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EIT waveforms and regions-of-interest

This electronic online supplement (EOS 3) describes how EIT waveforms are generated from
raw EIT images and how they are affected by the main physiological processes in the chest.
The most common regions of interest (ROI) used to quantitatively analyze EIT regional
phenomena are explained, followed by the filtering procedures useful for the analysis of EIT
waveforms. Finally, we address the issues of noise and other interferences impacting EIT
waveforms. Figure E3.1 shows the sequences of all processes involved in EIT examinations

and EIT data analysis and the place of this EOS in the sequence.
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Figure E3.1. Sequence of processes involved in EIT chest examination and data analysis.
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EOS 3 (gray background) describes the EIT waveforms and regions of interest (ROI).
Abbreviations: EQS, electronic online supplement; tdEIT, time-difference EIT; ROI, region-
of-interest; CoV, center of ventilation; U/L, upper-to-lower ventilation ratio; RVD, regional

ventilation delay; R, right; L, left.

EIT waveforms
An EIT waveform is a sequence of impedance change values as a function of time,
generated online or offline, from a time series of raw EIT images. EIT waveforms can be
global or regional. The global impedance waveform is based on the sum or average of
impedance changes of all image pixels, while regional impedance waveforms are the sums
or averages of relative impedance changes within defined ROIs. Pixel waveforms originate
from the smallest “ROI"”, a single image pixel.

EIT waveforms consist of different periodic and non-periodic signals of multiple
origins (Figure E3.2). Periodic (or quasiperiodic) signals are related to mechanical and

spontaneous ventilation and cardiac action, as well as interferences from some medical



devices, such as pulsating air suspension mattresses and pacemakers. Non-periodic signals
may be caused by spontaneous or ventilator-induced ventilation maneuvers, or can result
from interferences such as body movements, changes of contact impedance over time, or

baseline changes due to EIT hardware drift.
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Figure E3.2. Example of a global impedance waveform containing periodic and non-
periodic signals during a decremental positive end-expiratory pressure (PEEP) trial in a
mechanically ventilated patient with ARDS. (The data was acquired using the PulmoVista
500 device (Drager Medical, Libeck, Germany).) Impedance changes induced by ventilation
are larger than those induced by cardiac activity. The latter can be discerned at the end-
inspiratory peaks of the EIT signal. Dashed lines at end-expiratory lung impedance values at
three decremental PEEP levels highlight the stepwise fall in end-expiratory volume. rel. AZ,

relative impedance change.

Regions of interest

A region of interest (ROI) is a selected subset of an image identified for a particular
purpose. In EIT images, ROIs have been chosen to group the image pixels which represent
regional physiological aspects. The EIT waveform in a ROI is the sum or average of the pixel
waveforms for all pixels in the ROI. Since EIT waveforms contain regional information from

various sources, it is necessary to isolate the different components of EIT signals to



quantitatively analyze the images using relevant EIT measures (EOS 5). By the definition of
the ROI, image pixels are chosen to reflect the regional changes associated with relevant
physiological or pathological effects. The other approach to isolate regional information from
the images is filtering, discussed in the section “Frequency filtering” later in this EOS.

In the most common case, ROIs are defined to assess regional ventilation. For
example, ROIs of horizontal layers are appropriate for monitoring ventilation-related
pathology which affects both lungs equally, and for assessing dependent vs. non-dependent
lung behavior. ROIs that separate the left and right lungs are suitable for monitoring
pathology likely to affect each lung differently. ROIs can also be defined to assess cardiac-
related impedance changes. The anatomical location of breathing and heart beat-related
impedance changes has been validated to correspond to the correct anatomical locations,

when using anatomically accurate reconstruction algorithms (1).

e Geometrical ROIs

The simplest ROIs are defined geometrically as equal horizontal and/or vertical divisions of
the image region, as illustrated in figure E3.3 (top row). Such regions are defined by
horizontal and vertical slices which divide the image region into equally sized rectangles.

