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1 METHOD DESCRIPTION

1.1 Model framework

The stochastic SIR epidemic model where individuals go through the stage of susceptible to become
infectious and then removed or recovered can be used to reflect the different status of farms during an
outbreak (Dawson et al., 2015). The infectious compartment corresponds to the status where the farm is
infected and is able to transmit the disease to other sites; while the recovery state means that the infection
has been detected in the farm and such farm has been isolated or restrictions of activities that would affect
others are in place. Other formulations of compartment models for between farm epidemics consider
stages of exposure where the farm go through a latent period before it can transmit disease (Streftaris and
Gibson, 2012; Keeling and Rohani, 2007) or notification as the farm is known infectious but the control
measures limit its impact on the network (Jewell et al., 2009). In the model below, we assume that there is
no movement between farms or the movement is reflected in their distance apart.

In a closed population of N individuals where each individual’s exact position in the space is known, we
assume that an epidemic starts with a single initially infected individual.

The susceptible to infectious part of the process as follows:
An individual i makes an infectious contact with a susceptible individual j at rate βij which we assume to
be

βij = β0hij

where β0 is the contact rate. The expression hij can take various forms depending on the epidemic studied
and the belief of how the disease spreads. In the present paper, the study will focus on four shape of hij
which together with β0 represent well known spatial kernel transmission functions:
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1. K1 (usually known as the exponential kernel)

hij = exp {−τρ(i, j)} (S1)

2. K2

hij =
1

1 +
(
ρ(i,j)
d

)τ (S2)

3. K3 (the so-called Cauchy kernel)

hij =
1

1 + ρ(i,j)
d

(S3)

which is a special case of the Kernel 2 with τ = 1

4. K4

hij = 1− exp

(
−
(
ρ(i, j)

d

)−τ)
(S4)

where ρ(i, j) denotes the Euclidean distance between individuals or sites i and j (i, j ∈ {1, 2, ...N}). The
distance kernels as defined above allow the infection rates to decrease when the distance between two
individuals decreases.

The process from infectious to removal is modelled as follows:
For the real epidemic data we consider in the model that removal or detection of diseases in a farm are
through tests and the tests only happen at fixed dates. As a consequence, an infected/infectious individual
becomes removed/detected after a minimum of c days of being infectious. The infectious period of the
epidemic is therefore assumed to follow a left-truncated gamma distribution:

Ri − Ii ∼ T G(α, γ, c), (S5)

where Ii and Ri are respectively the infection and removal times for individual i. The density of the
truncated gamma distribution is parameterised as:

f+(Ri − Ii;α, γ, c) =
γα

Γ(α, γc)
(Ri − Ii)α−1 exp (−γ(Ri − Ii)) IRi−Ii>c, (S6)

where Γ(α, γc) =
∫∞
γc exp(−x)xα−1dx and IRi−Ii>c is the indicator function giving 1 if Ri − Ii > c and

0 otherwise.

However we assume a slightly different version for simulated data with gamma distribution for the
infectious period

Ri − Ii ∼ Ga(α, γ), (S7)

where α and γ are respectively shape and rate parameters with probability density function defined as

f(Ri − Ii;α, γ) =
γα

Γ(α)
(Ri − Ii)α−1 exp (−γ(Ri − Ii)) IRi−Ii>0; (S8)

Γ(α) =
∫∞
0 exp(−x)xα−1dx being the gamma function.
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1.2 Likelihood

Before moving into the inferential framework for this process-based model, we need to write down the
likelihood. The model as described above comprises two processes: infection and removal. Therefore the
likelihood of the model can be written as

L(RRR,III;θθθ) ∝ L1 × L2 (S9)

where L1 and L2 are the information coming from the infection and removal part of the likelihood
respectively, and θθθ is the vector of model parameters.

To explain the meaning of Equation (S9) in detail we introduce more notation. Let nI be the total number
of infections and v the first infected individual in the population. We denote by S the total person-to-person
infectious pressure during the course of the epidemic. This is the case when we consider that an infection
happen only when the total pressure exerted on a susceptible by the infectives is bigger than its threshold
(Sellke, 1983). Therefore, we have

S =

nI∑
i=1

N∑
j=1

βij((Ri ∧ Ij)− (Ii ∧ Ij))

= β0A

where A =
∑nI

i=1

∑N
j=1 hij((Ri ∧ Ij) − (Ii ∧ Ij)). The infection process is actually a time-dependent

Poisson process and S represents the fact there is no event happening between event times.

