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quantitatively analyze the images using relevant EIT measures (EOS 5). By the definition of 

the ROI, image pixels are chosen to reflect the regional changes associated with relevant 

physiological or pathological effects. The other approach to isolate regional information from 

the images is filtering, discussed in the section “Frequency filtering” later in this EOS.  

In the most common case, ROIs are defined to assess regional ventilation. For 

example, ROIs of horizontal layers are appropriate for monitoring ventilation-related 

pathology which affects both lungs equally, and for assessing dependent vs. non-dependent 

lung behavior. ROIs that separate the left and right lungs are suitable for monitoring 

pathology likely to affect each lung differently. ROIs can also be defined to assess cardiac-

related impedance changes. The anatomical location of breathing and heart beat-related 

impedance changes has been validated to correspond to the correct anatomical locations, 

when using anatomically accurate reconstruction algorithms (1). 

 

 Geometrical ROIs 

The simplest ROIs are defined geometrically as equal horizontal and/or vertical divisions of 

the image region, as illustrated in figure E3.3 (top row). Such regions are defined by 

horizontal and vertical slices which divide the image region into equally sized rectangles. 

In cases where the physiology of interest is distributed in the anteroposterior 

direction, ROIs divide the image region with horizontal divisions. The minimum is a division 

into two regions, the anterior and the posterior (i.e., the upper and the lower in supine 

subjects). This approach has been used to calculate the ratio of anterior-to-posterior (i.e., 

upper-to-lower ventilation ratio) (2, 3), a measure originally called the "impedance ratio" (4) 

(see also EOS 5). The image region may be further divided into smaller ROIs if necessary 

(5-7). The maximum number of horizontal ROIs is the image resolution, where each 

horizontal ROI is a pixel height (typically 32 pixels for most common reconstruction 

algorithms) (8-10). This maximum vertical resolution increases the sensitivity of EIT data 

analysis for ventilation distribution monitoring (11). In figure E3.3, a division into two regions 

and into a larger numbers of regions is shown. 

A further division of ROIs is to consider the left/right division between image regions 

(3, 12). Another common type of ROIs is generated by dividing the image regions into four 

quadrants (13). 

There are a few drawbacks of horizontal ROIs defined on the global image. First, 

given the variability in thorax shape and the position of lungs within it, it is common that the 

most dependent ROIs contain only a small or no lung region. This is especially likely in 

obese patients where there is a larger layer of tissue surrounding the lungs. In this case, no 
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ventilation signal will be present in these dependent ROIs. The low signals in dependent 

ROIs can also be caused by lung collapse in these regions. One way to address this issue is 

to define the geometrical ROIs not within the whole image but only in a ROI representing 

the lungs (see the section “Lung ROIs” below). In this case, the lung ROI is first detected, 

and then horizontal or vertical geometrical divisions are identified in that region (14). In 

Figure E3.3, the top row shows the global image region and its subdivisions, while the 

bottom row shows subdivisions of the lung ROI. 

 

 

Figure E3.3. Different types of ROIs used to characterize the distribution of ventilation. The 

top row shows ROIs for the global image, while the bottom row illustrates ROIs for the 

division of the lung region only. From left to right: 1) global region, 2) anterior (upper) and 

posterior (lower) regions, 3) image quadrants (anterior right, anterior left, posterior right, 

posterior left), 4) multiple layers (six illustrated), and 5) multiple layers with left/right 

division. (Areas with oblique lines are contained within the respective ROIs.) 

 

 Lung ROIs 

As discussed above, some EIT image analysis methods require the identification of the lung 

regions (14-19). Most of the lung ROI identification methods identify lungs as regions with 

large values in functional EIT images (see also EOS 4). In these methods, the lung is the 

region in which fEIT image values are above a threshold, defined as a fraction of the 

maximum image value. Use of a smaller threshold increases the ROI size. It makes the 

identification of lung regions more complete, however, some nearby non-lung regions are 

detected as well. A larger threshold has the opposite effect. It better rejects the non-lung 

regions, but it is less able to detect all lung regions. Pulletz et al. and Becher et al. analyzed 

the influence of threshold settings for this purpose (11, 20). The definition of the ROI using 

a threshold of 20–35% of the maximum pixel values was recommended. Higher threshold 

values have been shown to obscure the differences in the degree of ventilation homogeneity 
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between ARDS patients and patients with healthy lungs (20). The impact of the type of 

functional images used to generate the lung ROIs on the quantitative analysis of ventilation 

distribution was also examined (21). Dynamic determination of threshold values is also 

possible (22). However, there is no optimal threshold value that can separate lung regions 

from other thoracic tissues. 

