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A1 Image Processing

A1.1 Description of image processing of experimental data
Image processing for spot contours was done using MATLAB. Below is a detailed description of the processing
including the built-in MATLAB functions that were used (appended by .m). Thresholds for the MATLAB
functions are given in Appendix Table S3.

1. Read the image into MATLAB and output an n× n× 3 matrix of RGB values using imread.m.

2. Manually choose one of the R, G, or B matrices. Convert this matrix to black and white (0’s and 1’s)
using im2bw.m (setting the threshold manually); convert by subtracting this matrix from 1 so that
white (a value of 1) is part of a spot and black (a value of 0) is not part of a spot.

3. Apply a noise filter with medfilt2.m (setting the threshold manually) to remove as many of the smaller
spots as possible (this function is a median filter used to reduce “salt and pepper” noise).

4. Fill in any holes using imfill.m. Set any values in the output matrix of imfill from 0.5 to 1.

5. Use bwlabel.m to label connected components.

6. Use regionprops.m to get centroid locations and areas.

7. Define an area limit (setting the threshold manually) to plot only those spots whose area is larger than
this limit.

8. Set a threshold for distance between any two centroids (in our case, we used 35 pixels, or approximately
11 µm, which we estimate to be the diameter of a cell). If any two centroids are within this distance,
group all of these spots together and take the convex hull using convhull.m to visualize the spot. The
centroid of the combined spots, or cluster of cells, is computed by taking the weighted average of the
centroids, where weights are based on areas. The area of the combined spots is computed as the sum
of the original areas.

In the following sections, images are shown with both red and blue contours. Red contours were found
using the steps 1-7 above. Blue contours (convex hulls) were found using step 8 above.

A1.2 Description of overlay analysis from image processing data (Figure EV1)
Spot contour overlay using image processing was done using MATLAB. Below is a detailed description of
how the overlay was formed using built-in MATLAB functions that were used (appended by .m). Thresholds
for the MATLAB functions are given in Appendix Table S

1. Apply steps 1 and 2 from A1.1 for both pPDH and LEF1 experimental images to obtain two separate
matrices MpPDH and MLEF1.

2. Form matrix M by multiplying MpPDH by MLEF1 entry by entry (not matrix multiplication). Matrix
M now contains overlapping regions of pPDH and LEF1 where white (a value of 1) is part of an
overlapping region and black (a value of 0) is a non-overlapping region.

3. Form matrix MpPDH = MpPDH −M and MLEF1 = MLEF1 −M (to remove overlapping regions).
Now, MpPDH , MLEF1 and M are matrices that do not overlap where the value of 1 is located. Form
matrix S = 1 ∗MpPDH + 2 ∗MLEF1 + 3 ∗M , so that each a value of 0 assigned in non-spot region, a
value of 1 is assigned in pPDH spots (minus the overlap), a value of 2 is assigned in LEF1 spots (minus
the overlap), a value of 3 is assigned in the overlapping region.

4. Use imagesc.m to visualize overlay with matrix S using colormap.m (setting custom colors by manually
selecting a 4 by 3 matrix where each row represents a color for the numbers 0, 1, 2, 3).
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Percent coverage. The 4x (leftmost) images in Figs. 1A and 1B are both the same size and the images
were assumed to be lined up as close as possible. In each image, a pixel inside a red contour was considered
positively stained and a pixel outside a red contour was considered negatively stained. In the Mock pPDH
image in Fig. 1A, there are 101,712 pixels inside the contours and there are 479,314 pixels in the tumor
section, which yields a 21.2% coverage of pPDH spots. In the Mock LEF-1 image in Fig. 1B, there are 97,368
pixels inside the contours and there are 481,623 pixels in the tumor section, which yields a 20.2% coverage
of LEF-1 spots. The number of pixels in the tumors in the images in Figs. 1A and 1B are slightly different
because these images are serial sections. Because they are close, we can approximately pair the pixels in the
images by assuming that each pixel location in one slice corresponds to the same pixel location in the other
slice. The staining in each pixel pair can be described using a 2x2 contingency matrix. For example, when
there is both pPDH and LEF1 staining in the pixel pair, the contingency matrix is given in Table S 1. The
contingency matrices in the other cases (e.g., pPDH positive stain/LEF1 negative stain, etc) correspond to
permutations of the location of the "1" in the matrix entries.

Appendix Table S 1: 2x2 contingency matrix showing LEF1 and pPDH staining in a pixel pair

pPDH no pPDH
LEF1 1 0

no LEF1 0 0

The number of pixels that overlap between the LEF-1 and pPDH images is 35,503 (blue area in Fig.
EV1). Thus, the percent overlap of pPDH in LEF-1 spots is 35, 503/97, 368 = 36.4% and the percent overlap
of LEF-1 in pPDH spots is 35, 503/101, 712 = 34.9%. The area fraction of overlap between LEF-1 and pPDH
spots in the tumor sections are 35, 503/481, 623 = 7.4% and 35, 503/479, 314 = 7.4%, respectively.

Cochran-Mantel-Haenszel test. To test whether there is an association between the pPDH and the
LEF1 spots, we used the Cochran-Mantel-Haenszel test (Cochran, 1954; Mantel & Haenszel, 1959). By
collapsing the contingency matrices for all the pixels in the images, we obtain a single 2 x 2 contingency
table that describes the numbers of pixel pairs with each type of staining. For Fig. 1B, this gives Table S 2

Appendix Table S 2: Collapsed 2 x 2 contingency matrix for all pixel pairs

pPDH no pPDH Total
LEF1 35503 61865 97368

no LEF1 66209 318046 384255
Total 101712 379911 481623

The null hypothesis is that the pPDH and LEF1 spots are conditionally independent. Then, z2 =
(n21 − n12)2/(n21 + n22), where n21 and n12 are the off-diagonal terms in the contingency matrix, is a χ2

statistic with 1 degree of freedom. Calculating, we obtain z2 = 147 from which we conclude p < 0.0001.
This allows us to reject the null hypothesis and we conclude that pPDH and LEF1 spots are significantly
associated with each other. The results obtained using Fig. 1A are similar.
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A1.3 Image processing parameters and data

Appendix Table S 3: Parameters and resulting number of spots in image processing of IHC stains