Hence the information coming from the infection part in the likelihood can be written as

L1 =

nI∏
i=1,i6=v

∑
j∈Yi

βji

× exp {−S} (S10)

where Yi = {j : Ij < Ii < Rj}. The set Yi considers all the infectious individuals exerting pressure on i
at the time it became infected. It remains to consider the information coming from the removal part in the
likelihood. Assuming that there are nR removed individuals in the population, this can be written as

L2 ∝ γαnR exp

{
−γ

nR∑
i=1

(Ri − Ii)

}
nR∏
i=1

(Ri − Ii)α−1

Γ(α, γc)
. (S11)

using the probability density function of the truncated gamma distribution defined in (S6). In the case of
simulated data, L2 is obtained by the product of the probability density function of the gamma distribution
as defined in (S8).

The likelihood of the model can then be obtained by multiplying Equations L1 and L2.

1.3 Bayesian inference

Data available from disease outbreaks are usually the times of detection or removal of the individuals. The
infection times are regularly unknown unless some diagnostic tests are available leading to some knowledge
of when the infections might have occurred. But in general, no information is available on the infection
times. We assume that the infection times are not observed meaning that the likelihood in (S9) is obtained
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using data augmentation techniques, hence includes missing data. The Bayesian framework is then adopted
as it provides natural approach for handling missing data problems along with the computational tool
Markov Chain Monte Carlo (MCMC) methods (O’Neill and Roberts, 1999; Jewell et al., 2009; Gamado
et al., 2014).

The joint posterior distribution of the model parameters given the data is can be written as

π(θθθ|yyy) ∝ L(yyy;θθθ)π(θθθ), (S12)

where π(θθθ) is the joint prior distribution on the model parameters and L(yyy;θθθ) is the likelihood function
with yyy representing the observed and unobserved data.

By defining gamma prior on β0 (β0 ∼ Ga(λβ0 , νβ0)), we obtain the full posterior conditional distribution:

β0|γ, τ,RRR,III ∼ Ga(nI + λβ0 − 1, νβ0 + A) (S13)

meaning that the gamma distribution is a conjugate prior β0. The property of conjugacy is also obtained
for γ if we assume a gamma distribution for the infectious period as in Equation (S7). The full posterior
conditional distribution of γ is given by

γ|β0, τ,RRR,III ∼ Ga

(
αnR + λγ , νγ +

nR∑
i=1

(Ri − Ii)

)
, (S14)

when assuming γ ∼ Ga(λγ , νγ) prior. However, when assuming the left-truncated gamma distribution in
(S5) for the infectious period, the conjugacy property does not apply and we update γ using Metropolis-
Hastings algorithms (Metropolis et al., 1953). The infection times, τ , d and α are also updated through
Metropolis-Hastings scheme since we are not aware of existing closed forms for their posterior distributions.
The model parameters τ , d and α (also γ if necessary) are updated using a random walk scheme: For the
parameter τ for instance, we propose a new value τ ′ = τ + U(−a, a), where U(−a, a) is a random variate
drawn from the uniform distribution. Note that the choice of a is important for facilitating convergence.
The proposed value τ ′ is accepted with probability

A = min

(
L(yyy;θθθ′)

L(yyy;θθθ)
, 1

)
,

where θθθ′ is the vector of model parameters with τ replaced by τ ′. If τ ′ is not accepted, we retain the current
value of τ .

The infection times are updated using a simple non-centering scheme (Neal and Roberts, 2005;
Papaspiliopoulos et al., 2007). For an individual i we propose a new infection time I ′i bases on the
assumption of the removal process Ri − I ′i ∼ T G(α, γ, c). We accept I ′i with probability

L(RRR,I ′I ′I ′;θθθ)

L(RRR,III;θθθ)
× f+(Ri − Ii;α, γ, c)
f+(Ri − I ′i;α, γ, c)

,

where I ′I ′I ′ is the vector of infection times with Ii replaced by I ′i. The same steps are applied for the case of
gamma distribution considered for the infectious period with f+ replaced by f .
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1.4 Model choice

1.4.1 Latent residuals method

“To innovate a statistically sound framework for assessing stochastic spatio-temporal models, which
can be readily implemented as an addendum to a Bayesian analysis and which avoids the sensitivity and
complexity of Bayesian model assessment” (Lau et al., 2014) introduce the use of latent residuals. Bayesian
latent residuals are the unobserved, independent, uniform random variables that conform with the data
generation process. The root of the concept comes from the posterior predictive p-values proposed by
Meng (1994). It has been since extended by Gibson et al. (2006) and Streftaris and Gibson (2012), the
latter who use it to assess the threshold of individuals in the Sellke construction (Sellke, 1983). It is an
illustration of the concept of generalised residuals proposed in Cox and Snell (1968) and the scheme is
equivalent to non-centered parameterisation (Papaspiliopoulos et al., 2007).