In cases where the physiology of interest is distributed in the anteroposterior
direction, ROIs divide the image region with horizontal divisions. The minimum is a division
into two regions, the anterior and the posterior (i.e., the upper and the lower in supine
subjects). This approach has been used to calculate the ratio of anterior-to-posterior (i.e.,
upper-to-lower ventilation ratio) (2, 3), a measure originally called the "impedance ratio" (4)
(see also EOS 5). The image region may be further divided into smaller ROIs if necessary
(5-7). The maximum number of horizontal ROIs is the image resolution, where each
horizontal ROI is a pixel height (typically 32 pixels for most common reconstruction
algorithms) (8-10). This maximum vertical resolution increases the sensitivity of EIT data
analysis for ventilation distribution monitoring (11). In figure E3.3, a division into two regions
and into a larger numbers of regions is shown.

A further division of ROIs is to consider the left/right division between image regions
(3, 12). Another common type of ROls is generated by dividing the image regions into four
quadrants (13).

There are a few drawbacks of horizontal ROIs defined on the global image. First,
given the variability in thorax shape and the position of lungs within it, it is common that the
most dependent ROIs contain only a small or no lung region. This is especially likely in

obese patients where there is a larger layer of tissue surrounding the lungs. In this case, no



ventilation signal will be present in these dependent ROIs. The low signals in dependent
ROIs can also be caused by lung collapse in these regions. One way to address this issue is
to define the geometrical ROIs not within the whole image but only in a ROI representing
the lungs (see the section “Lung ROIs” below). In this case, the lung ROI is first detected,
and then horizontal or vertical geometrical divisions are identified in that region (14). In
Figure E3.3, the top row shows the global image region and its subdivisions, while the

bottom row shows subdivisions of the lung ROI.
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Figure E3.3. Different types of ROIs used to characterize the distribution of ventilation. The
top row shows ROIs for the global image, while the bottom row illustrates ROIs for the
division of the lung region only. From left to right: 1) global region, 2) anterior (upper) and
posterior (lower) regions, 3) image quadrants (anterior right, anterior left, posterior right,
posterior left), 4) multiple layers (six illustrated), and 5) multiple layers with left/right
division. (Areas with oblique lines are contained within the respective ROIs.)

e Lung ROIs

As discussed above, some EIT image analysis methods require the identification of the lung
regions (14-19). Most of the lung ROI identification methods identify lungs as regions with
large values in functional EIT images (see also EOS 4). In these methods, the lung is the
region in which fEIT image values are above a threshold, defined as a fraction of the
maximum image value. Use of a smaller threshold increases the ROI size. It makes the
identification of lung regions more complete, however, some nearby non-lung regions are
detected as well. A larger threshold has the opposite effect. It better rejects the non-lung
regions, but it is less able to detect all lung regions. Pulletz et al. and Becher et al. analyzed
the influence of threshold settings for this purpose (11, 20). The definition of the ROI using
a threshold of 20-35% of the maximum pixel values was recommended. Higher threshold

values have been shown to obscure the differences in the degree of ventilation homogeneity



between ARDS patients and patients with healthy lungs (20). The impact of the type of
functional images used to generate the lung ROIs on the quantitative analysis of ventilation
distribution was also examined (21). Dynamic determination of threshold values is also
possible (22). However, there is no optimal threshold value that can separate lung regions

from other thoracic tissues.
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Figure E3.4. EIT examination of an anesthetized supine patient ventilated at different end-
expiratory pressure (PEEP) values using the PulmoVista 500 device (Drager Medical, Libeck,
Germany). The two tidal images (top right) show the ventilation distribution at PEEP of 5
and 15 cmH,0, the differential image (top left) highlights the loss (orange) and gain (blue)
in regional ventilation between these two time points (cursor 1 and cursor 2). The lung ROIs
identified from the two tidal images are plotted as blue (PEEP 5 cmH,0) and red (PEEP
15 cmH,0) lung contours at the right top edge of the figure. Note that the ventral and
dorsal boundaries at PEEP 5 are positioned above the corresponding PEEP 15 boundaries.

A further issue that needs to be taken into account when lung ROI is defined is that
the ventilation distribution depends on the ventilator setting, for instance the end-expiratory
pressure (PEEP). At low PEEP, ventilation occurs mainly in non-dependent regions, and at



high PEEP levels, ventilation shifts toward dependent regions (Figure E3.4). Thus, to
approximate the total lung area, it is useful to combine the regions identified at low and at
high PEEP. However, this solution is still unable to identify collapsed lung regions. To
identify such non-ventilated lung tissue, some other approaches have been developed.
Mirroring the lung areas from one side to the other will include collapsed regions which are
present in one lung but not the other (23). Since perfusion may still be present in collapsed
lung tissue, ROI definitions from the EIT perfusion signal may be added to the ventilation-
defined lung ROI (24). Given that lung size in healthy adults depends on the height (25) and
weight, (26) built a database of lung sizes and locations in EIT images from CT images and
correlated them with height and weight measurements. Using this database, it is possible to
estimate the lung ROI and thorax shape in an image from a patient’s height and weight.

