
 

Fig. S3 
VHL disease-associated mutations affect the interaction between pVHL and Akt. (A) IB 
analysis of IP and WCL derived from HEK293 cells transfected with the indicated 
constructs. (B) IB analysis of anti-HA IP and WCL derived from 786-O-pVHL cells that 
ectopically expressed HA-tagged pVHL. IgG was used as a negative control. IgG-HC, 
IgG heavy chain. (C) IP analysis to detect the interaction between endogenous pVHL and 
endogenous Akt1 in HEK293 cells. IgG was used as a negative control. IgG-LC, IgG 
light chain. (D) GST pull-down analysis to show that bacterially purified recombinant 
GST-pVHL interacts with Akt1 derived from HEK293 cells. Recombinant GST protein 
was used as a negative control. (E) GST pull-down analysis to show that GST-pVHL 
purified from mammalian cells specifically interacts with Akt1 and Akt2, but not Akt3 
that were ectopically expressed in HEK293 cells. (F-M) IB analysis of anti-HA IP and 
WCL derived from 293T cells co-transfected with Flag-HIF1α or Flag-Akt1 and various 
mutants of HA-pVHL constructs. 30 hrs post-transfection, cells transfected with HIF1α 
were treated with 10 µM MG132 for 12 hrs before harvesting. M3 indicated a pVHL 
mutant harboring triple mutations (S111G/H115L/W117G). (N) IB analysis of WCL 
derived from VHL-deficient 786-O cells retrovirally infected with different VHL mutants. 
Infected cells were selected with puromycin (1 µg/ml) for 72 hrs before harvesting.   



 
 

13 
 

 

Fig. S4 
pT308-Akt signal increases in VHL mutant ccRCC. (A) Validation of the anti-pT308-Akt 
monoclonal antibody in FFPE samples was performed using LNCaP cells with or without 
treatment of the PI3K inhibitor, LY294002. (B)	
  Immunohistochemistry (IHC) staining of 
pT308-Akt in matched type 1 VHL mutant ccRCC and normal renal cortex. A relatively 
high degree of positive membranous, cytoplasmic, and nuclear staining has been 
observed in tumor specimens (left panel). In contrast, minimal cytoplasmic staining has 
been observed in the corresponding renal cortexes (right panel) of these cases. (C) IB 
analysis to detect a positive correlation between Akt phosphorylation and HIF2α 
accumulation in WCL derived from human ccRCC samples. N, indicated adjacent normal 
tissue, and T, indicated ccRCC samples. 
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Fig. S5 
pVHL interacts with Akt1 in a proline-hydroxylation dependent manner. (A) IB analysis 
of WCL derived from VHL-deficient 786-O cells infected with the indicated retroviruses. 
Infected cells were selected with puromycin (1 µg/ml) for 72 hrs and treated with DMOG 
(200 µM) or DMSO for 16 hrs before harvesting. (B) 786-O-pVHL cells lentivirally 
infected with sh-Scr or shRNAs against HIF2α (sh-HIF2α) were cultured in 1% O2 or 
normal conditions before harvesting for IB analysis. The relative Akt phosphorylation 
(pT308) status were quantified upon normalization for total Akt1 expressed as fold 
induction over control, and listed at each lane below. (C-D) IB analysis of IP and WCL 
derived from HEK293 cells co-transfected pVHL with HIF1α (C) or Akt1 (D). Cells 
were treated with hypoxia mimetic reagents DMOG (200 µM), DFO (200 µM) or CoCl2 
(200 µM) (with DMSO as a negative control) for 4 hrs before harvesting for IB analysis. 
In (C), cells were treated with MG132 (10 µM) 12 hrs before harvesting. (E) IB analysis 
of IP and WCL derived from VHL-deficient RCC and 786-O cells that were engineered to 
stably express HA-pVHL. Resulting cells were treated with hypoxia mimetic reagents 
DMOG (200 µM), or CoCl2 (200 µM) for 4 hrs before harvesting. DMSO was used as a 
negative control. (F) pVHL antibody immunoprecipitations and WCL derived from 
HEK293 cells treated with hypoxia mimetic reagents to detect changes in interaction of 
endogenous Akt1 and pVHL. IgG-LC, indicated IgG light chain. (G) A schematic 
illustration of how the interaction of pVHL with HIFα or Akt can be disrupted by 
hypoxia, respectively. 