In this particular case where the tests are designed for detecting mis-specification of spatial transmission
kernel, there is a need to re-construct the infection links (“who infects who”) from which the latent
residuals are obtained. These are the infection-link residuals and more details can be read in Lau et al.
(2014). Anderson-Darling hypothesis test (Lewis, 1961) or Kolmogorov-Smirnov hypothesis test (Marsaglia
et al., 2003) can then be used to discern evidence against modelling assumptions. We emphasise that the
latent residuals method used frequentist framework to analyse outputs (residuals) from Bayesian model
fitting and the statistical evidences are based on p-values.

We then move on to simulate bigger epidemics i.e. the number of removals are increased and re-start
the process described above until the p-values clearly give us evidence of selecting one model over others
i.e the preferred kernel transmission function. The corresponding epidemic size from which a model is
selected gives us the size needed to select and assess the correct transmission function.

1.4.2 Computation of the Deviance Information Criteria (DIC)

We also use a purely Bayesian model selection tool (DIC) to compare with the latent residuals in terms
of results and practicality in implementation. The main difference between the DIC computed here and
the DIC provided by software such as BUGS (Lunn et al., 2000; Thomas et al., 2006) is that we are in the
presence of data augmented likelihood as the observation process is incomplete. We adopt two of the DICs
described in Celeux et al. (2006) and compute them to select models, namely

DIC1 = −4Eθθθ,XXX [log (f(yyy,XXX|θθθ)) |yyy] + 2EXXX [log (f (yyy,XXX|Eθθθ [θθθ|yyy,XXX])) |yyy] (S15)

and
DIC2 = −4Eθθθ,XXX [log (f(yyy|XXX,θθθ)) |yyy] + 2EXXX

[
log
(
f
(
yyy|XXX, θ̂θθ(yyy,XXX)

))
|yyy
]
, (S16)

whereXXX and yyy represent the unobserved and observed data respectively and θ̂θθ(yyy,XXX) is a posterior point
estimate (posterior median here). The subtle difference between the two quantities is that f(yyy,XXX|θθθ) denote
the full likelihood i.e the contribution to the likelihood from both the observation and process models and
f(yyy|XXX,θθθ) is the partial likelihood i.e the contribution to the likelihood from the observation only.

The two DICs present two terms in their respective formula that need to be computed separately. While
inferring the model parameters through MCMC, we make sure to store at each iteration the full and
partial log-likelihoods that correspond to the parameter values and latent variables. Taking for each the
expected values of the full and partial log-likelihoods times −4 give the left hand terms in each of the DICs.
Considering now the posterior density of our parameter vector, we take a point estimate (mean for DIC1,
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any for DIC2) and re-run the full log-likelihood or partial log-likelihood computation for each MCMC
iteration using the stored latent variables and the posterior point estimate. We again take the expected
values of the obtained full and partial log-likelihoods separately and multiply by 2. The sum of the two
expected full log-likelihood and partial log-likelihood give respectively DIC1 and DIC2.

2 STATISTICAL INFERENCE

2.1 Single simulated data

2.1.1 Inference

Single data was simulated using either K1 (simulation study 1a) with β0 = 0.35, hij =
exp {−0.008ρ(i, j)} or K2 (simulation study 1b) with β0 = 400, hij = 1

1+
(
ρ(i,j)
1.5

)2 . The infectious period

follows a Ga(5, 5) distribution, departing from the non-realistic assumption of exponentially distributed
infectious period. Summary statistics of the posterior estimates obtained for each simulated data are
provided in Tables S1 and S2 respectively when fitting the kernels K1 and K2.

mean sd 2.5% 50% 97.5%
β0 0.396 0.153 0.169 0.372 0.761
γ 6.251 2.323 2.638 5.881 11.631
τ 0.00771 0.00125 0.00540 0.00767 0.01031
α 4.907 1.848 1.986 4.673 9.190