Sample RGB im2bw medfilt2 Minimum area Number of spots
Mock pPDH 1 B 0.3 15 700 98
Mock pPDH 2 B 0.28 10 700 75
Mock pPDH 3 B 0.4 15 700 89
mock LEF1 1 G 0.55 10 800 69
mock LEF1 2 B 0.3 15 500 77
mock LEF1 3 B 0.39 15 500 92
mock LEF1 4 B 0.3 15 500 87
mock LEF1 5 B 0.3 15 500 100

mock β-catenin 1 G 0.62 10 200 301
mock β-catenin 2 G 0.62 10 200 315
mock β-catenin 3 G 0.62 10 200 272
dnLEF pPDH 1 B 0.5 18 1500 29
dnLEF pPDH 2 B 0.5 18 1500 35
dnLEF pPDH 3 B 0.5 18 1500 24
dnLEF pPDH 4 B 0.55 20 1500 37
dnLEF β-catenin B 0.35 10 1000 74
dnTCF pPDH 1 B 0.35 17 1500 31
dnTCF pPDH 2 B 0.33 20 1500 33
dnTCF pPDH 3 B 0.28 20 1500 44

dnTCF β-catenin 1 B 0.45 15 2000 35
dnTCF β-catenin 2 B 0.45 15 2000 55
dnTCF β-catenin 3 B 0.45 15 2000 26

Appendix Table S 4: Parameters and resulting number of spots in image processing of IHC stains
for overlay analysis

Sample RGB im2bw medfilt2 Minimum area Number of spots
Mock pPDH 1 B 0.325 10 140 131
Mock pPDH 2 B 0.39 10 140 106
Mock pPDH 3 B 0.36 10 140 153
Mock LEF1 1 B 0.3 10 100 173
Mock LEF1 2 B 0.4 10 100 166
Mock LEF1 3 B 0.4 10 100 191

Parameter values and resulting number of spots in image analysis of pPDH, LEF1, and β-catenin stains.
The terms im2bw and medfilt2 refer to built-in Matlab tools. Minimum area refers to the smallest area (in
terms of square pixels) that were outlined. Number of spots refers to number of resulting spots outlined
from the image processing, after combining spots if their centroids are within some distance (see image
processing description in previous section). Thresholds for image analysis were set by user input to capture
strongest signals from the epithelial part of the tumors, avoiding mouse stroma and vessels.
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A1.4 Gradient of phospho-PDH spot density in SW480 xenograft tumors
We quantified and visualized the changes in spot densities from the tumor periphery to the core using Matlab
and ImageJ tools. To identify contours of the spots, we applied steps 1-7 as in A1.1. Several large artificial
"spots" were formed on the periphery when only one parameter set was used for the entire image (due to
changes in intensity from the periphery (left) to the core (right) in the tumor). Thus, we separately analyzed
the two largest "spots" near the periphery and formed contours of the spots using different parameters. We
replaced the large "spots" with the corresponding new contours. As indicated in figure 1, we divided the
image into 8 bins from left to right. For each bin we computed the total area of the spots. If the bin divides
a spot into multiple pieces, the areas of each individual piece contained within the bin were added and the
total areas of the spots in each bin were plotted in (C). To visualize the gradient in spot density and intensity,
we used the ImageJ plugin "Interactive 3D Surface Plot" to create topographic maps from the green channel
of tumor images (D-G). The spikes at the right are from tears in the tissue.

v



Appendix Figure S 1: Gradient of phospho-PDH spot density in SW480 xenograft tumors (A) A section
of the pPDH-stained SW480 xenograft tumors was selected for analysis. (B) We divided the image into 8
bins (1 is leftmost and 8 is rightmost). For each bin we computed the total area of the spots. If the bin
divides a spot into multiple pieces, the areas of each individual piece contained within the bin were added.
(C) The areas of the spots in each bin are plotted and show that the areas of the spots generally decreases
towards the core of the tumor. (D-F) To further visualize the gradient in spot density and intensity, the
ImageJ plugin "Interactive 3D Surface Plot" was used to create topographic maps from the green channel
of tumor images. (D) Top view, showing ability to detect spots using ImageJ. (F) Isometric view (G) Side
view, showing intensity of spotting decreases towards the core of the tumor. The spikes at the right are from
tears in the tissue.
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A1.5 SW480 Mock xenograft tumor phospho-PDH immunohistochemistry
The figures that follow are stains that were processed and whose data (area of each spot and distance to
nearest neighbor) appear in the image analysis scatter plots in the main text (Figure 1C).

Appendix Figure S 2: Mock phospho-PDH contours. Scalebars indicate 100µm, with each images’ dimen-
sions approximately 440× 330µm2. The left column shows stained images. The right column shows stained
images with red contour outlines drawn around each spot and blue convex hull outlines which group red spots
together if their centroids are within 35 pixels (approximately 11 µm) of each other (see image processing
methods, A1.1).
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A1.6 SW480 Mock xenograft tumor LEF1 immunohistochemistry
The figures that follow are stains that were processed and whose data (area of each spot and distance to
nearest neighbor) appear in the image analysis scatter plots in the main text (Figure 1C).

Appendix Figure S 3: Mock LEF1 contours. Scalebars indicate 100µm, with each images’ dimensions
approximately 440 × 330µm2. The left column shows stained images. The right column shows stained
images with red contour outlines drawn around each spot and blue convex hull outlines which group red spots
together if their centroids are within 35 pixels (approximately 11 µm) of each other (see image processing
methods, A1.1).
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Appendix Figure S 4: Mock LEF1 contours (continued). Scalebars indicate 100µm, with each images’
dimensions approximately 440 × 330µm2. The left column shows stained images. The right column shows
stained images with red contour outlines drawn around each spot and blue convex hull outlines which group
red spots together if their centroids are within 35 pixels (approximately 11 µm) of each other (see image
processing methods, A1.1).
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A1.7 SW480 Mock xenograft tumor β-catenin immunohistochemistry
The figures that follow are stains that were processed and whose data (area of each spot and distance to
nearest neighbor) appear in the image analysis scatter plots in the main text.

Appendix Figure S 5: Mock β-catenin contours. Scalebars indicate 100µm, with each images’ dimensions
approximately 440×330µm2. The left column shows stained images. The right column shows stained images
with red contour outlines drawn around each spot and blue convex hull outlines which group red spots
together if their centroids are within 35 pixels (approximately 11 µm) of each other (see image processing
methods, A1.1).
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A1.8 SW480 dnLEF xenograft tumor phospho-PDH immunohistochemistry
The figures that follow are stains that were processed and whose data (area of each spot and distance to
nearest neighbor) appear in the image analysis scatter plots in the main text (Figure 3D).