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Fig. S6 
EglN1 inhibits Akt kinase activity. (A) VHL-proficient renal epithelia cell line HK-2 and 
renal carcinoma cell line SN12C were lentivirally infected with sh-Scr or multiple 
independent EglN1 shRNAs (sh-EglN1). Infected cells were selected with puromycin (1 
µg/ml) for 72 hrs before harvesting for IB analysis. (B) IB analysis of WCL derived from 
EglN1-/-, EglN2-/-, EglN3-/- or wild type counterpart MEFs. (C) HEK293 cells lentivirally 
infected with the indicated shRNAs, were serum starved for 24 hrs followed by 
stimulation with insulin (0.1 µM). At the indicated time points, WCL were harvested for 
IB analysis. (D-E) Akt in vitro kinase assays were performed with bacterially purified 
GST-GSK3β as a substrate and immunoprecipitated Akt1 from the cells deleted EglN1 as 
the source of kinase. (F-I) EglN knockdown or knockout cells were used to detect cellular 
ROS levels by flow cytometer analyses (G and I). Genetic ablation of EglN1 in MEFs or 
knockdown efficiency of EglN1 in HEK293 cells was confirmed in (F and H), 
respectively. (J) HEK293 cells were infected with sh-Scr or sh-EglN1 lentivirus to 
deplete endogenous EglN1. Resulting cells were lentivirally re-introduced with EV or 
engineered sh-resistant EglN1 cDNA. Infected cells were selected with puromycin (1 
µg/ml) for 72 hrs before harvesting for IB analysis. (K and L) IB analysis of WCL from 
EglN deleted cells with or without exposure to 1% O2 for 16 hrs before harvesting. 
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Fig. S7 
EglN1 interacts with Akt largely through the N-terminal zinc finger (ZF) domain. (A-D) 
Co-immunoprecipitations (co-IP) and GST pull-down assays to show that Akt1 
specifically interacts with EglN1 (A), and EglN1 interacts with Akt1 and Akt2, but not 
with Akt3 (B-D) in HEK293 cells at endogenous levels or at ectopic expression 
conditions. (E-F) Akt3 in vitro kinase assays were performed with bacterially purified 
GST-GSK3β as a substrate and immuno-purified ectopically expressing HA-Akt3 from 
VHL-deficient 786-O and RCC4 cells (E), or EglN1-/- MEFs and EglN1-depleted 
HEK293 cells (F) as the source of kinase. (G-H) GST pull-down assays to show that 
ectopically expressing Akt1 fragments (H) specifically interacted with Flag-EglN1 in 
293T cells (G). PH, Pleckstrin homology domain; KD, kinase domain; HM, hydrophobic 
motif. (I) GST pull-down assays were performed with WCL derived from HEK293 cells 
transfected with HA-Akt1 and various fragments of CMV-GST-EglN1 constructs to 
illustrate that EglN1 interacts with Akt1 largely through the N-terminal ZF domain. (J) A 
schematic illustration of the functional domains in various EglN isoforms as well as the 
unique N-terminal ZF domain in EglN1 that mediates the specific interaction between 
Akt1 and EglN1, but not EglN2 or EglN3. N, N-terminal of EglN1 with zinc finger (ZF) 
domain; C, C-terminal of EglN1 with prolyl hydroxylase (PrH) domain. (K) GST 
pull-down assays to illustrate that unlike Akt1, HIF2α mainly interacted with the 
C-terminal of EglN1. 