The heart region is more difficult to identify than the lungs because the cardiac-
related signals are smaller, and there are cardiac-frequency contributions throughout the
image. This means that a simple frequency filter will identify a larger region than the heart.
Several more sophisticated techniques have been proposed (1, 16, 23, 27, 28). ROIs have
been identified with ECG gating (29, 30) or principal component analysis (24, 31), and
separate the heart area and the perfused lung tissue region. A common approach used by
many of these techniques is an initial identification of the lung ROI, and then the use of this

region to exclude areas which would otherwise be identified by cardiac-frequency filtering.

e Examples of ROIs and associated waveforms

Three typical ROI definitions for regional lung ventilation and their associated waveforms are
illustrated in figure E3.5. In this example, a linear regression functional EIT image (fEIT) is
shown, where colors are normalized to the maximum image value. Two divisions of the
global fEIT image are shown. Figure E3.5 (left) shows four quadrants. Figure E3.5 (right)
shows four anteroposterior layers with equal height. A lung ROI is shown (Figure E3.5,
middle). Here the lung region is defined as those pixels with values above a threshold of

20% of the maximum.
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Figure E3.5. Commonly used regions of interest (ROIs) defined in an fEIT image of a
healthy volunteer during pulmonary function testing. (The raw data was acquired with the
Goe-MF II device (CareFusion, Hochberg, Germany).) ROIs from left to right are four
quadrants, lung regions with a threshold of 20% of maximum image value, four
anteroposterior layers with equal heights. The global impedance waveform (left top) is
normalized to 100%. Regional impedance waveforms and percentages represent impedance

changes within the corresponding ROIs during the forced maneuver. rel. AZ, relative
impedance changes.

EIT scan rate

e Available scan rates from typical EIT equipment

Modern medical EIT equipment offers a scan rate from 10-50 scans per second. Some
systems offer much faster rates, including an industrial system with a frame rate up to 1000
frames per second (32). Increasing the scan rate increases the temporal resolution, and
means that transient phenomena can be better resolved. Since a higher scan rate means
that each measurement must be made more quickly, higher rates may also cause a

reduction in the signal quality. For applications of prolonged monitoring, recording EIT data
at high scan rates also results in large data files.



e Scan rate requirements for typical monitoring tasks

The EIT scan rate requirements depend on the frequency of the signal components to be
analyzed. Respiratory frequency in adults and children is usually lower than 40 breaths per
minute (~0.67 Hz). Assuming a heart rate lower than 180 beats per minute (3 Hz), then,
according to the Nyquist-Shannon sampling theorem, a scan rate above 6 frames per
second should be sufficient for the sampling and separation of the respiratory and cardiac-
related signals. In practice, such as scan rate is far too low. First, there are important
features in the cardiac activity within each beat, which should be resolved. Furthermore,
classical sampling theory is not directly applicable, since EIT samples both in space and time
(measurements in an EIT scan are made sequentially (33)). The effect is to increase the

required sampling rate to avoid aliasing (34).
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Figure E3.6. Global impedance waveform (left) and fEIT image (right) acquired by the
PulmoVista 500 EIT device (Drager Medical, Liibeck, Germany) in an anesthetized supine
pig during high-frequency oscillatory ventilation. The oscillatory ventilation rate was 9 Hz
and EIT scan rate 40 Hz. Slower periodic impedance changes in the global waveform
represent the cardiac-related signal (the heart rate was 1.3 Hz). rel. AZ, relative impedance
change.

Thus, in practice, higher scan rates are recommended, in order to capture the higher
frequency details of these EIT signals. The respiratory and heart rate may vary dramatically
because lung ventilation and heart action are not strictly periodic. Additionally, diseased
lungs may have slow and fast compartments (35) and thus be ventilated inhomogeneously.
These effects increase the scan rate requirements for respiratory and cardiac-related signals.
We recommend a scan rate above 10 Hz for analyzing ventilation-related impedance
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changes and 25 Hz for cardiac-related impedance changes. For high frequency oscillatory
ventilation, which contributes much higher frequency signals, the scan rate of EIT should
correspondingly larger (Figure E3.6). High scan rates are also needed for the assessment of

rapid gas volume changes at high air-flow rates (35-41).