Table S1 Posterior estimates for β0, γ, τ and α when fitting K1 to simulation study 1a; non-informative
priors and Gamma(5, 1) prior on α

mean sd 2.5% 50% 97.5%
β0 714.576 724.469 59.319 470.882 2809.770
γ 7.931 2.745 3.298 7.725 13.429
τ 2.016 0.188 1.639 2.011 2.411
α 5.567 2.091 2.228 5.367 9.782
d 2.237 1.001 0.699 2.076 4.717

Table S2 Posterior estimates for β0, γ, τ , α and d when fitting K2 to simulation study 1b;
non-informative priors and Gamma(5, 1) prior on α

The posterior densities are plotted on Figures S1 and S3 for the K1 and K2 parameters respectively.
The prior distributions are superimposed in red-dotted lines with the posterior distributions and the true
parameter values are indicated in green vertical solid lines. All the true parameter values fall within the
95% credible intervals. The shape of the gamma distribution α requires some prior knowledge as many
previous studies show (Streftaris and Gibson, 2004; Kypraios, 2007). The posterior samples were assessed
and no evidence of lack of convergence was detected as shown by the auto-correlation functions plotted in
Figures S2 and S4.
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(a) β0 (b) γ (c) τ (d) α

Figure S1. Posterior densities of the model parameters β0 (a), γ (b), τ (c), and α (d), when fitting K1 to
simulation study 1a. The true parameter values are represented in green vertical lines

(a) β0 (b) γ (c) τ (d) α

Figure S2. Auto-correlation functions (ACF) of the model parameters β0 (a), γ (b), τ (c), and α (d), when 
fitting K 1 to simulation study 1a.

(a) β0 (b) γ (c) τ (d) α

(e) d

Figure S3. Posterior densities of the model parameters β0 (a), γ (b), τ (c), α (d) and d (e), when fitting K2 to 
simulation study 1b. The true parameter values are represented in green vertical lines

2.1.2 Model choice

The latent residuals provide p-values at each MCMC simulations and their distributions provide evidence 
of model assessment and selection.
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(a) β0 (b) γ (c) τ (d) α

(e) d

Figure S4. Auto-correlation functions (ACF) of the model parameters β0 (a), γ (b), τ (c), α (d), and d (e), 
when fitting K 2 to simulation study 1b

(a) K1 (b) K2 (c) K3 (d) K4

Figure S5. Posterior distributions of p-values testing the sets of posterior samples of infection-link 
residuals (ILR) for simulation study 1a. The kernels fitted are K1 (a), K2 (b), K3 (c) and K4 (d).

Models with distributions of p-values clustered around small values (here less than 5%) are evidence of 
non-agreement with the data as we can see with Figures S5 (b), (c) and (d) when the data was simulated 
using K1 and Figure S6 (a) and (c) when the true kernel was K2. When data came from K2, K4 also 
seems to conform with it and it is not obvious to distinguish between the two kernels. However, we 
found that it is related to the population density as shown in Section 3.

2.1.3 Final size distributions

Final size distributions of the simulated epidemics based on the inferred model parameters are presented 
in Figures S7 and S8 for true models K1 and K2 respectively. As expected, these distributions are bimodal 
(Andersson and Britton, 2000).
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(a) K1 (b) K2 (c) K3 (d) K4

Figure S6. Posterior distributions of p-values testing the sets of posterior samples of infection-link 
residuals (ILR) for simulation study 1b. The kernels fitted are K1 (a), K2 (b), K3 (c) and K4 (d).

(a) Final size under K1 (b) Final size under K2 (c) Final size under K3 (d) Final size under K4

Figure S7. Epidemic final size distributions under K1, K2, K3 and K4, when using inferred parameters
from simulation study 1a. The vertical line is the mean final size.

(a) Final size under K1 (b) Final size under K2 (c) Final size under K3 (d) Final size under K4

Figure S8. Epidemic final size distributions under K1, K2, K3 and K4, when using inferred parameters
from simulation study 1b. The vertical line is the mean final size.

2.1.4 Risk maps

The inferred parameters appear to be different but the most appealing evidences in the choice of kernels
for policy purposes are risk maps since they provide probabilities of infection for farms. Such maps can
then be used to target high risk areas for disease control. Posterior risk maps based on simulation studies 1a
and 1b data are plotted on Figures S9 and S10 respectively.