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Fig. S8 
Depletion of endogenous EglN1 impairs the interaction of pVHL with Akt in cells. (A) 
IB analysis of immunoprecipitations of endogenous pVHL with WCL derived from 
EglN1-/- or WT counterpart MEFs. IgG was used as a negative control. IgG-LC, indicated 
IgG light chain. (B) GST pull-down analysis with WCL derived from EglN1-/- or WT 
counterpart MEFs transfected with GST tagged pVHL. (C) GST pull-down assays were 
performed with bacterially purified recombinant GST-pVHL and WCL derived from 
HEK293 cells lentivirally infected with the indicated shRNAs to illustrate that depleting 
endogenous EglN1 largely abolished the interaction between pVHL and endogenous 
Akt1. Infected cells were selected with puromycin (1 µg/ml) for 72 hrs before the 
pull-down assays, where GST was used as a negative control. (D) RCC4 cells infected 
with EV or pVHL retrovirus to generate cells stably expressing HA-pVHL. Resulting 
cells were lentivirally infected with sh-Scr or shRNAs against EglN1 (sh-EglN1) to 
deplete endogenous EglN1. Infected cells were selected with puromycin (1 µg/ml) for 72 
hrs before harvesting for IB analysis. (E) 786-O cells infected with control (EV) or pVHL 
retrovirus to generate cells stably expressing HA-pVHL. Resulting cells were infected 
with sh-Scr or sh-EglN1 lentivirus. Resulting cells were serum starved for 24 hrs 
followed by stimulation with insulin (0.1 µM). At the indicated time points, WCL were 
harvested for IB analysis.  
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Fig. S9 
EglN1 and pVHL preferentially interact with the activated form of Akt. (A) GST 
pull-down analysis of WCL derived from HEK293 cells transfected with the indicated 
constructs. (B-F) IB analysis of co-immunoprecipitations (co-IP) and WCL derived from 
HEK293 cells transfected with the indicated constructs. (G-H) GST pull-down analysis of 
WCL derived from HEK293 cells transfected with the indicated constructs. 
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Fig. S10 
The interaction of Akt1 with EglN1 or pVHL fluctuates after the stimulation with insulin 
or epidermal growth factor (EGF), which largely correlates with the status of pT308-Akt 
in cells. (A-B) IB analysis of co-IP and WCL derived from HEK293 cells co-transfected 
with HA-Akt1 and Flag-EglN1 (A) or CMV-GST-pVHL (B). Resulting cells were serum 
starved for 24 hrs followed by stimulation with insulin (0.1 µM). At the indicated time 
points, WCL were harvested for IB analysis. (C-D) IB analysis of co-IP and WCL 
derived from VHL-deficient 786-O cells that were retrovirally infected to stably express 
HA-pVHL. Resulting cells were serum starved for 48 hrs followed by stimulation with 
insulin (0.1 µM) (C) or EGF (100 ng/ml) (D). At the indicated time points, WCL were 
harvested for co-IP and further for IB analysis. (E-F) IB analysis of co-IP and WCL 
derived from HEK293 cells that were serum starved for 24 hrs followed by stimulation 
with insulin (0.1 µM) (E) or in serum supplemented condition exposed to 1% O2 (F). At 
the indicated time points, WCL were harvested for co-IP with indicated antibodies, which 
were further subjected to IB analysis. (G-H) IB analysis of the Gel-filtration fractions 
with WCL derived from HEK293 (G) or 786-O-pVHL (H) cells. (I) IB analysis of co-IP 
and WCL derived from HEK293 cells transfected with the indicated constructs. Where 
indicated, cells were treated with Wortmannin (WM) (0.2 µM) or PP242 (1 µM) for 1 hr 
before harvesting for IB analysis. (J) GST pull-down assays were performed with 
GST-EglN1-N purified from 293T cells that was incubated with WCL derived from 
HEK293 cells transfected with HA-Akt1. Where indicated, WCL were treated with 
λ-phosphatase for 30 minutes at 37oC before performing GST pull-down assays. GST 
was used as a negative control. (K) A proposed model to illustrate a possible role of 
EglN1 and pVHL in contributing to the oscillation of Akt activity upon the growth factor 
stimulation. Specifically, the activated Akt triggered by insulin/EGF was recognized and 
hydroxylated by the prolyl hydroxylase EglN1. Subsequently, the proline-hydroxylated 
species of Akt were inhibited in part by the recruitment of tumor suppressor pVHL. 