Appendix Figure S 6: dnLEF phospho-PDH contours. Scalebars indicate 100µm, with each images’ di-
mensions approximately 440 × 330µm2. The left column shows stained images. The right column shows
stained images with red contour outlines drawn around each spot and blue convex hull outlines which group
red spots together if their centroids are within 35 pixels (approximately 11 µm) of each other (see image
processing methods, A1.1).
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A1.9 SW480 dnLEF xenograft tumor β-catenin immunohistochemistry
The figures that follow are stains that were processed and whose data (area of each spot and distance to
nearest neighbor) appear in the image analysis scatter plots in the main text (Figure 3E).

Appendix Figure S 7: dnLEF1 β-catenin contours. Scalebars indicate 100µm, with each images’ dimensions
approximately 440 × 330µm2. The left panel shows stained images. The right panel shows stained images
with red contour outlines drawn around each spot and blue convex hull outlines that group red spots together
if their centroids are within 35 pixels (approximately 11 µm) of each other (see image processing methods,
A1.1). Spots highlighted here have high β-catenin expression in the cytoplasm and not just the nucleus.
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A1.10 Heterogeneity in SW480 dnTCF xenograft tumors
Heterogeneity in metabolism and Wnt activity was also observed in dnTCF tumors. There is no counterstain
for nuclei in these stains.

Appendix Figure S 8: Phospho-PDH and β-catenin immunohistochemical detection of expression in a dnTCF
tumor. SW480 cells were lentivirally transduced to express dominant negative TCF1, which interferes with
Wnt signaling activation of target genes. Transduced cells were injected subcutaneously into immunocom-
promised mice. Tumor sections were stained for phosphorylated PDH and beta-catenin. Scalebars are 161
µm.
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A1.11 SW480 dnTCF phospho-PDH immunohistochemistry
The figures that follow are stains that were processed and whose data (area of each spot and distance to
nearest neighbor) appear in the image analysis scatter plots in the main text (Figure 3D).

Appendix Figure S 9: dnTCF phospho-PDH contours. Scalebars indicate 100µm, with each images’ di-
mensions approximately 440 × 330µm2. The left column shows stained images. The right column shows
stained images with red contour outlines drawn around each spot and blue convex hull outlines which group
red spots together if their centroids are within 35 pixels (approximately 11 µm) of each other (see image
processing methods, A1.1).
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A1.12 SW480 dnTCF β-catenin immunohistochemistry
The figures that follow are stains that were processed and whose data (area of each spot and distance to
nearest neighbor) appear in the image analysis scatter plots in the main text (Figure 3E).

Appendix Figure S 10: dnTCF β-catenin contours. Scalebars indicate 100µm, with each images’ dimensions
approximately 440×330µm2. The left column shows stained images. The right column shows stained images
with red contour outlines drawn around each spot and blue convex hull outlines which group red spots
together if their centroids are within 35 pixels (approximately 11 µm) of each other (see image processing
methods, A1.1).
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A1.13 Significance in differences between mock and dominant negative tumors
in metabolic patterning

The p-values in the tables below were computed using the image processing data after combining spots whose
centroids were more than 35 pixels apart (approximately 11 µm; see image processing description in previous
section). Wilcoxon’s rank-sum test was done using Matlab’s ranksum.m function, which tests the statistical
significance in the difference of the medians of two datasets, regardless of their distribution.

Appendix Table S 5: p-values for area of spot

mock
pPDH

mock
LEF1

mock
β-catenin

dnLEF
pPDH

dnTCF
pPDH

dnLEF
β-catenin

dnTCF
β-catenin

mock
pPDH 3.91E-17 1.25E-68 6.87E-30 9.82E-21 0.0111 1.69E-20

mock
LEF1 1.47E-43 2.40E-51 1.21E-41 5.03E-15 5.81E-45

mock
β-catenin 1.93E-68 7.85E-59 1.96E-32 2.62E-64

dnLEF
pPDH 0.0292 6.69E-16 6.79E-06

dnTCF
pPDH 1.09E-10 0.1525

dnLEF
β-catenin 9.54E-11

Appendix Table S 6: p-values for distance to nearest neighbor

mock
pPDH

mock
LEF1

mock
β-catenin

dnLEF
pPDH

dnTCF
pPDH

dnLEF
β-catenin

dnTCF
β-catenin

mock
pPDH 8.15E-08 3.15E-100 3.31E-40 1.41E-23 1.40E-03 3.29E-21

mock
LEF1 3.19E-84 7.74E-50 5.35E-33 1.01E-09 7.59E-32

mock
β-catenin 7.81E-73 1.44E-62 2.33E-39 8.21E-67

dnLEF
pPDH 2.70E-05 2.32E-19 2.48E-08

dnTCF
pPDH 9.03E-10 0.24

dnLEF
β-catenin 1.29E-07
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A1.14 Description of image processing of simulation results
Simulations results were processed in the following way, after numerical solutions were obtained:

The Pg cell matrix was converted to 0’s and 1’s by setting matrix entries to 1 if greater than or equal to
0.99 and 0 otherwise. Areas and centroids were computed using Matlab’s regionprops.m function. Distances
to nearest neighbor (centroid-to-centroid) were then calculated. These distances are based on the simulation
length scale, which we converted to a dimensional length scale using the following: 1 computational unit
= 37.5043 µm. This length scale was chosen so that there was good agreement between experimental and
simulation averages. Computations for the W matrix were similar, except the cutoff used was 8 (i.e., if
W ≥ 8, set the entry to 1, and 0 otherwise). The averages are plotted and labeled as simulation averages in
the main text (Pg spots represent pPDH spots and W spots represent β-catenin spots).
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A1.15 Quantification of IHC staining intensity and cells per spot in SW480
Mock and dnLEF pPDH staining

0 20 40 60 80 100

% 3 score

% 2 score

% 1 score

dnLEF

Mock

A. Proportion of spots by staining intensity

B. Cells per spot

****

Appendix Figure S 11: Quantification of pPDH spots in SW480 Mock and dnLEF xenograft tumors for cells
per tumor and intensity of staining. Three images each of SW480 Mock and dnLEF pPDH staining were
provided to blinded researchers who were asked to identify the number of spots within each image and rate
the staining intensity of each spot on a scale of 0 to 3, where 3 is the highest intensity. A. The proportion
of spot scores for each tumor type. B. Cells per spot per tumor type.
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A2 Nondimensionalization
The full set of dimensionalized equations are given by the following, where P is the characteristic cell
population:

∂Po
∂t

= Do∇2Po +
1

τo
N

(
1− Po + Pg + Pd

P

)
Po +

1

τgo
χW (W )Pg (1a)

− 1

τog
χ∗W (W )χ∗N (N)Po − µoχN (N)Po (1b)

∂Pg
∂t

= Dg∇2Pg +
1

τg

W

αW +W
N

(
1− Po + Pg + Pd

P

)
Pg −

1

τgo
χW (W )Pg (1c)

+
1

τog
χ∗W (W )χ∗N (N)Po − µgχN (N)Pg (1d)

∂Pd
∂t

= Dd∇2Pd + µoχN (N)Po + µgχN (N)Pg − µdPd (1e)

∂W

∂t
= DW∇2W +

1

a+ bWI
κWNW

2Pg + SW (Po + Pg)− µWW (1f)

∂WI

∂t
= DWI

∇2WI + κWI
NW 2 (Po + Pg)− µWI

WI (1g)

∂N

∂t
= DN∇2N − νNGNPg − νNONPo − µNN +Ns (1h)

and

χW (W ) =
1

2
[1− tanh(γW (W −W ∗))]

χ∗W (W ) =
1

2
[1 + tanh(γW (W −W ∗))]

χN (N) =
1

2
[1− tanh(γN (N −Nd))]

χ∗N (N) =
1

2

[
1 + tanh(γN (N −N∗g ))

]
Introducing the nondimensional quantities below, where overbars indicate characteristic values, we have

P ′o =
Po

P
, P ′g =

Pg

P
, P ′d =

Pd

P
, W ′ =

W

W
, W ′I =

WI

WI

, N ′ =
N

N
.

We define nondimensionalized time as t′ =
t

T
and nondimensionalized length as x′ =

x

`
, where T =

τo

N

and ` =

√
DWI

τo

N
.

We also define the following nondimensional parameters:
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D′o =
τoDo

N`2

1

τ ′go
=

τo

Nτgo
1

τ ′og
=

τo

Nτog

µ′o =
τoµo

N

D′g =
τoDg

N`2

1

τ ′g
=
τo
τg

µ′g =
τoµg

N
a′ = a

b′ = bWI

D′W =
τoDW

N`2

µ′W =
τoµW

N

κ′W = τoPκWW

S′W =
τoSWP

N W

κWI
=

WI

τoP W
2

µ′WI
=
τoµWI

N

W ′∗ =
W ∗

W

γ′W = γWW

N ′d =
Nd

N

N ′∗g =
N∗g

N

γ′N = γNN

We redefine the switch functions in the following way:

χ′W (W ′) =
1

2
[1− tanh(γ′W (W ′ −W ′∗))]

χ′∗W (W ′) =
1

2
[1 + tanh(γ′W (W ′ −W ′∗))]

χ′N (N ′) =
1

2
[1− tanh(γ′N (N ′ −N ′∗))]

χ′∗N (N ′) =
1

2

[
1 + tanh(γ′N (N ′ −N ′∗g ))

]
Using these nondimensional quantities, and dropping the prime notation, the nondimensional equations

are
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∂Po
∂t

= Do∇2Po +N (1− Po − Pg − Pd)Po +
1

τgo
χW (W )Pg (2a)

− 1

τog
χ∗W (W )χ∗N (N)Po − µoχN (N)Po (2b)

∂Pg
∂t

= Dg∇2Pg +
1

τg

W

αW +W
N (1− Po − Pg − Pd)Pg −

1

τgo
χW (W )Pg (2c)

+
1

τog
χ∗W (W )χ∗N (N)Po − µgχN (N)Pg (2d)

∂Pd
∂t

= Dd∇2Pd + µoχN (N)Po + µgχN (N)Pg − µdPd (2e)

∂W

∂t
= DW∇2W +

1

a+ bWI
κWNW

2Pg + SW (Po + Pg)− µWW (2f)

∂WI

∂t
= ∇2WI +NW 2 (Po + Pg)− µWI

WI (2g)

∂N

∂t
= DN∇2N − νNGNPg − νNONPo − µNN +Ns (2h)
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A3 Wnt-PDK-Lactate-HIF1α Cross-Feeding Model
The model presented in this paper was developed to have minimal complexity. Because other signaling
pathways and growth or inhibition factors are known to be involved in cancer growth and metabolism, we
considered an extension to the Wnt signaling model to include these additional effects.

A3.1 Augmenting the Wnt Signaling Model
We added more detail to the Wnt signaling model by including equations for PDK, lactate, and HIF. The
equations for Po, Pg, Pd,W ,WI , and N (Equations 3b through 3k) are identical to those in the Wnt signaling
model in the main text, except that the metabolic switch between OXPHOS and glycolysis is regulated by
PDK activity rather than Wnt levels. If PDK is high, then the cells are more likely to switch to glycolysis,
and if PDK is low, the cells are more likely to switch to OXPHOS. This larger model was built with the
assumptions that Wnt and the hypoxia transcription factor HIF1α promote PDK expression and activity
(?), (?), (?), PDK activity promotes lactate production through upregulation of glycolysis (?), and lactate
increases HIF production (?).

The equation for P , PDK activity, is given by equation (3h). The first term on the right of the equality is
random motion; the second term represents nonlinear upregulation by Wnt, since Wnt signaling upregulates
PDK (?); the third term represents upregulation by HIF1α (?), (?); the fourth term stands for upregulation
through the cells, with sufficient nutrient; and the last term is a decay term.

Equation (3i) is the equation for lactate, which is assumed to diffuse long-range; is upregulated nonlinearly
by PDK through the Pg cells, since PDK drives glycolysis (?); and can decay and be uptaken by Po cells, a
form of metabolic symbiosis or cross feeding.