  

 

Figure E3.4. EIT examination of an anesthetized supine patient ventilated at different end-

expiratory pressure (PEEP) values using the PulmoVista 500 device (Dräger Medical, Lübeck, 

Germany). The two tidal images (top right) show the ventilation distribution at PEEP of 5 

and 15 cmH2O, the differential image (top left) highlights the loss (orange) and gain (blue) 

in regional ventilation between these two time points (cursor 1 and cursor 2). The lung ROIs 

identified from the two tidal images are plotted as blue (PEEP 5 cmH2O) and red (PEEP 

15 cmH2O) lung contours at the right top edge of the figure. Note that the ventral and 

dorsal boundaries at PEEP 5 are positioned above the corresponding PEEP 15 boundaries. 

 

 A further issue that needs to be taken into account when lung ROI is defined is that 

the ventilation distribution depends on the ventilator setting, for instance the end-expiratory 

pressure (PEEP). At low PEEP, ventilation occurs mainly in non-dependent regions, and at 
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high PEEP levels, ventilation shifts toward dependent regions (Figure E3.4). Thus, to 

approximate the total lung area, it is useful to combine the regions identified at low and at 

high PEEP. However, this solution is still unable to identify collapsed lung regions. To 

identify such non-ventilated lung tissue, some other approaches have been developed. 

Mirroring the lung areas from one side to the other will include collapsed regions which are 

present in one lung but not the other (23). Since perfusion may still be present in collapsed 

lung tissue, ROI definitions from the EIT perfusion signal may be added to the ventilation-

defined lung ROI (24). Given that lung size in healthy adults depends on the height (25) and 

weight, (26) built a database of lung sizes and locations in EIT images from CT images and 

correlated them with height and weight measurements. Using this database, it is possible to 

estimate the lung ROI and thorax shape in an image from a patient’s height and weight.  

The heart region is more difficult to identify than the lungs because the cardiac-

related signals are smaller, and there are cardiac-frequency contributions throughout the 

image. This means that a simple frequency filter will identify a larger region than the heart. 

Several more sophisticated techniques have been proposed (1, 16, 23, 27, 28). ROIs have 

been identified with ECG gating (29, 30) or principal component analysis (24, 31), and 

separate the heart area and the perfused lung tissue region. A common approach used by 

many of these techniques is an initial identification of the lung ROI, and then the use of this 

region to exclude areas which would otherwise be identified by cardiac-frequency filtering. 

 

 Examples of ROIs and associated waveforms 

Three typical ROI definitions for regional lung ventilation and their associated waveforms are 

illustrated in figure E3.5. In this example, a linear regression functional EIT image (fEIT) is 

shown, where colors are normalized to the maximum image value. Two divisions of the 

global fEIT image are shown. Figure E3.5 (left) shows four quadrants. Figure E3.5 (right) 

shows four anteroposterior layers with equal height. A lung ROI is shown (Figure E3.5, 

middle). Here the lung region is defined as those pixels with values above a threshold of 

20% of the maximum.  
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changes and 25 Hz for cardiac-related impedance changes. For high frequency oscillatory 

ventilation, which contributes much higher frequency signals, the scan rate of EIT should 

correspondingly larger (Figure E3.6). High scan rates are also needed for the assessment of 

rapid gas volume changes at high air-flow rates (35-41). 