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Fig. S11 
Identification of Akt1 proline-hydroxylation sites by high-resolution tandem mass 
spectrometry analyses. (A-E) Representative LC-MS/MS spectra showing 
hydroxyl-proline-containing fragments derived from Akt1 immunoprecipitation of WCL 
derived from HEK293 cells co-transfected with HA-Akt1 and Flag-EglN1. The shift in 
the y- series ions after y17 (A), y15 (B), y7 (C), y10 (D) and y13 (E) shows that the 
remaining peptide fragments contain a proline hydroxylation event since the detected 
molecular weight was shifted by exactly 15.99 Da. Notably, the spectrum is dominated 
by y- series ions generated from the C-terminus rather than b- series ions. To further 
confirm the detected Pro313-hydroxylation event, we introduced a V320R mutation into 
Akt1 to form a new trypsin digest site to generate a shorter peptide after trypsin digestion 
for subsequent MS analysis, which also detected the Pro313 hydroxylation event (C). (F) A 
schematic illustration of the domain structures and various identified 
proline-hydroxylation sites in Akt1, as well as the sequence alignment with different Akt 
isoforms among species to illustrate that these proline sites are evolutionarily conserved. 
FOXO-like and HIF-ODD-like motifs were labeled in red and green, respectively. 
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Fig. S12 
Exchanging the FOXO-like motifs in Akt1 to HIF-ODD-like motifs impairs the ability of 
the resulting Akt mutant to interact with indicated type 2 VHL mutants. (A) Akt1 
FOXO-like hydroxylation motifs were exchanged individually or in combination to 
HIF-ODD-like motifs (from GSP or GTP to LAP) to generate a HIF-like Akt1 mutant. 
(B-C) LC-MS/MS analyses were performed with immune-precipitated HA-Akt1 derived 
from HEK293 cells co-transfected with the HA-Akt1-125/313LAP mutant and 
Flag-EglN1. The shift in the y- series ions after y17 (B) and y15 (C) shows that the 
remaining peptide fragments contain a proline hydroxylation event since the detected 
molecular weight was shifted by exactly 15.99 Da. Notably, the spectrum is dominated 
by y- series ions generated from the C-terminus rather than b- series ions. (D-F) IB 
analysis of the GST pull-down or WCL derived from HEK293 cells co-transfected 
wild-type or mutant forms of Akt1 with either wild-type or indicated type 2 mutant forms 
of pVHL.  
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Fig. S13 
Mutating Akt proline-hydroxylation sites enhances the interaction of Akt with its 
upstream activating kinase, PDK1. (A-B) IB analysis of co-IP and WCL derived from 
HEK293 cells transfected with indicated constructs. (C) Phosphatidylinositol 
(3,4,5)-trisphosphate (PIP3) binding assays were performed with PIP3 polysome 
containing beads incubated with WCL derived from HEK293 cells transfected with WT 
or P125/313A mutant form of Akt1 to show that mutating these two critical proline 
residues did not affect the ability of Akt-PH domain to interact with PIP3. Where 
indicated, control beads were used as a negative control. (D) HEK293 cells were 
lentivirally infected with sh-Akt1 to delete endogenous Akt1, and resulting cells were 
re-introduced WT or P125/P313A mutant form of Akt1 by retroviral infection. After 
treating DMOG (200 µM) for 16 hrs, cells were harvested for IB analysis.  