The dynamics for HIF are given by Equation (3j). HIF is assumed to diffuse, to be upregulated nonlinearly
by lactate, and to decay. The nonlinear upregulation by lactate comes from the assumption that lactate
stabilizes HIF (?). The last two terms in the HIF equation are production terms. There is a small rate
(dH) at which HIF is produced everywhere; and there is a large rate (dHni) at which HIF is produced when
nutrient is low, which represents the stabilization of HIF in hypoxic environments.
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∂Po
∂t

= Do∇2Po︸ ︷︷ ︸
random motion

+
1

τo

(
N +

L

Ls

)
(1− Po − Pg − Pd)Po︸ ︷︷ ︸

proliferation

− µoχN (N)Po︸ ︷︷ ︸
death

(3a)

+
1

τgo
χP (P )Pg︸ ︷︷ ︸

switch to OXPHOS

− 1

τog
χ∗P (P )χ∗N (N)Po︸ ︷︷ ︸

switch from OXPHOS

(3b)

∂Pg
∂t

= Dg∇2Pg︸ ︷︷ ︸
random motion

+
1

τg

W

αW +W
N (1− Po − Pg − Pd)Pg︸ ︷︷ ︸
proliferation

− µgχN (N)Pg︸ ︷︷ ︸
death

(3c)

− 1

τgo
χP (P )Pg︸ ︷︷ ︸

switch from glycolysis

+
1

τog
χ∗P (P )χ∗N (N)Po︸ ︷︷ ︸

switch to glycolysis

(3d)

∂Pd
∂t

= Dd∇2Pd︸ ︷︷ ︸
random motion

+ µoχN (N)Po︸ ︷︷ ︸
dead Po cells

+ µgχN (N)Pg︸ ︷︷ ︸
dead Pg cells

− µdPd︸ ︷︷ ︸
decay

(3e)

∂W

∂t
= DW∇2W︸ ︷︷ ︸

random motion

+
1

a+ bWI︸ ︷︷ ︸
inhibition

κWNW
2Pg︸ ︷︷ ︸

upregulation

+ SW (Po + Pg)︸ ︷︷ ︸
upregulation

− µWW︸ ︷︷ ︸
downregulation

(3f)

∂WI

∂t
= DWI

∇2WI︸ ︷︷ ︸
random motion

+ κWI
NW 2(Po + Pg)︸ ︷︷ ︸
upregulation

− µWI
WI︸ ︷︷ ︸

downregulation

(3g)

∂P

∂t
= DP∇2P︸ ︷︷ ︸

random motion

+ νPW
W 2

αPW +W
N︸ ︷︷ ︸

upregulation

+ νPH
H

αPH +H
N︸ ︷︷ ︸

upregulation

+ νPN (Po + Pg)︸ ︷︷ ︸
upregulation

− µPP︸︷︷︸
downregulation

(3h)

∂L

∂t
= DL∇2L︸ ︷︷ ︸

random motion

+ νLPPg
P 2

αP + P
N︸ ︷︷ ︸

production

− µLL︸︷︷︸
decay

− νLOLPo︸ ︷︷ ︸
uptake by Po cells

(3i)

∂H

∂t
= DH∇2H︸ ︷︷ ︸

random motion

+ νHL
L2

αL + L︸ ︷︷ ︸
lactate-induced production

− µHH︸ ︷︷ ︸
decay

+ dH︸︷︷︸
bulk production

+ dHNi (1−N)︸ ︷︷ ︸
hypoxia-induced production

(3j)

∂N

∂t
= DN∇2N︸ ︷︷ ︸

random motion

− νNGNPg︸ ︷︷ ︸
uptake by Pg cells

− νNONPo︸ ︷︷ ︸
uptake by Po cells

− µNN︸ ︷︷ ︸
decay

+ Ns︸︷︷︸
bulk source

(3k)
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A3.2 Results
The parameters used in the results shown here are given by Table 7. The system evolves over time and its
final output at time 50 is shown in Figures 12-13. The numerical results are similar to those in Figure 2
and 3, with a striking spotted pattern in glycolysis and OXPHOS. Near the boundary, there is a very high
level of glycolysis, with localized spots of high glycolysis surrounded by relatively lower levels. We also see
this spotted pattern in PDK activity, lactate, and HIF. When the mock and dnLEF tumors were stained
for HIF, we saw a spotted pattern in both, with the dnLEF tumor exhibiting larger and fewer spots (see
Supplemental Figure 14).
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Appendix Table S 7: Wnt-PDK-Lactate-HIF1α Model Parameters

Parameter Description Mock value dnLEF value
Do Diffusion coefficient of oxidative cells 0.01 0.01
Dg Diffusion coefficient of glycolytic cells 0.01 0.01
DW Diffusion coefficient of Wnt 0.01 0.035
DWI

Diffusion coefficient of Wnt inhibitor 1 1.5
DP Diffusion coefficient of PDK activity 0.01 0.01
DL Diffusion coefficient of lactate 100 100
DH Diffusion coefficient of HIF 0.01 0.01
DN Diffusion coefficient of nutrient 100 100
τo Oxidative cell proliferation time 1 1
τg Glycolytic cell proliferation time 1 1
τog Switch time from OXPHOS to glycolysis 1/24 1/24
τgo Switch time from glycolysis to OXPHOS 1 1
αW Constant for Michaelis-Menten dynamics 1 1
κW Rate of nonlinear Wnt production 5 5
κWI

Rate of Wnt inhibitor production 1 1
µo Decay rate of Po cells 1 1
µg Decay rate of Pg cells 1 1
µd Decay rate of Pd cells 1 1
µW Decay rate of Wnt 3 3
µWI

Decay rate of Wnt inhibitor 5 5
µP Decay rate of PDK activity 1 1
µL Decay rate of lactate 1000 1000
µH Decay rate of HIF 1 1
µN Decay rate of nutrient 1 1
νPW Rate of PDK upregulation through Wnt 2 2
νPH Rate of PDK upregulation through HIF 0.5 0.5
νLP Rate of lactate upregulation thrugh PDK activity 3000 3000
νHL Rate of HIF stabilization through lactate 3 3
νP PDK activity upregulation through cells 1 1
νLO Rate of lactate uptake by Po cells 105 105

dH Constitutive HIF production 0.5 0.5
dHNi Rate of HIF stabilization due to low nutrient 5 5
SW Rate of Wnt production through cells 7.5 5.5
a Constant of inhibition 10−8 10−8

b Constant of inhibition by WI 1 1
γP Sensitivity level of PDK switch functions 1 1
γN Sensitivity level of nutrient switch function 100 100
νNG Uptake of nutrient by Pg cells 100 100
νNO Uptake of nutrient by Po cells 100 100
Ns Parameter for nutrient source 30 30
Ls Parameter for characteristic value of L 1 1
P ∗ PDK activity level at which 50% of cells switch

metabolism
3 3

Nd Nutrient level below which cells will die 0.07 0.07
N∗g Nutrient level below which Po cells cannot switch

to glycolysis
0.1 0.1

αN Value of scaling function when
∫
Pg = 0 0.025 0.025

Sx Horizontal length of spatial domain 12 12
Sy Vertical length of spatial domain 12 12

Model parameters for mock and dnLEF/dnTCF simulations
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Appendix Figure S 12: Numerical results for mock and dnLEF Po, Pg, W , and WI in Wnt-PDK-lactate-
HIF1α model.

