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eAppendix 1. How to derive the weights of the six scenarios 

Here, we provide a brief technical discussion about the weights of the six scenarios in Situations 

1 and 2. eTable 1 and eTable 2 give the observed counts and probabilities of the four subjects, 

respectively. The weights of the six scenarios in Situations 1 and 2 can be obtained by using a 

three-variate hypergeometric distribution as: 
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where 
1 2 3 4, , , 0,1x x x x   and 

1 2 3 4 2x x x x    . 

In Situation 1, the treatment assignment of each subject is randomly determined, and the 

probability of the four subjects quitting smoking is uniformly 1 2 . eTable 3 shows the joint and 

marginal probabilities of exposure status and subject ID in Situation 1. The weight of each 

scenario can be calculated as:  
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Each of the six scenarios uniformly occurs with a probability of 1 6 . 

In Situation 2, we assume the probability of the males quitting smoking is 2 3  and the 

probability of the females quitting smoking is 1 3. eTable 4 shows the joint and marginal 

probabilities of exposure status and subject ID in Situation 2. Therefore, the weight of each 

scenario can be calculated as: 
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Consequently, scenario #1 is expected to occur with a probability of 16 33; each of the scenarios 

#2–5 is expected to occur with a probability of 4 33 ; and scenario #6 is expected to occur with a 

probability of 1 33 . 

 

eAppendix 2. Accuracy, validity, and precision 

Much epidemiologic research is devoted to obtaining an accurate estimate of disease frequency, 

or of the effect of exposure on a health outcome, in the source population of the study.1 Accuracy 

in estimation implies the value of the parameter is estimated with little error. Two broad types of 

error afflict epidemiologic studies: systematic error and random error. Systematic errors in 

estimates are commonly referred to as biases; the opposite of bias is validity. Meanwhile, the 

opposite of random error is precision. Validity and precision are both components of accuracy.2 

The distinction between systematic error and random error is usually explained using 

schematic illustrations of target shooting in introductory epidemiology textbooks.3, 4 Suppose the 

parameter is the bull’s-eye of a target, the estimator is the process of shooting at the target, and 

the individual bullet holes are estimates. Bias, or systematic error, is described as the distance 

between the average position of the bullet holes and the bull’s-eye. This definition of bias (or 

more strictly speaking, exact bias5) can be simply shown as: ˆ( )E   , where   is the 

parameter of interest and ˆ( )E   is the expected value of an estimator ̂  of the parameter  .6, 7 

Meanwhile, variance, or random error, is described as the degree of dispersion of the bullet holes. 

As noted in the main text, we consider neither sampling variability nor nondeterministic 

counterfactuals as a source of random error in this paper; rather, we consider random error 

attributable to the mechanism that generates exposure events.  

The relationship between accuracy, validity, and precision can be numerically described using 

the mean squared error (MSE) as a measure of accuracy, which is the expected value of the 

square of the difference between an estimator and the true value of a parameter (i.e., 
2ˆ[( ) ]E   ).6, 7 Note that the MSE is equal to the sum of the square of the bias (i.e., a measure of 

validity) and the variance of the estimator (i.e., a measure of precision),6, 7 which can be shown 

as: 
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In Situation 1, the MSE is calculated as: 
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Because the estimator is unbiased in Situation 1 (i.e., ˆ( ) 0E    ), the MSE is equal to the 

variance of the estimator. Meanwhile, in Situation 2, the MSE is calculated as: 
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which is slightly larger than the MSE in Situation 1. Unlike in Situation 1, when the estimator is 

biased, the square of the bias is calculated as: 
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and the variance of the estimator is calculated as: 
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Consequently, the MSE (i.e., 25 132 ) can be decomposed into the component of systematic error 

(i.e., 2(5 22) 25 484 ) and the component of random error (i.e.,550 3993) in Situation 2. 