Frequency filtering

e Definition and application

Cardiac action and ventilation occur at different rates in humans, and their EIT signals
components can thus be discriminated using frequency filtering (29, 42, 43). The breathing
rate (12 -16 breaths/min in a spontaneously breathing adult) is typically much lower than
cardiac rate (60 — 90 beats/min). It is therefore possible to design a digital filter to separate
the ventilation and cardiac activity components provided by EIT. In the simplest case, a low-
pass filter (which lets low-frequency components of a signal “pass” through while removing
higher frequencies) identifies the ventilation signal while a high-pass filter with an opposite
effect identifies cardiac-related information. In practice, however, a band-pass filter (which
lets a range of frequencies pass while removing higher and lower frequencies) is used. It
removes some low-frequency disturbances (e.g. baseline drift related to hardware or drying
of the electrode gel) as well as high-frequency error sources (e.g. other interfering electrical
equipment). The band-pass filters can be generated by defining the expected normal
frequency ranges for breathing and cardiac activity. Other band-pass filters are designed
centered around a single frequency with an appropriate bandwidth. The center frequency of
the filter may be obtained directly from the ventilator or ECG monitor, from a human
operator analyzing the signal spectrum or from an automated algorithm that identifies the
highest peaks from the frequency spectrum (corresponding to the first harmonics) in the
frequency ranges expected for ventilation or cardiac activity.

Digital filtering can be performed in two ways. The raw EIT data can be filtered, and
then reconstructed, or the pixel waveforms in a sequence of raw EIT images can be filtered.
The results of both of these operations are identical when the reconstruction algorithm is
linear, which is the case for most of the commonly used reconstruction algorithms for chest
imaging. The digital filters can be implemented either in the time or frequency domains. The
design of digital filters is beyond the scope of this document, but many textbooks and
software toolboxes are available to assist in their design. In the design of digital filters, there
are several issues, such aliasing and the effects of scan time and non-periodic signals, that

can contribute undesired effects. They are discussed in the following paragraphs.
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Other techniques such as ECG-gated EIT acquisition (17) and principal component
analysis (PCA) (24) have been proposed to circumvent some of the limitations observed with
frequency filtering. Some papers combine one of these two techniques with frequency
filtering to achieve better separation of the ventilation and cardiac activities (24). ECG-gating
can be performed at the hardware level where a series of EIT measurements are
automatically triggered whenever a QRS complex is detected in the patient’s ECG. When the
ECG is acquired simultaneously and synchronized with the EIT measurements, ECG-gating
can also be performed by post processing the acquired EIT data to identifying those EIT
frames where a QRS complex was synchronously detected in the ECG. Ensemble averaging
can then be performed on ECG-gated EIT measurements to improve the signal-to-noise ratio
(SNR) of the cardiac-related information from the EIT measurement. The same gating
process can also be performed using the ventilator trigger instead of the QRS complex in

order to increase the SNR of the ventilation-related information.

e Aliasing

The most important signal processing issue to consider when using digital frequency filtering
is aliasing. Aliasing is a signal artefact in which content at one frequency in the original data
is represented at a different frequency in the filter output. It occurs when the sampling
frequency is not high enough for the frequency content of the signal. According to the
Nyquist-Shannon sampling theorem, aliasing occurs when the sampling rate is less than
twice the maximum frequency component of the signal. One special worry is that frequency
components near the sampling frequency can appear via aliasing as low frequency artefacts
in the image. As mentioned, EIT has a mix of spatial and temporal aliasing which is more
complicated than that described by the Nyquist-Shannon theory (33, 34). Extra care should
be taken when the heart rate is an exact multiple of the ventilation rate (or the vice versa,
with high-frequency ventilation) which could occur for instance if ventilation occurs in
neonates at e.g. 40 breaths/min and a heart rate of 120 beats/min. The cardiac frequency
would then be contaminated with the third harmonic of the ventilation making it impossible

to discriminate between them with frequency filtering alone.