Appendix Figure S 13: Numerical results for mock and dnLEF PDK, lactate, and HIF in Wnt-PDK-lactate-
HIF1α model.
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Appendix Figure S 14: Stains for HIF1α in mock and dnLEF tumors. Scalebars indicate 100µm

A3.3 Discussion
The results from this more detailed model give us good qualitative agreement with our IHC data when we
compare the numerical results for PDK activity with our phospho-PDH stains. We see the larger, fewer
spots and lighter background in the dominant negative LEF PDK results in comparison to mock. It was not
possible to stain for lactate, but experimental data show that the cells and HIF1α follow the same spotted
pattern, and the same change in the pattern from mock to dnLEF/dnTCF, and we therefore conclude that
this model is sufficient to recapitulate qualitatively our experimental observations.

Importantly, this more detailed model gives similar qualitative results to the simpler model presented
in the main text when the experimental results are compared to numerical results for PDK activity. Since
PDK drove switching in the cells, we saw patterns in metabolism as well. The simpler model retains the
most important elements of the larger model while producing similar results. In the Wnt signaling model
discussed in the main text, the positive feedback between Wnt and PDK (high PDK implies more Pg cells;
higher levels of Pg cells imply more Wnt activity; more Wnt activity means increased PDK) has been distilled
so that Wnt activity level is the effective switch rather than PDK. Because PDK was directing the switch
in metabolism, we can use Pg and Po as the effective patterned state to compare to the xenograft stains.
Thus, the equations for PDK activity, HIF1α concentration, and lactate concentration can be removed from
the system, with Wnt activity driving the switch rather than PDK, so that the remaining equations contain
only most important elements of the model.

A3.4 Numerical method
Numerical simulations were performed in MATLAB, using a forward difference method for each time deriva-
tive. Po, Pg, W , WI , P , L, and H equations were solved implicitly in centered diffusion terms. The nutrient
equation was solved implicitly in uptake, decay, and centered diffusion terms. No-flux boundary conditions
were used for all fields except for the nutrient boundary which used a Dirichlet boundary condition. The
initial condition for the Pg cell population was a random distribution near the boundary of the domain.
W and WI initial conditions were a random distribution in the same locations where initial Pg cells were
located. Initial N was 1 everywhere in the domain; results did not change qualitatively if N was solved as
a quasi-steady state equation. Initial conditions for Po, Pd, P , L, and H terms were 0.
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A4 Nutrient diffusion simulation
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Appendix Figure S 15: Nutrient diffusion simulation for Wnt signaling model. Nutrients diffuse into the
system form all boundaries. The rate of diffusion and total concentration of nutrient is influenced by Wnt
signaling and metabolic program switching.

xxviii



A5 Parameter exploration
This table lists the set of parameters we investigated in the Wnt signaling model in order to test our model
for robustness. The parameters that are missing from this table were explored in the main part of the
paper, so their effects are already evaluated and are not included here. We varied each parameter one by
one, varying between the minimum and maximum values listed in the table, and kept all other values the
same as the mock values in the table of parameter values in the main text, to ensure that a pattern would
emerge that was qualitatively consistent with our mock stains. Next, we made the same changes from mock
to dnLEF as presented in the paper (increased the diffusion coefficients for W and WI and decreased SW )
to see if we still obtained qualitatively similar answers as the dnLEF/dnTCF experiments. In this way we
determine whether our model is robust to a large range of values, so that the results we obtain from the
parameters presented in the main part of this paper can be considered characteristic of our system.

Appendix Table S 8: Parameter sensitivity study

Parameter Mock
value

dnLEF
value

Minimum Maximum Comment

κW 5 5 3 50 κW = 2: no pattern in dnLEF
κWI

1 1 0.1 1.25 κWI
= 1.5: no pattern in dnLEF

a 10−8 10−8 10−16 0.75 a = 1: no pattern in dnLEF
b 1 1 0.1 1.75 b = 2: no pattern in dnLEF
τog 1/24 1/24 1/85 1/20 τog = 1/18: no pattern in dnLEF;

τog = 1/90: almost all Pg; not enough
spots in mock

µo 1 1 0 40 µo = 50: no pattern in dnLEF
µg 1 1 0 100 Did not try larger than 100
µd 1 1 0 100 Did not try larger values
αW 1 1 10−8 1.5 Numerical error if αW = 0; no pat-

tern in dnLEF if αW = 2
µW 2 2 2 2 µW = 1, dnLEF: pattern in Wnt but

none in Pg (100% Pg); µW = 1.5,
dnLEF: slight pattern in Pg (almost
100% Pg); µW = 1.75, mock: slight
pattern in Pg (almost 100% Pg, but
fewer spots than in dnLEF); µW =
2.25, dnLEF: all terms → 0

µWI 3 3 3 20 µWI = 2.75, dnLEF: no pattern;
µWI = 20, mock: almost 100% Pg,
3 “spots”

νNG 10 10 0 25 νNG = 30: no pattern in dnLEF
νNO 10 10 0 20 νNO = 25: no pattern in dnLEF
µN 0.1 0.1 0 1 µN = 1.5: no pattern in dnLEF
Ns 2 2 0 10 Ns = 10: nutrient essentially con-

stant throughout domain in dnLEF
and mock

Ls 65.9 57.7 1/100 100 Small values of Ls result in the pat-
tern forming more quickly

Robustness to parameter changes: The minimum and maximum values listed in this table indicate the
range of tested values for which we still see the same characteristic phenotype changes in our model. This
means that from mock to dnLEF, we observe fewer, larger spots farther apart from each other.
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A6 Diffusive stability analysis
We chose our parameters first by looking only at a modified version of the two equation Gierer-Meinhardt
activator-inhibitor system, given by

∂a

∂t
= Da∇2a+ κa

a2

h
− µaa+ ρa

∂h

∂t
= Dh∇2h+ κha

2 − µhh+ ρh

where a is the activator that creates its own inhibitor h (modified so that the rates for nonlinear production
of a and h can be different). Classic diffusive instability analysis was done on this smaller system to find
parameters that expect to give us patterns. After finding and fixing suitable parameters for these equations,
we performed diffusive stability analysis on the larger system by solving the equations without diffusion using
MATLAB’s ode45 solver and 100 time steps, fixing other values and varying two parameters at a time. If a
steady state was not found, then that set of parameters was assumed to give us oscillations and so the linear
stability analysis could not be performed with those parameters. If a steady state was found, we linearized
around that steady state and we determined whether it was stable or not by looking at the real part of
each eigenvalue. If all real parts were negative, we include diffusion and if any these new eigenvalues had a
positive real part, then that set of parameters was expected to give us a pattern.