In conclusion, the estimators in Situations 1 and 2 have approximately the same degree of 

accuracy. However, the estimator in Situation 1 has higher validity than in Situation 2. In contrast, 

the estimator in Situation 2 has higher precision than in Situation 1. A tradeoff between bias and 

variance has been called the “bias-variance dilemma”.8 Note that the above discussion holds true 

for any measures, although careful consideration is needed when using ratio measures (see the 

footnote [b] in eTable 5).  
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eAppendix 3. Mathematical definitions of the four notions of confounding 

We let A denote an exposure of interest, Y an outcome of interest, and C a set of covariates. Then, 

we let Ya denote the potential outcomes for an individual if exposure A had been set, possibly 

contrary to fact, to value a. We assume that the consistency assumption is met, which implies that 

the observed outcome for an individual is the potential outcome, as a function of intervention, 

when the intervention is set to the actual exposure.9, 10 For simplicity, we will generally assume a 

binary exposure variable (1 = exposed, 0 = unexposed). 

According to VanderWeele,11 confounding in distribution is defined as follows: 

We say that there is no confounding in distribution of the effect of A on Y conditional 

on C if    | | ,aP Y C c P Y A a C c     for all a, c. 

We denote measures of interest by  1 0,   , which is a contrast of population parameters. When 

defining population causal effects, 
a  is a population parameter for the distributions of potential 

outcomes Ya if A had been set to a for all in the target.12 Then, according to VanderWeele,11 

confounding in measure is defined as follows: 

We say that there is no confounding in measure μ of the effect of A on Y conditional 

on C if          1 0| , | | 1, , | 0,E Y C c E Y C c E Y A C c E Y A C c         

for all c. 

To show mathematical definitions of confounding in expectation and realized confounding, we 

use  |aP Y C c  as a distribution of interest below. We let Jm denote a scenario of exposure 

allocation among the target population, which is generated by mechanism m. We also let Aj 

denote a binary exposure (1 = exposed, 0 = unexposed) under scenario j. Then, confounding in 

expectation can be defined as follows: 

We say that there is no confounding in expectation of the effect of A on Y conditional 

C under mechanism m if  | ( | , )
m ma J JP Y C c E P Y A a C c     for all a, c. 

Finally, realized confounding can be defined as follows: 

We say that there is no realized confounding of the effect of A on Y conditional C 

under scenario j if  | ( | , )a jP Y C c P Y A a C c     for all a, c. 

An analogous discussion applies when using     1 0| , |E Y C c E Y C c    as a measure of 

interest. 
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eTable 1. Observed counts among the four subjects 

Subject ID Sex Exposed Unexposed  

Subject #1 Male x1 1－x1 1     

Subject #2 Male x2 1－x2 1     

Subject #3 Female x3 1－x3 1     

Subject #4 Female x4 1－x4 1     

  2     2     4 

 

eTable 2. Probabilities among the four subjects 

Subject ID Sex Exposed Unexposed   

Subject #1 Male p11 p01 1/4 

Subject #2 Male p12 p02 1/4 

Subject #3 Female p13 p03 1/4 

Subject #4 Female p14 p04 1/4 

  1/2 1/2 1 

 

eTable 3. Probabilities among the four subjects in Situation 1 

Subject ID Sex Exposed Unexposed  

Subject #1 Male 1/8 1/8 1/4 

Subject #2 Male 1/8 1/8 1/4 

Subject #3 Female 1/8 1/8 1/4 

Subject #4 Female 1/8 1/8 1/4 

  1/2 1/2 1 

Probability of the four subjects quitting smoking is 1 2 , so the joint probabilities can be 

uniformly calculated as: 1 4 1 2 1 8  . This table clearly shows that sex and treatment are 

independent in Situation 1. 

 

eTable 4. Probabilities among the four subjects in Situation 2 

Subject ID Sex Exposed Unexposed 
 

Subject #1 Male 1/6  1/12 1/4  

Subject #2 Male 1/6  1/12 1/4  

Subject #3 Female 1/12 1/6  1/4  

Subject #4 Female 1/12 1/6  1/4  

  
1/2  1/2  1       

Probability of the two males quitting smoking (i.e., P[quitting | male]) is 2 3 , so the joint 

probability of quitting and being male can be calculated as: 1 4 2 3 1 6  . Likewise, because 

the probability of the two females quitting smoking (i.e., P[quitting | female]) is 1 3, the joint 

probability of quitting and being female can be calculated as: 1 4 1 3 1 12  . This table clearly 

shows that sex and treatment are not independent in Situation 2.  
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eTable 5. Sufficient and necessary conditions for no confounding in the total population 