The posterior predictive risks obtained based on the simulation study 1b also show that K3 provides the
highest risk profile for the farms and similar risks for all the farms under K2 and K4. The risk profile in
this case is smaller under K2 and K4 compared to K1.
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(a) K1 (b) K2 (c) K3 (d) K4

Figure S9. Comparison of the risk maps using K1 (a), K2 (b), K3 (c) and K4 (d) at time t = 5 
days, corresponding to a length of time sufficient to capture the early phase and small scale epidemics’ 
behaviour, based on the population in a square of sides [0, 2000] km on the x and y axis of simulation 
study 1a.

(a) K1 (b) K2 (c) K3 (d) K4

Figure S10. Comparison of the risk maps using K1 (a), K2 (b), K3 (c) and K4 (d) at time t = 5 
days, corresponding to a length of time sufficient to capture the early phase and small scale epidemics’ 
behaviour, based on the population in a square of sides [0, 2000] km on the x and y axis of simulation 
study 1b.

2.2 Simulation studies

The coverage rate i.e. the proportion of the time the true parameter values fall within the 95% credible
intervals are recorded in Tables S3 and S4 when data are simulated using K1 and K2 respectively.

[6, 10] [11, 15] [16, 20] [21, 25] [26, 30] [31, 35] [36, 40] [41, 45]
β0 96.67 96.67 96.67 93.33 93.33 93.33 93.33 96.67
γ 100 96.67 100 100 100 100 100 100
τ 93.33 93.33 100 93.33 93.33 86.67 90.00 96.67
α 100 96.67 100 100 100 100 100 100

Table S3 Coverage rates in % from simulation studies of the parameters as a function of epidemic sizes
when the data simulations are carried using K1.

[6, 10] [11, 15] [16, 20] [21, 25] [26, 30] [31, 35] [36, 40] [41, 45]
β0 96.67 96.67 100 96.67 96.67 96.67 93.33 96.67
γ 100 100 100 100 96.67 100 100 100
τ 96.67 100 96.67 96.67 93.33 96.67 93.33 96.67
d 100 96.67 96.67 96.67 93.33 96.67 96.67 96.67
α 100 100 100 100 96.67 100 100 100

Table S4 Coverage rates in % from simulation studies of the parameters as a function of epidemic sizes
when the data simulations are carried using K2.
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The coverage rates are expected to be 95% which is approximately the case generally for most parameters. 
However, the parameters of the infectious period distributions are often higher. One explanation would be 
the informative prior on one of the parameters as other authors have assumed in the past (Streftaris and 
Gibson, 2004; Kypraios, 2007).

2.3 All methods selecting the same kernel

Given that not all the selection tools agree with each other, we look specifically at the cases where all 
methods select the same model. When all the methods select the same model, we evaluate the proportions 
that such model is the correct as a function of the epidemic sizes. As visible in Figures S11 (a) and 
(c), for epidemic sizes greater than 10, there is a proportion of 100% of selecting the correct model when 
all model choice tools select that model. Figure S11 (b) does not show a clear pattern and this is due 
to the fact that the selection methods find it difficult to separate K2 and K4. A clear indication is that 
when ignoring K4 in Figure S11 (c), we obtain a 100% of choosing the correct model when all the 
methods agree.

(a) (b) (c)

Figure S11. Proportions that all methods select the correct model as a function of the epidemic size when 
all data is simulated using K1 (a) and when the data is simulated using K2 (b) but with K4 ignored (c)

2.4 Posterior estimates for the CSF data

In Figure S12, we superimpose the posterior distributions of the common parameters from the 4 kernels 
K1-K4. The infection rate of K1 is the smallest among all the kernels with a small overlap with the other 
densities plots. The rate of K1 is confined to an area while the infection rates of K2, K3 and K4 are more 
spread out with a very long right-tail as visible in Figure S12 (a). The parameter d behaves in opposite 
direction to β0 by being more spread out with very long right-tailed for K1. Note that d for the K1 is 
equivalent to 1/τ following the notation in Equations (S1)-(S4) and is plotted in Figure S12 (b).

Not surprisingly the parameters of the distributions of the infectious period look very similar since 
that part is identical for all 4 models. This is also confirmed by the mean posterior distribution of the 
left-truncated gamma distribution of the infectious period in Figure S13.