In the figures that follow, areas that are white are associated with parameters where no patterns are
expected to form. Areas that are neither white nor blue show the eigenvalue and wavenumber associated
with the pattern that is predicted to emerge. Any area that is blue is a region in which the solution of the
ordinary differential equation (ODE) versions of the equations is oscillatory rather than steady, hence the
equations could not be linearized about a steady state and so the analysis could not be performed. That is
not to say, however, that patterns could not form with those parameter values.

We plot eigenvalues, which quantify the instability of an initial perturbation, and wavenumbers, which
predict the dominant number of spikes or peaks in the entire system. Note that each wavenumber graph is
plotted with a fixed colorscale between white (0) and black (12); wavenumbers above 12 were not tested. If a
set of parameters has a nonzero eigenvalue, it is expected that a perturbation grows in time, hence a pattern
should form in early times. The higher the eigenvalue, the higher the instability and hence more likelihood
for a pattern to emerge and remain over the long term. Hence, a nonzero eigenvalue that is very small may
yield a pattern only in very early times in the simulation. Moreover, a nonzero eigenvalue and wavenumber
may mean a pattern in Wnt and inhibitor, but this may not necessarily translate to a pattern in the cells.
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Appendix Figure S 16: Diffusive instability analysis A. Diffusive instability analysis varying κW and κWI
. B.

Analysis varying µW and µWI
. C. Analysis varying a and b. D. Analysis varying DW and SW . E. Analysis

varying γ and W ∗.
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A7 Simulation of in vitro tumor growth with DCA and XAV939
treatment

A7.1 Boundary Conditions
N is set to Dirichlet constant 0.25. Pg, Po, Pd,W,WI , L is Neumann.

A7.2 Equations

∂Po
∂t

= DoO
2Po︸ ︷︷ ︸

random motion

+
1

τo

(
N +

L

Ls

)
(1− Po − Pg − Pd)Po︸ ︷︷ ︸

proliferation

−µoχNL
(N,L)Po︸ ︷︷ ︸

death

(4)

+
1

τgo
χ

W
(W )Pg︸ ︷︷ ︸

switch to OXPHOS

− 1

τog
χ∗

W
(W )χ∗

N
(N)Po︸ ︷︷ ︸

switch from OXPHOS

(5)

∂Pg
∂t

= DgO
2Pg︸ ︷︷ ︸

random motion

+
1

τg

W

α
W

+W
N(1− Po − Pg − Pd)Pg︸ ︷︷ ︸
proliferation

−µgχN
(N)Pg︸ ︷︷ ︸

death

(6)

− 1

τgo
χ

W
(W )Pg︸ ︷︷ ︸

switch from glycolysis

+
1

τog
χ∗

W
(W )χ∗

N
(N)Po︸ ︷︷ ︸

switch to glycolysis

(7)

∂Pd
∂t

= DdO
2Pd︸ ︷︷ ︸

random motion

+µoχNL
(N,L)Po︸ ︷︷ ︸

dead Po cells

+µgχN
(N)Pg︸ ︷︷ ︸

dead Pg cells

−µdPd︸ ︷︷ ︸
decay

(8)

∂W

∂t
= D

W
O2W︸ ︷︷ ︸

random motion

+
1

a+ bWI︸ ︷︷ ︸
inhibition

κ
W
NW 2Pg︸ ︷︷ ︸

upregulation

+SW (Po + Pg)︸ ︷︷ ︸
upregulation

− µ
W
W︸ ︷︷ ︸

downregulation

(9)

∂WI

∂t
= D

WI
O2WI︸ ︷︷ ︸

random motion

+κ
WI
NW 2(Po + Pg)︸ ︷︷ ︸
upregulation

− µ
WI
WI︸ ︷︷ ︸

downregulation

(10)

∂N

∂t
= D

N
O2N︸ ︷︷ ︸

random motion

− ν
NG
NPg︸ ︷︷ ︸

uptake by Pg cells

− ν
NO
NPo︸ ︷︷ ︸

uptake by Po cells

−µ
N
N︸ ︷︷ ︸

decay

(11)

∂L

∂t
= D

L
O2L︸ ︷︷ ︸

random motion

− ν
LO
LPo︸ ︷︷ ︸

uptake by Po cells

+ NsPg︸ ︷︷ ︸
bulk source by Pg

(12)

(13)
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Bulk source term:
Ns = Ns

Switch functions:

χ
W

(W ) =
1

2
(1− tanh(γ

W
(W −W ∗)))

χ∗
W

(W ) =
1

2
(1 + tanh(γ

W
(W −W ∗)))

χ
NL

(N,L) =
1

2

(
1− tanh

(
γ

N

(
(rN + (1− r) γ

L
L

1 + γ
L
L

)−N∗
) ) )

χ∗
N

(N) =
1

2

(
1 + tanh(γ

N
(N −N∗g ))

)