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Fig. S14 
pVHL interacts with phosphatase PP2A to promote PP2A-mediated dephosphorylation of 
Akt at the T308. (A-B) GST pull-down analysis of WCL derived from HEK293 cells 
transfected with the indicated constructs to illustrate the interaction of the catalytic 
subunit of PP2A (PP2AC) with pVHL (A), a process that could not be abolished by 
hypoxia mimetic reagents (B). (C-H) GST pull-down analysis of WCL derived from 
HEK293 or 786-O cells transfected with the indicated constructs to illustrate that the 
interaction of PP2AC with Akt1, but not Akt3, can be promoted by pVHL (C-D), and 
diminished by knockdown of EglN1 (E-F) or VHL deficiency (G-H). (I) GST pull-down 
analysis of WCL derived from HEK293 cells co-transfected pVHL with WT-Akt1 or 
various Akt1 mutants harboring a proline to alanine mutation in the identified 
proline-hydroxylation residues of Akt1. (J) GST-Akt1, purified from HEK293 cells, 
could pull down recombinant pVHL proteins. GST was used as a negative control. (K-L) 
In vitro dephosphorylation assays were performed with active recombinant PP2A and 
purified GST-Akt1 in the presence or absence of recombinant pVHL (K). A 
quantification of the pT308-Akt signal intensity in various lanes was plotted in (L). (M) 
A proposed model to illustrate a possible role of pVHL in contributing to the oscillation 
of Akt T308 phosphorylation and kinase activity upon the insulin stimulation. 
Specifically, EglN1-mediated hydroxylation of Akt facilitates the recruitment of pVHL, 
which may function as an adaptor protein to further recruit the phosphatase PP2A, the 
major characterized pT308-Akt phosphatase. In addition, the interaction of 
proline-hydroxylated species of Akt with pVHL also blocks the interaction of Akt1 with 
its upstream activating kinase, PDK1, thereby keeping Akt in an inactive state.  
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Fig. S15 
Synthetic peptides derived from HIF1α and Akt1 compete with one another for binding 
to pVHL in vitro in a proline-hydroxylation-dependent manner. (A) Streptavidin 
pull-down assays were performed using the indicated biotinylated synthetic FOXO3A- or 
Akt1-derived peptides and WCL derived from HEK293 cells transfected with HA-pVHL 
(top panel). Dot immunoblot assays were carried out to illustrate that equal amount of 
these synthetic peptides were used in each lane (bottom panel). (B, E) Streptavidin 
pull-down assays were performed using the indicated biotinylated synthetic HIF1α- or 
Akt1-derived peptides and WCL derived from HEK293 cells transfected with different 
mutants of HA-pVHL. (C-D) Streptavidin pull-down assays were performed using the 
indicated biotinylated peptides with bacterially purified pVHL/Elongin B and C complex 
(VBC) (C) to illustrate that mutating these three critical residues within the pVHL 
hydroxyl-proline binding pocket compromised the ability of pVHL to recognize 
hydroxylated HIF1α or Akt1 synthetic peptides (D). M3 indicated the 
S111G/H115L/W117G mutant form of pVHL. (F-G) In vitro synthetic peptides 
competing assays were carried out with the indicated peptides, with the HIF-WT or 
Akt1-Pro313-WT peptides as negative control, to illustrate that synthetic peptides derived 
from HIF1α and Akt1 could efficiently compete with one another to bind bacterially 
purified recombinant pVHL/Elongin B/C complex in vitro in a proline hydroxylation- 
and dose-dependent manner.  
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Fig. S16 
Generation and validation of the antibodies specifically recognize hydroxy-Pro125 and 
hydroxy-Pro313 of Akt1, respectively. (A) A schematic representation of the various 
biotinylated synthetic Akt1-derived peptides covering aa307-328 of Akt1. (B) Each 
indicated synthetic peptides in (A) was diluted and used for dot immunoblot analysis with 
the well-characterized anti-HIF-OH antibody that specifically recognizes hydroxy-Pro564 
of HIF1α. (C-D) Dot immunoblot analyses were performed with the indicated 
biotinylated synthetic peptides diluted with different concentrations, and detected with 
either anti-Akt1-Pro125-OH or anti-Akt1-Pro313-OH antibody, as indicated. (E-F) IB 
analysis of IP and WCL derived from HEK293 cells transfected with WT and various 
mutant forms of Akt1 to illustrate that inactivation of Pro125 and/or Pro313 specifically 
abolished the detected hydroxylation events by the anti-Akt1-Pro125-OH or 
anti-Akt1-Pro313-OH antibody, respectively. (G-H) IB analysis of IP and WCL derived 
from HEK293 cells with EglN1 knockdown (G) or treatment with hypoxia mimetic 
reagents (H) for 16 hrs before harvesting. (I) IB analysis of WCL derived from WT or 
EglN1-/- MEFs that were cultured in the presence (21%) or absence (1%) of oxygen for 16 
hrs before harvesting. (J) IB analysis of WCL derived from DLD1-AKT1/2-/- cells 
lentivirally infected with WT- or P125/313A-Akt1. Resulting cells were serum starved 
for 24 hrs followed by stimulation with insulin (0.1 µM). At the indicated time points, 
WCL were harvested for IB analysis. (K-N) IB analysis of IP or WCL derived from 
SN12C, U2OS or HeLa cells serum starved for 24 hrs followed by stimulation with 
insulin (0.1 µM) or EGF (100 ng/ml). At the indicated time points, WCL were harvested 
for IB analysis. 