Confounding in expectation vs. 

realized confounding 

Confounding in distribution vs. 

confounding in measure 
Measure Sufficient and necessary condition for no confounding in terms of response types a, b 

Confounding in expectation Confounding in distribution NA 
         

                     

1 2 1 2 1 3 1 3

1 2 1 2 1 2 1 3 1 3 1 31 0 1 0 (Eq. 6)

j j j j j jj j

j j j j j j j j j j j j j j j j j jj j

r r w p p r r w q q

p p P A q q P A w p p p p P A q q P A w q q

      

                   

 

 
 

Confounding in expectation Confounding in measure RD                    1 2 1 3 1 2 1 3 2 3 2 3 1 2 1 31 0 (Eq. 7)j j j j j j j j j j j j j j j j j jj j j j
r r r r w p p w q q p p P A q q P A w p p w q q                       

Confounding in expectation Confounding in measure RR 
 
 

       

       

 
 

1 2 1 21 2 1 21 2

1 3 1 3 1 3 1 3 1 3

1 0
(Eq. 8)

1 0

j j j j j jj j j j j jj j

j j j j j j j j j j j jj j

w p p w p pp p P A q q P Ar r

r r w q q p p P A q q P A w q q

       
  

         

 

 
 

Realized confounding Confounding in distribution NA                    1 2 1 2 1 3 1 3 1 2 1 2 1 3 1 3 (Eq. 9)j j j j j j j j j j j jr r p p r r q q p p q q p p q q                

Realized confounding Confounding in measure RD                        1 2 1 3 1 2 1 3 1 3 1 2 1 3 1 21 0 1 0 (Eq. 10)j j j j j j j j j j j j j j j jr r r r p p q q p p P A p p P A q q P A q q P A                        

Realized confounding Confounding in measure RR                  1 21 2
1 2 1 3 1 3 1 3 1 2 1 2

1 3 1 3

1 0 (Eq. 11)
j j

j j j j j j j j j j j j j j

j j

p pr r
p p p p q q P A q q q q p p P A

r r q q


              

 
 

RD, risk difference; RR, risk ratio; NA, not applicable. 

We consider exposure as binary A (1 = exposed, 0 = unexposed). We let ri, i = 1–4 signify a proportion of response type i in the total population (see Table 2). We also let pij and qij denote proportions of response type i in the exposed group and 

the unexposed group in scenario #j, respectively; wj denotes a weight of scenario #j ( 1jj
w  ). Note that ri can be calculated as:    1 0ij j ij jp P A q P A     , where  jP A a  represents the prevalence of A = a in the total population in 

scenario #j.  

a The right-hand side of Equation 8 can be expressed as:                  1 2 1 3 1 3 1 2 1 3 1 3 1 2 1 3'j j j j j j j j j j j j j j j j j j j j jj j j j j
w p p w q q w q q p p q q w q q w p p q q          

      , which is a weighted average of scenario-specific 

risk ratios, where the weight is    1 3 1 3' j j j j k k kk
w w q q w q q    and ' 1jj

w  . This weight can be interpreted as a proportion of scenario #j to the wj-weighted average of scenario-specific risks in the unexposed group.  

b If we apply the conventional definition of bias, sufficient and necessary conditions for unbiasedness of risk difference estimates (i.e.,    1 2 1 3j j j jp p q q   ) and risk ratio estimates (i.e.,    1 2 1 3j j j jp p q q  ) are described as 

        1 2 1 3 1 2 1 3j j j j jj
r r r r w p p q q        and         1 2 1 3 1 2 1 3j j j j jj

r r r r w p p q q     , respectively. Note that the former is equivalent to Equation 7, and this is weaker than Equation 6. In contrast, the latter is different 

from Equation 8, and is neither stronger nor weaker than Equation 6. This point is related to the issue of the unbiased nature of ratio measure estimators.13 
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