 

Frequency filtering 

 

 Definition and application 

Cardiac action and ventilation occur at different rates in humans, and their EIT signals 

components can thus be discriminated using frequency filtering (29, 42, 43). The breathing 

rate (12 -16 breaths/min in a spontaneously breathing adult) is typically much lower than 

cardiac rate (60 – 90 beats/min). It is therefore possible to design a digital filter to separate 

the ventilation and cardiac activity components provided by EIT. In the simplest case, a low-

pass filter (which lets low-frequency components of a signal “pass” through while removing 

higher frequencies) identifies the ventilation signal while a high-pass filter with an opposite 

effect identifies cardiac-related information. In practice, however, a band-pass filter (which 

lets a range of frequencies pass while removing higher and lower frequencies) is used. It 

removes some low-frequency disturbances (e.g. baseline drift related to hardware or drying 

of the electrode gel) as well as high-frequency error sources (e.g. other interfering electrical 

equipment). The band-pass filters can be generated by defining the expected normal 

frequency ranges for breathing and cardiac activity. Other band-pass filters are designed 

centered around a single frequency with an appropriate bandwidth. The center frequency of 

the filter may be obtained directly from the ventilator or ECG monitor, from a human 

operator analyzing the signal spectrum or from an automated algorithm that identifies the 

highest peaks from the frequency spectrum (corresponding to the first harmonics) in the 

frequency ranges expected for ventilation or cardiac activity. 

Digital filtering can be performed in two ways. The raw EIT data can be filtered, and 

then reconstructed, or the pixel waveforms in a sequence of raw EIT images can be filtered. 

The results of both of these operations are identical when the reconstruction algorithm is 

linear, which is the case for most of the commonly used reconstruction algorithms for chest 

imaging. The digital filters can be implemented either in the time or frequency domains. The 

design of digital filters is beyond the scope of this document, but many textbooks and 

software toolboxes are available to assist in their design. In the design of digital filters, there 

are several issues, such aliasing and the effects of scan time and non-periodic signals, that 

can contribute undesired effects. They are discussed in the following paragraphs.  
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Other techniques such as ECG-gated EIT acquisition (17) and principal component 

analysis (PCA) (24) have been proposed to circumvent some of the limitations observed with 

frequency filtering. Some papers combine one of these two techniques with frequency 

filtering to achieve better separation of the ventilation and cardiac activities (24). ECG-gating 

can be performed at the hardware level where a series of EIT measurements are 

automatically triggered whenever a QRS complex is detected in the patient’s ECG. When the 

ECG is acquired simultaneously and synchronized with the EIT measurements, ECG-gating 

can also be performed by post processing the acquired EIT data to identifying those EIT 

frames where a QRS complex was synchronously detected in the ECG. Ensemble averaging 

can then be performed on ECG-gated EIT measurements to improve the signal-to-noise ratio 

(SNR) of the cardiac-related information from the EIT measurement. The same gating 

process can also be performed using the ventilator trigger instead of the QRS complex in 

order to increase the SNR of the ventilation-related information. 

 

 Aliasing 

The most important signal processing issue to consider when using digital frequency filtering 

is aliasing. Aliasing is a signal artefact in which content at one frequency in the original data 

is represented at a different frequency in the filter output. It occurs when the sampling 

frequency is not high enough for the frequency content of the signal. According to the 

Nyquist-Shannon sampling theorem, aliasing occurs when the sampling rate is less than 

twice the maximum frequency component of the signal. One special worry is that frequency 

components near the sampling frequency can appear via aliasing as low frequency artefacts 

in the image. As mentioned, EIT has a mix of spatial and temporal aliasing which is more 

complicated than that described by the Nyquist-Shannon theory (33, 34). Extra care should 

be taken when the heart rate is an exact multiple of the ventilation rate (or the vice versa, 

with high-frequency ventilation) which could occur for instance if ventilation occurs in 

neonates at e.g. 40 breaths/min and a heart rate of 120 beats/min. The cardiac frequency 

would then be contaminated with the third harmonic of the ventilation making it impossible 

to discriminate between them with frequency filtering alone. 