A7.3 Parameter values for in vitro model

Parameter Description Mock dnLEF
value value

D
o

Diffusion coefficient of oxidative cells 0.01 0.01
Dg Diffusion coefficient of glycolytic cells 0.01 0.01
D

d
Diffusion coefficient of dead cells 0 0

D
W

Diffusion coefficient of Wnt 0.004 0.008
D

WI
Diffusion coefficient of Wnt inhibitor 1 1.5

D
N

Diffusion coefficient of Nutrient 100 100
D

L
Diffusion coefficient of L 100 100

τ
o

Oxidative cell proliferation time 1 1
τ
g

Glycolytic cell proliferation time 1 1
τ
og

Switch time from OXPHOS to glycolysis 1
24

1
24

τ
go

Switch time from glycolysis to OXPHOS 1 1
α

W
Constant for Michaelis-Menten dynamics 1 1

κ
W

Rate of nonlinear Wnt production 5 5
κ

WI
Rate of nonlinear Wnt inhibitor production 1 1

µ
o

Decay rate of Po cells 1 1
µg Decay rate of Pg cells 1 1
µ

d
Decay rate of Pd cells 1 1

µ
W

Decay rate of Wnt 2 2
µ

WI
Decay rate of Wnt inhibitor 3 3

µ
WI

Decay rate of nutrient 0.1 0.1
S

W
Rate of Wnt production through cells 7.5 6.5

a Constant of inhibition 10−8 10−8

b Constant of inhibition by WI 1 1
γ

W
Sensitivity level of Wnt switch functions 1 1

γ
N

Sensitivity level of nutrient switch functions 100 100
γ

L
Parameter for scaling L for Po death 1 1

ν
NG

Uptake of nutrient by Pg cells 10 10
ν
NO

Uptake of nutrient by Po cells 10 10
ν
LO

Uptake of L by Po cells 10 10
Ns Parameter for nutrient source 2 2
W ∗ Wnt level at which 50% of cells switch metabolism 5 5
Nd Nutrient level below which cells will die 0.07 0.07
N∗g Nutrient level below which Po cells cannot switch to glycolysis 0.1 0.1
β

N
Nutrient boundary condition parameter 0.25 0.25

Sx Horizontal length of spatial domain 12 12
Sy Vertical length of spatial domain 12 12
r Parameter for scaling N for Po death 0.375 0.375
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A7.4 Simulations of DCA and XAV939 treatment on in vitro tumors

Pg

Po

No Treatment 1/τgo = 4 1/τgo = 18

Appendix Figure S 17: Using the in vitro simulation equations described above, we modeled the same
drug concentrations as the in vivo simulations presented in Figure 6. The tumor size over increasing drug
concentrations for these simulations are described in Figure 7D.
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A8 Synergy is evident in simulations with combined DCA and
XAV939 treatment

We can measure the synergistic effect of treatment using the Bliss Independence model (Foucquier and
Guedj, 2015). The Bliss combination index is defined by BCI = EA+EB−EAEB

EAB
, where the effectiveness of

treatment by drug A is EA and the effectiveness of treatment by drug B is EB . The Bliss model assumes
that the drugs A and B act independently of each other. Effectiveness for each drug is defined by the ability
to reduce tumor size as in the following:

EA = 1− (surviving tumor fraction after applying drug A)

EB = 1− (surviving tumor fraction after applying drug B)

EAB = 1− (sirviving tumor fraction after applying drug A and drug B in combination).

A BCI of less than 1 indicates the synergy of drug action, while a score closer to 1 indicates the treatments act
additively rather than synergistically. A BCI greater than 1 implies that the drugs interfere with each other.
In the in vivo simulation and in vitro experimental model of tumor spheroid growth, EXAV939 = EDCA = 0
(see figure below), which implies that BCI=0 in these cases.

In vivo:

Neither DCA alone nor XAV939 alone are successful in eradicating any of the tumor cells by the end of
treatment (unitless time 50) unless the treatment doses are relatively high (e.g., S̄W . 0.4 or 1/τ & 30).
Thus, EXAV939 = EDCA = 0 = BCI. In figure 18 below, we plot EAB with A = XAV939 and B = DCA.
The areas with dark blue indicate the regions where the combination effectiveness EAB = 1 and the Bliss
model predicts that there is synergy (this would also be true if we used the Highest Single Agent or Response
Additivity models to assess synergy).

In vitro:

In the in vitro model simulations, we assessed synergy using SW = 0.8 (the same conditions for the red
curve in figure 7D in the main text) and 1

τgo
= 4. We obtain EXAV949 = 0.0156, EDCA = 0.1855, and

EXAV949+DCA = 0.5725. Thus BCI = 0.3462. The BCI depends on the drug concentrations, however. For
example, taking SW = 0.8 and 1

τgo
= 18, we find EXAV949 = .0156 as before but now EDCA = 0.6679,

and EXAV949+DCA = 0.68, which yields BCI = 0.9898. Thus, the BCI indicates that DCA and XAV939
combined treatments are more synergistic at smaller concentrations of DCA (the effect of DCA reaches a
saturation point - see figure 7D in the main text).
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Appendix Figure S 18: Effectiveness of combination therapy. Here we plot the proportion of total tumor
that is eradicated by DCA (vertical axis, 1/τgo) and XAV939 (horizontal axis, SW ) treatment, where 0 (light
blue) means none of the tumor cells are killed by treatment, and 1 (dark blue) means 100% of the tumor cells
have died. Pure DCA treatment (bottom row, 1/τgo = 1) or pure XAV939 treatment (left column, SW = 1)
are not at all effective in killing the tumor. Away from the bottom row and left column (as indicated by the
dotted lines), the plot shows EAB with A = XAV949 and B = DCA. The upper right area of the plot, which
is a combination of low levels of DCA and XAV939 treatment together, shows that the tumor is completely
killed, and hence a synergy between the two drugs.
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A9 Heterogeneity in orthotopic tumors

Appendix Figure S 19: β-catenin stains in SW480 and SW620 orthotopic tumors. Patterns of Wnt signaling
heterogeneity are present in orthotopic tumors of SW480 and SW620 cells. Cell lines were lentivirally
transduced to express dominant negative LEF1 or TCF1 and the transduced cells were injected into the
submucosal layer of the colon wall. Tumors were harvested after three weeks and stained for beta-catenin.
Scalebars are 161 um. Decreasing Wnt signaling in SW480 tumors leads to changes in hypoxic patterning.
SW480 cells lentivirally transduced to express either an empty vector or dominant negative LEF1 were
subcutaneously injected into immunocompromised mice. Tumor sections were stained for HIF1α.
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A10 Vessel density versus pPDH expression in relative to Mock
tumor
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Appendix Figure S 20: We quantified the vasculature of the tumors by staining for CD31, an endothelial cell
marker. We graphed the vessel density per field and the level of pPDH expression on the x-axis, both values
normalized to Mock tumors. Mock tumors demonstrated significantly higher pPDH levels and vasculature
than dnLEF or dnTCF tumors. Our mathematical model was capable of replicating the best fit line from
the biological data.
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