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Fig. S17 
EglN1 hydroxylates Akt1 in vitro. (A-C) Coomassie staining of the bacterially purified 
recombinant WT and catalytic-inactive (P317R) EglN1 (A), which were used for in vitro 
hydroxylation assays (B-C), where HIF1α peptide was used as a positive control. (D) 
Mass spectrometry analysis to detect the presence of proline hydroxylation event at the 
Akt1 Pro125 site in the reaction products of in vitro hydroxylation assays with 
recombinant His-EglN1 and synthetic Akt1 peptide spanning the Pro125 region. In vitro 
hydroxylation products were identified by LC-MS/MS analysis on a Thermo Orbitrap 
Elite mass spectrometer in positive ion mode and fragmented using higher energy 
collisional dissociation (HCD). The shift in the b- series ions after b5 shows that the 
remaining peptide fragments contain a Pro hydroxylation since they shift by exactly 
15.99 Da. The spectrum is dominated by b- series ions generated from the N-terminus 
rather than y- series ions. (E) LC-MS/MS analysis to detect the presence of proline 
hydroxylation event at the Pro313 site of Akt1 in the reaction products of in vitro 
hydroxylation assays with recombinant His-EglN1 and synthetic Akt1 peptide spanning 
the Pro313 region. The shift in the y- series ions after y4 shows that the remaining peptide 
fragments contain a Pro hydroxylation since they shift by exactly 15.99 Da. The spectrum 
is dominated by y- series ions generated from the C-terminus rather than b- series ions. 
(F-G) In vitro hydroxylation assays were performed with bacterially purified His-EglN1 
and GST-Akt1 purified from 293T cells ectopically expressing CMV-GST-Akt1 as 
substrate. The proline-hydroxylation events at the Pro125 and Pro313 sites in the resulting 
enzymatic reaction were analyzed by immunoblot (IB) analysis with the 
anti-Akt1-Pro125-OH or anti-Akt1-Pro313-OH antibody, respectively (F), and further 
subjected to LC-MS/MS analysis to further confirm the Pro313-OH event occurring at 
Akt1 (G). (H) A schematic illustration of the in vitro hydroxylated product derived from 
the synthetic Akt1 peptide, that could be subsequently recognized by the 
hydroxyl-Proline HIF antibody or the hydroxyl-Pro313-Akt1 antibody, respectively. (I) In 
vitro hydroxylation assays were performed with the indicated biotinylated synthetic Akt1 
peptides (H) as substrate. The proline-hydroxylation events at the Pro313 and Pro318 sites 
in the resulting enzymatic reaction were analyzed by dot immunoblot analysis with the 
indicated antibodies (I). (J-K) Various biotinylated synthetic Akt-derived peptides (J) 
were used for in vitro hydroxylation assays as described in (C), and then subjected to dot 
immunoblot analysis with the anti-Akt1-Pro313-OH antibody to illustrate that mutating 
Pro313, but not Pro318 abolished EglN1-mediated hydroxylation event that could be 
detected by the anti-Akt1-Pro313-OH antibody (K).  