¢ Inadequate sample time

Unlike the sampling frequency, a parameter that is sometimes neglected in design of data
acquisition is the duration of sample acquisition, or sample time (7). In cases where data
are acquired only for a very short sample time, it is impossible to discriminate between close

adjacent frequencies, and they will appear superposed in the spectrum. The frequency
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resolution, or the difference between adjacent frequency bins, is given by the inverse of the
sample time, 1/7. The frequency resolution is also the lowest frequency difference that is
distinguishable in the signal. For example, if 30 seconds of EIT data are acquired, it will not
be possible to distinguish frequencies which differ by 1/30 s (2 per minute), making

ventilation frequencies of 6 and 8 breaths per minute appear identical.

¢ Non-periodic changes

Frequency filtering works well in simple cases where the respiratory and heart rates are well
separated and do not vary during the whole acquisition time (in the signal processing
literature, this is referred to as a “stationary” signal). A mechanically ventilated patient with
a constant tidal volume (V1) and breathing rate can be considered a stationary EIT signal
source, assuming the heart rate was also relatively constant over the period of time. During
spontaneous breathing, the breathing rate can greatly vary and including pauses in
breathing (e.g. sleep apnea). The heart rate might also vary, especially if the subject is
performing tasks which include exercise. In such cases, an adaptive filtering strategy would
be recommended, in which filters adapt over time to best match the frequencies of the heart
and breathing activity.

Other (patho-)physiological events that may be visible in EIT data, such as dynamic
hyperinflation, produce non-periodic changes of impedance that might be missed if high-
pass frequency filtering alone is used, since it typically removes very slow changes. This is
true also of changes in ventilator settings, such as PEEP or V. Slow changes of the EIT
signal can also occur due to hardware electronic drift, drying of the electrode gel or patient
movement (resulting in posture or electrode position changes). Although these slow
impedance changes are often not clinically relevant, it might be difficult in some cases to
distinguish them from those occurring from physiological events such as the onset of

atelectasis or pulmonary edema.

Description of expected waveforms

e Ventilation-related changes in EIT waveforms
The shape of EIT waveforms is altered by any frequency filtering applied to the signals.
Commercially available EIT devices often set filters automatically to enhance visualization of
ventilation waveform (i.e., by low-pass filtering).

In the case of a completely passive mechanically ventilated patient, ventilation

impedance-time waveforms usually present a stable end-expiratory level. After an
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impedance increase during inspiration, the ventilation waveform reaches a peak value,
corresponding to end-inspiration. The waveform falls at end-expiration, and the impedance
value typically reaches the previous end-expiratory level (Figure E3.7).

There is a close correlation between global and regional Vr and global and regional
tidal impedance changes. If Vr does not change over time (e.g., during a volume-controlled
mode), the shape and dimension of each ventilation waveform will be stable, and a small
observation time would be enough to obtain clinically relevant information. On the other
hand, during pressure-controlled ventilation, changes in the peak values of global and
regional impedance waveforms could vyield clinical information on changes of global or

regional respiratory system compliance and/or airway resistance.
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Figure E3.7. EIT waveform of a passive mechanically ventilated patient acquired with the

PulmoVista 500 device (Drager Medical, Libeck, Germany). Left: Airway pressure (Paw)

(blue) and volume (red) signals obtained from the ventilator during the examination. Right:

global EIT waveform. Paw, airway pressure; rel. AZ, relative impedance change.

For spontaneously breathing patients (Figure E3.8), there is variability in the shape
and magnitude of the ventilation EIT waveform. The baseline end-expiratory impedance
level can vary over time, and variations of respiratory rate and respiratory muscle activity,
can increase or decrease end-inspiratory lung volume and, consequently, impedance. While
the shape of each deflection of the global and regional impedance waveforms appears
similar to that in controlled ventilation, time intervals and peak values are irregular. In such
cases, several minutes of observation might be needed to obtain stable and comprehensive

information.
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Figure E3.8. Global EIT waveform with ventilation-related changes in impedance obtained
in a spontaneously breathing patient (PulmoVista 500, Drager Medical, Libeck, Germany).

rel. AZ, relative impedance change.

