Supporting Information of

3D graphene preparation via covalent amide functionalization for efficient metal-

free electrocatalysis in oxygen reduction

Mohammad Shamsuddin Ahmed, Young-Bae Kim*

Department of Mechanical Engineering, Chonnam National University, Gwangju, Republic of Korea. Tel.: +82 62 5301677, *E-mail: <u>ybkim@chonnam.ac.kr</u>

Figure S1: XPS survey spectra (a), core level of C1s spectra (b) of GO and GO-COOH and XPS survey spectra of GO–COOH, rGO, rGO-sp²-rGO and rGO-sp³-rGO (c).

Figure S2: The C-species content calculated from the wt% of C for all samples (a) N-species content calculated from the wt% of N for sp^3 -DABu, rGO- sp^2 -rGO and rGO- sp^3 -rGO (b).

Figure S3: XPS survey spectra (a), core level of N1s spectra (b) of rGO-sp³-rGO samples from without (GO) and with (GO-COOH) conversion treatment (CT) precursor.

Figure S4: TGA curves of three different rGO-sp³-rGO materials which prepared by three different w/w ratios of GO-COOH and sp³-DABu (1:1, 1:2, and 1:3).

Figure S5: Nyquist plots of rGO/GCE, rGO-sp²-rGO/GCE and rGO-sp³-rGO/GCE.

Figure S6: CA curves of three different rGO-sp³-rGO catalysts which prepared by three different w/w ratios of GO-COOH and sp³-DABu (1:1, 1:2, and 1:3).

Catalyst	Electrolyte	E_{onset} (Ref. electrode)	<i>n</i> value	References
PDDA ^a –graphene	0.1 M KOH	-0.105 V (vs. Ag/AgCl)	3.5–4	[9]*
P-G ^b	0.1 M KOH	-0.112 V (vs. Ag/AgCl)	3.85 (0.4 V)	[11]*
N-graphene	0.1 M KOH	-0.17 V (vs. Ag/AgCl)	3.6-4	[16]
B ₃ CNTs ^c	1 M NaOH	-0.13 V (vs. Ag/AgCl)	2.5 (0.7 V)	[24]*
TDMAC ^d -RGO	0.1 M KOH	-0.24 V (vs. Ag/AgCl)	3-4	[32]
Acr@MWCNTs	0.1 M KOH	-0.14 V (vs. Ag/AgCl)	3.2 (-1 V)	[33]
NS-C ^e -1100	0.1 M KOH	0.05 V (vs. Ag/AgCl)	3.4–3.8	[34]*
AG ^f	0.1 M KOH	-0.04 V (vs. Ag/AgCl)	3.3–4	[41]
Py ^g -EGO	0.1 M KOH	-0.2 V (vs. Ag/AgCl)	3.74 (-0.4 V)	[42]
S-graphene ^h -1050	0.1 M KOH	-0.08 V (vs. Ag/AgCl)	3.82 (-0.3 V)	[43]
NPC ⁱ	0.1 M KOH	-0.04 (vs. Ag/AgCl)	3.7 (-0.6 V)	[60]
rGO-sp ³ -rGO	0.1 M KOH	-0.1 V (vs. Ag/AgCl)	3.95–3.98	This work

Table S1: The comparison of ORR activity of the metal-free catalysts.

^apoly(diallyldimethylammonium chloride), ^bplasma-treated graphene, ^cboron-doped carbon nanotibes, ^dtridodecylmethylammonium chloride, ^esulfur and nitrogen codoped carbon, ^famino-functionalized graphene, ^gpyridine functionalized graphene, ^hsulfur-doped graphene, ⁱnitrogen self-doped porous carbon, *converted V vs. Ag/AgCl.