The posterior medians and their corresponding 95% credible intervals of the kernel transmission function 
are plotted on a log-scale under the four different kernels in Figure S14.
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(a) β0 (b) d (c) γ (d) α

Figure S12. Superimposition of the posterior distributions of the common parameters β (a), d (b), γ (c) and 
α (d) from K1 (blue solid line), K2 (red dashed line), K3 (purple dotted line) and K4 (brown dot-dashed 
line) using the CSF data

Figure S13. Densities of the left-truncated gamma distribution at the mean posterior estimates of the
parameters under K1-K4

(a) K1 (b) K2 (c) K3 (d) K4

Figure S14. Posterior estimates of the transmission kernel functions βij under K1 (a), K2 (b), K3 (c), and 
K4 (d) on a log scale and assuming that individuals are infected at least 8 days before getting detected. 
The solid line represents the posterior median and the ribbon is the 95% credible interval for each of the four 
kernels.
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Summary statistics of the posterior estimates under the four different kernels are shown in Table S5. The
inferred common parameters of the various kernels appear to be different while the posterior distributions
of parameters of the left-truncated gamma distributions were very similar. This is not surprising since
the various models assume the same distribution for the infectious period and differ only from the kernel
transmission functions.

K1

mean sd 2.5% 50% 97.5%
β0 2.06× 10−4 1.35× 10−4 4.62× 10−5 1.74× 10−4 5.54× 10−4

γ 1.50× 10−1 7.63× 10−2 5.06× 10−2 1.36× 10−1 3.28× 10−1

τ 7.59× 10−1 2.92× 10−1 2.66× 10−1 7.30× 10−1 1.40× 100

α 4.70× 100 2.03× 100 1.92× 100 4.33× 100 9.41× 100

K2

mean sd 2.5% 50% 97.5%
β0 1.18× 10−3 1.60× 10−3 3.81× 10−5 7.25× 10−4 5.49× 10−3

γ 1.39× 10−1 6.11× 10−2 4.99× 10−2 1.29× 10−1 2.89× 10−1

d 8.30× 10−1 1.38× 100 4.08× 10−2 2.79× 10−1 5.53× 100

τ 1.84× 100 7.61× 10−1 9.41× 10−1 1.71× 100 3.80× 100

α 4.63× 100 1.73× 100 2.00× 100 4.38× 100 8.70× 100

K3

mean sd 2.5% 50% 97.5%
β0 9.07× 10−4 1.59× 10−3 4.85× 10−5 4.07× 10−4 4.86× 10−3

γ 1.57× 10−1 7.62× 10−2 5.39× 10−2 1.43× 10−1 3.43× 10−1

d 3.54× 10−1 5.85× 10−1 1.05× 10−2 1.38× 10−1 1.98× 100

α 4.88× 100 2.03× 100 2.05× 100 4.52× 100 9.80× 100

K4

mean sd 2.5% 50% 97.5%
β0 1.34× 10−3 1.41× 10−3 1.01× 10−4 9.25× 10−4 5.05× 10−3

γ 1.42× 10−1 6.19× 10−2 5.09× 10−2 1.33× 10−1 2.89× 10−1

d 2.59× 10−1 2.83× 10−1 3.50× 10−2 1.78× 10−1 1.14× 100

τ 1.61× 100 3.49× 10−1 9.96× 10−1 1.58× 100 2.38× 100

α 4.79× 100 1.84× 100 2.04× 100 4.49× 100 8.99× 100

Table S5 Posterior estimates for model parameters using kernels K1 −K4; non-informative priors and
Gamma(4, 1) prior on α, assuming that individuals are infected at least 8 days before getting detected.

The posterior distributions of p-values when fitting the CSF data and using the latent residuals method
for selecting models are plotted in Figure S15.

The p-values show greater evidence against K3 and K1 by producing a higher frequency of small values,
followed by K4. K2 is selected since it produces less evidence of disagreement with the data despite not
being ideal.