  

 Inadequate sample time 

Unlike the sampling frequency, a parameter that is sometimes neglected in design of data 

acquisition is the duration of sample acquisition, or sample time (T ). In cases where data 

are acquired only for a very short sample time, it is impossible to discriminate between close 

adjacent frequencies, and they will appear superposed in the spectrum. The frequency 



12 
 

resolution, or the difference between adjacent frequency bins, is given by the inverse of the 

sample time, 1/T. The frequency resolution is also the lowest frequency difference that is 

distinguishable in the signal. For example, if 30 seconds of EIT data are acquired, it will not 

be possible to distinguish frequencies which differ by 1/30 s (2 per minute), making 

ventilation frequencies of 6 and 8 breaths per minute appear identical. 

 

 Non-periodic changes  

Frequency filtering works well in simple cases where the respiratory and heart rates are well 

separated and do not vary during the whole acquisition time (in the signal processing 

literature, this is referred to as a “stationary” signal). A mechanically ventilated patient with 

a constant tidal volume (VT) and breathing rate can be considered a stationary EIT signal 

source, assuming the heart rate was also relatively constant over the period of time. During 

spontaneous breathing, the breathing rate can greatly vary and including pauses in 

breathing (e.g. sleep apnea). The heart rate might also vary, especially if the subject is 

performing tasks which include exercise. In such cases, an adaptive filtering strategy would 

be recommended, in which filters adapt over time to best match the frequencies of the heart 

and breathing activity.  

Other (patho-)physiological events that may be visible in EIT data, such as dynamic 

hyperinflation, produce non-periodic changes of impedance that might be missed if high-

pass frequency filtering alone is used, since it typically removes very slow changes. This is 

true also of changes in ventilator settings, such as PEEP or VT. Slow changes of the EIT 

signal can also occur due to hardware electronic drift, drying of the electrode gel or patient 

movement (resulting in posture or electrode position changes). Although these slow 

impedance changes are often not clinically relevant, it might be difficult in some cases to 

distinguish them from those occurring from physiological events such as the onset of 

atelectasis or pulmonary edema. 

 

Description of expected waveforms 

 

 Ventilation-related changes in EIT waveforms 

The shape of EIT waveforms is altered by any frequency filtering applied to the signals. 

Commercially available EIT devices often set filters automatically to enhance visualization of 

ventilation waveform (i.e., by low-pass filtering).  

In the case of a completely passive mechanically ventilated patient, ventilation 

impedance-time waveforms usually present a stable end-expiratory level. After an 
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Common artifacts in EIT waveforms 

 

While EIT signals contain much useful physiological information, there are many sources of 

artifacts which can corrupt the EIT waveforms. Artefacts can originate in the raw EIT data, 

or from the signal processing, where, for example, inappropriate filtering might cause 

superimposition of waveforms from different origins. A number of effects (such as body 

movement and posture change) can alter baseline end-expiratory impedance. As waveforms 

are usually calculated as relative changes to baseline, this will alter the magnitude and 

shape of the ventilation impedance waveforms. 

Changes in electrode-skin contact impedance influence the calculated waveforms. The 

electrode-skin impedance is affected by the contact force, drying of the gel or contact fluid 

and other factors. EIT system vendors provide a measure of electrode-skin contact 

impedance as a measure of signal quality. 

Possible interference with other medical devices must be taken into account in 

monitoring of intensive care patients, where electrical “noise” is produced by many other 

devices in the ICU. An overview of most common interferences encountered during EIT 

examinations in the ICU like pulsation therapy with air suspension mattresses, continuous 

cardiac output monitoring and impedance pneumography has been provided by Frerichs et 

al. along with the recommendations on EIT data analysis under these circumstances (47). 

Other devices emitting electromagnetic signals may potentially interfere with EIT 

measurements. However, overall, modern EIT devices are capable of generating high-quality 

data in the majority of experimental and clinical settings. 

 

Document preparation 

 

The first draft of this online document was prepared by Z. Zhao with collaboration of H. 

Gagnon, O. Stenqvist, T. Mauri, I. Frerichs and A. Adler. It was reviewed and approved by 

all other authors and collaborators. 
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