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Fig. S18 
Disruption of proline-hydroxylaiton events at Pro125 and Pro313 in Akt1, but not the 
corresponding mutation in Akt3, leads to sustained Akt kinase activity in cells. (A-B) 
DLD1-AKT1/2-/- cells were lentivirally infected with WT-, P125A- or P313A-Akt1 and 
selected with puromycin (1 µg/ml). Resulting cells were serum starved for 24 hrs 
followed by stimulation with insulin (0.1 µM). At the indicated time points, WCL were 
harvested for IB analysis (A). The relative intensity of pT308-Akt as detected by IB 
analysis in (A) at different time points was quantified in (B). (C-D) DLD1-AKT1/2-/- cells 
were lentivirally infected with WT- or P125/313A-Akt1, and selected with puromycin (1 
µg/ml) for 72 hrs. Resulting cells were serum starved for 24 hrs followed by stimulation 
with EGF (100 ng/ml). At the indicated time points, WCL were harvested for IB analysis 
(C). The relative intensity of pT308-Akt as detected by IB analysis in (C) at different 
time points was quantified in (D). (E) IB analysis of WCL derived from DLD1-AKT1/2-/- 
cells infected with retroviral vectors to stably express WT-Akt3 or mutant forms of Akt3 
with putative hydroxylated proline being replaced with alanine at the corresponding sites. 
Resulting cells were serum starved for 24 hrs followed by stimulation with insulin (0.1 
µM). At the indicated time points, WCL were harvested for IB analysis. (F) GST 
pull-down assays to demonstrate that GST-PP2AC purified from mammalian cells 
ectopically expressing CMV-GST-PP2AC interacts with the indicated mutant Akt3 in 
HEK293 cells. (G) Wild type and mutant forms of Akt3 were re-introduced into 
CRISPR-mediated AKT3-knockout (sg-Akt3) U2OS cells to examine the effects of 
mutating the corresponding Proline residues in Akt3 towards Akt activity in cells. (H-K) 
Colony formation (H) and soft agar (I) assays were carried out with various cell lines 
generated in (A). Relative colony numbers for colony formation (J) and soft agar (K) 
assays were further quantified (mean±SD, n=3 wells/group). *P < 0.05 (t test). (L-O) 
Colony formation (L) and soft agar (M) assays were carried out with various cell lines 
generated in (G). Relative colony numbers for colony formation (N) and soft agar (O) 
were further quantified (mean±SD, n=3 wells/group). #P > 0.05 (t test). (P-R) Xenograft 
mouse assays were performed with the cell lines generated in (C). Tumor size was 
monitored (P), and tumors were dissected after euthanizing the mice (Q). The 
phosphorylation status of Akt1 (pT308-Akt) was detected with IB analysis of WCL 
derived from recovered tumors (R).   
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Fig. S19 
Cancer-associated mutations in Akt promote Akt kinase activity and oncogenic functions. 
(A-E) GST pull-down assays to demonstrate that cancer-derived Akt mutations reduced 
Akt interaction with pVHL and PP2AC, but elevated Akt interaction with PDK1 in 
HEK293 cells. (F-I) IB analysis of WCL derived from DLD1-AKT1/2-/- cells infected 
with retroviral vectors to stably express WT-Akt1 or Akt2, cancer-associated mutant 
form of P127N-Akt2 (F) or G311D-Akt1 (H) at comparable levels. Infected cells were 
selected with hygromycin (200 µg/ml) for 72 hrs to eliminate non-infected cells. 
Resulting cells were serum starved for 24 hrs followed by stimulation with insulin (0.1 
µM). At the indicated time points, WCL were harvested for IB analysis (G and I). (J-O) 
Cell lines generated in (F and H) were used to perform colony formation (J and N) and 
soft agar assays (K and O). Relative colony numbers for colony formation (L) and soft 
agar assays (M) were further quantified (mean±SD, n=3 wells/group). *P < 0.05 (t test). 
(P) A schematic representation of biological consequences of how the VHL/EGLN1 
signaling axis suppresses tumorigenesis in part by suppressing the Akt oncogenic 
signaling pathway. Specifically, pVHL interacts with, and suppresses the 
proline-hydroxylated species of Akt1 and Akt2. Pathologically, cancer patient-associated 
mutations in Akt1 or Akt2 (G311D and P127N) may impair pVHL-mediated suppression 
of Akt to favor tumorigenesis (bottom panel).  
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