One of the advantages of using Bayesian inference on this type of datasets is the possibility of inferring
the latent variables, particularly the infection times in this context. The posterior estimates of the infection
times are summarised in the form of box plots in Figure S16 for all the 16 cases. Independent estimates
through contact tracing procedures of the infection times were carried out during control activities and we
mark those estimates in red on the box plots. Despite some of the contact tracing inferred times fall in the

Frontiers 13



Frontiers Supplementary Material

(a) K1 (b) K2 (c) K3 (d) K4

Figure S15. Posterior distributions of p-values testing the sets of posterior samples of infection-link 
residuals (ILR) for the CSF data of 16 infected cases in Norfolk (East Anglia). The kernels fitted are K1 
(a), K2 (b), K3 (c) and K4 (d).

tail of the distributions, all of them fall well within the range of our posterior estimates except for the last 
farm. Our estimates show that it is the most probable last infected farm but the contact tracing attributes a
very late infection to it. It is worth noting that we considered the first detected time as being 0, reason why 
the y-axis for infection times show negative times.

Figure S16. Distribution of the infection times as a box plot for each infected farm with the believed 
infection times through contact tracing in red. Note the re-scaling of time here where we assume that the 
first detection happens at time 0.

2.5 Final size distributions based on the CSF data

Final size distributions of the simulated epidemics based on the posterior distributions obtained under
each model are plotted in Figure S17 on a log-scale. The final size distribution is bimodal with 
some epidemic ending very quickly and others affecting a good proportion of the population with rare 
medium epidemic size.
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(a) K1 (b) K2 (c) K3 (d) K4

Figure S17. Epidemic final size distributions on a log-scale under K1, K2, K3 and K4, when using
inferred parameters from the CSF epidemic.

3 EFFECT OF THE POPULATION DENSITY ON THE KERNELS AND MODEL
SELECTION

3.1 Simulation study on low population density

Simulation studies performed as a function of the epidemic size shows that when K2 is used as baseline,

Figure S18. Proportions of correctly selecting the right model using latent residuals (LR), DIC1 and DIC2
in a simulation study using K2 as baseline and considering all four kernels

K2 and K4 are difficult to dissociate. Although the latent residuals seem to select better K2 than the two
DICs (Figure S18), the effect of the epidemic size is not clear and the rate of selecting the right kernel,
although not negligible still needs to be higher for a good level of confidence. This is due to a very low
average population density of 5× 10−5 farms per unit area for the epidemic simulations as we illustrate in
the following section.

3.2 Infection-link residuals applied to varying population densities

The shapes of K2 and K4 suggest that the two kernels would be more appropriate in the cases of diseases’
spread that are particularly local. In the simulation studies carried in this manuscript, it appears that K2
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and K4 are indissociable i.e. it is not clear if one of the two kernels is preferred over the other while it
seems to be the case in the real data application. The effect of the two kernel transmission functions as a
function of the population density is then studied. The number of individuals per unit area is first adopted
as a measure of population density. Three scenarios are considered: Firstly, the number of individuals per
unit area from the classical swine fever data is matched; followed by a ten times less dense population
and finally a ten times more dense initial population at risk. Two simulations of disease spread are carried
over each scenario with in fact not the population sizes increased but rather the areas are either reduced or
increased to match the desired number of individuals per unit area. The epidemics are simulated assuming
K2 and inference is performed on the data which consist of the removal times of the infected sites together
with the whole population locations. Model selection are performed using the latent residuals and the two
DICs defined in Section 1.4. The posterior distributions of the p-values in Figure S19 show the effect of the
population density on the dissociation of K2 and K4. More dense populations to the CSF data demonstrate
a clear difference in the kernels while less dense populations were not able to select one kernel over the
other. The single measurement of the proportions of p-values less than 5% in Table S6 simply confirms
the overall distributions conclusions that p-values are well different when the population density increases
while failing to select between the kernels in the case of small density area.

(a) less dense K2 (b) less dense K4 (c) less dense K2 (d) less dense K4

(e) same dense CSF K2 (f) same dense CSF K4 (g) same dense CSF K2 (h) same dense CSF K4

(i) more dense K2 (j) more dense K4 (k) more dense K2 (l) more dense K4

Figure S19. Distribution of p-values for selecting between K2 and K4 comparing cases of same average
number of individuals per unit area with the CSF data, 10 times less and 10 times more individuals in the
unit area on average compared to the CSF data
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Kernels 10× less dense dense as CSF 10× more dense
K2(%) 5.6 4.9 5.2 4.2 6.9 6.2
K4(%) 5.1 6.9 20.7 24.7 60.8 92.4

Table S6 Proportions of p-values less than 5% (Pr(p < 5%) in %) for selecting between K2 and K4
when comparing cases of same average number of individuals per unit area with the CSF data (middle);
10 times less (left) and 10 times more (right) individuals in the unit area on average compared to the CSF

data.
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