In spontaneously breathing patients, inspiratory effort can vary ower time due to a
multitude of factors (e.g., ventilation support, arterial respiratory gas concentrations,
anxiety, body temperature, etc.) and this can lead to variations in global and regional peak
inspiratory and trough expiratory impedance values and, consequently, in the distribution of
tidal impedance changes across the imaging field. Higher peak levels at end-inspiration
represent higher air content, allowing monitoring of sighs or re-expansion of previously

collapsed regions (i.e., after atelectasis or pneumothorax resolution).

e Cardiac-related changes in EIT waveforms

The EIT signal changes induced by cardiac activity are referred to as the pulsatility. The
pulsatility component in EIT data is small compared to the ventilation signal and it is often
identified by using frequency filtering. Typically, a band pass filter is applied which rejects
the contributions at ventilation rate and it higher harmonics (Figure E3.9). The pulsatile EIT
waveform is complicated because of the propagation of blood from the heart through the
lung regions. During systole, blood from the right ventricle leaves the heart and moves into
the lungs through the pulmonary arteries. This component of blood flow stays in the EIT
field of view. Blood from the left ventricle moves through the aorta, and leaves the field of
view of a thoracic EIT electrode placement. During systole, therefore, there is an impedance
increase in the heart and an impedance decrease which propagates through the lungs
(Figure E3.8, left). When the heart rate is high, the two deflections can be superimposed in

the global signal and only one phase is evident, similar to that of ventilation. However,
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regional waveform analysis can separate these two waveforms (Figure E3.9, middle and
right).
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Figure E3.9. Pulsatile EIT waveforms. Left: global relative impedance waveform combining
heart and pulmonary perfusion-related signals. Middle: regional impedance waveform of a
single pixel in the heart region. Right: regional impedance waveform of a single pixel in the
lung region. There is a phase shift between the two latter regional waveforms. rel. AZ,
relative impedance change. (The EIT data was acquired using the PulmoVista 500 device

(Drager Medical, Libeck, Germany).)

e Origin of pulsatility in the EIT signal

While the major contribution to the pulsatile EIT signal is blood perfusion, there are many
sources affecting these signals (44). Pulsatile impedance changes are proportional to blood
volume changes and not directly to the blood flow. For example, in the extreme case of
constant blood flow or flow in a completely rigid vessel, there would be no impedance
change (and thus no pulsatility) as volume in the vessel would be constant. In the opposite
extreme, blood volume oscillation in a vessel closed by an occlusion (e.g., in the presence of
an arterial blood clot) would give an impedance change over time in absence of flow. These
extreme differences illustrate that pulsatile impedance originates in regional blood volume
changes and is not a direct measure of lung perfusion. However, the EIT pulsatile signal in
the lungs does have a major contribution from perfusion, since blood flow in the lungs
affects the impedance distribution by cyclic expansion of pulmonary blood vessels and by
inducing red blood cell alignment with the blood flow. Several /n vivo studies could show
good correlation between the pulsatile impedance waveform and perfusion (16, 28, 45, 46).
Using frequency filtering and ROI analysis, Ferrario et al discriminated heart and lung

regions in the thorax (1).
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Common artifacts in EIT waveforms

While EIT signals contain much useful physiological information, there are many sources of
artifacts which can corrupt the EIT waveforms. Artefacts can originate in the raw EIT data,
or from the signal processing, where, for example, inappropriate filtering might cause
superimposition of waveforms from different origins. A number of effects (such as body
movement and posture change) can alter baseline end-expiratory impedance. As waveforms
are usually calculated as relative changes to baseline, this will alter the magnitude and
shape of the ventilation impedance waveforms.

Changes in electrode-skin contact impedance influence the calculated waveforms. The
electrode-skin impedance is affected by the contact force, drying of the gel or contact fluid
and other factors. EIT system vendors provide a measure of electrode-skin contact
impedance as a measure of signal quality.

Possible interference with other medical devices must be taken into account in

I\\

monitoring of intensive care patients, where electrical “noise” is produced by many other
devices in the ICU. An overview of most common interferences encountered during EIT
examinations in the ICU like pulsation therapy with air suspension mattresses, continuous
cardiac output monitoring and impedance pneumography has been provided by Frerichs et
al. along with the recommendations on EIT data analysis under these circumstances (47).
Other devices emitting electromagnetic signals may potentially interfere with EIT
measurements. However, overall, modern EIT devices are capable of generating high-quality

data in the majority of experimental and clinical settings.
Document preparation
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