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Scheme:	 Glycomic	 workflow	 employed	 in	 this	 study.	 Summary	 of	 the	 Experimental	
Procedures	indicating	serial	digestion	with	PNGase	F	then	PNGase	A	followed	by	solid-phase	
extraction	 and	 labelling	 steps.	 Example	 glycans	 in	 the	 three	 different	 pools	 are	 shown;	
MALDI-TOF	 MS	 screening	 of	 PNGase	 A	 released	 pools	 resulted	 in	 detection	 of	 anionic	
glycans	only	in	the	High	Five	sample.	
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Further	information	regarding	the	glycomic	analyses	
	

	
Definition	of	the	level	of	the	glycan	structural	analysis	
	
The	goal	was	the	in-depth	analysis	of	the	N-glycomes	of	two	lepidopteran	species	and	one	
lepidopteran	 cell	 line.	 Thus	 individual	 glycan-containing	 HPLC	 fractions	 were	 subject	 to	
MALDI-TOF	 MS	 and	 MS/MS,	 a	 range	 of	 chemical	 and	 enzymatic	 treatments	 and	 (if	
appropriate)	re-chromatography.	
	
Search	parameters	and	acceptance	criteria	

a. Peak	 lists:	As	stated	in	the	methods	section:	typically	1000	shots	were	summed	for	
MS	and	3000	for	MS/MS.	Spectra	were	processed	with	the	manufacturer’s	software	
(Bruker	Flexanalysis	3.3.80)	using	the	SNAP	algorithm	with	a	signal/noise	threshold	
of	6	for	MS	(unsmoothed)	and	3	for	MS/MS	(four-times	smoothed).	

b. Search	 engine,	 database	 and	 fixed	 modifications:	 All	 glycan	 data	 were	 manually	
interpreted	and	no	search	engine	or	database	was	employed;	the	fixed	modification	
is	the	pyridylamine	label	at	the	reducing	end.	

c. Exclusion	 of	 known	 contaminants	 and	 threshold:	 All	 glycan	 data	 were	 manually	
interpreted;	 only	 peaks	 with	 an	 MS/MS	 consistent	 with	 a	 pyridylaminated	 core	
chitobiose	were	included	–	the	‘threshold’	for	inclusion	was	an	interpretable	MS/MS	
spectrum.	

d. Enzyme	 specificity:	 A	 description	 of	 the	 release	 methods	 (PNGase	 F	 followed	 by	
PNGase	 A)	 is	 given	 in	 the	 methods	 section.	 Enzymes	 used	 during	 the	 analysis	
(glycosyl	 hydrolases)	 are	 defined	 in	 the	 methods	 by	 species	 name	 and	 supplier.	
Citations	 for	 in-house	 purified	 recombinant	 enzymes	 are	 also	 given.	 As	 previous	
experience	with	normalizing	glycosidase	amounts	based	on	units	of	activity	towards	
p-nitrophenyl	sugars	reduced	digestion	efficiency,	aliquots	of	glycans	(equivalent	to	
5	 –	 50	 mV	 in	 terms	 of	 fluorescence)	 were	 incubated	 with	 0.2	 µl	 of	 the	 various	
enzyme	 preparations	 (whether	 commercial,	 desalted	 commercial	 or	 in-house	
produced)	 overnight	 (except	 for	 three	 hours	 in	 the	 case	 of	 FDL	 digests).	 These	
conditions	result	in	no	obvious	unspecific	removal	of	residues	as	defined	by	shifts	in	
mass,	MS/MS	or	retention	times,	although	steric	hindrance	in	some	glycans	leads	to	
a	 requirement	 for	 longer	 incubation	 times	 (48	hours).	Hydroflouric	 acid	 treatment	
(3µl	of	48%	HF	added	to	the	dried	glycan)	was	24	or	48	hours	on	ice	in	the	cold	room	
prior	to	drying	under	vacuum;	expected	release	of	α1,3-fucose	and	phosphodiesters,	
but	not	of	other	sugars	or	of	sulphate,	was	observed	under	these	conditions.	

e. Isobaric/isomeric	 assignments:	 For	 isomeric	 species,	elution	and/or	digestion	data	
were	used	for	the	assignment	(as	described	in	the	text).	

Glycan	or	glycoconjugate	identification	

a. Precursor	charge	and	mass/charge	 (m/z):	All	glycans	detected	were	singly-charged	
and	maximally	two	decimal	places	used	for	the	m/z	consistent	with	the	accuracy	of	
MALDI-TOF	 MS	 (see	 Supplementary	 Table);	 in	 the	 figures	 and	 due	 to	 space	
limitations,	 only	 one	 decimal	 place	 is	 indicated.	 For	 readability	 reasons,	 each	
individual	m/z	measurement	in	each	sample	is	not	listed	in	the	Supplementary	Table	
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(but	 refer	 to	 the	 individual	 Figures	 for	 example	 MS	 spectra),	 but	 previous	 data	
indicate	an	average	+0.03	Da	(+	22	ppm)	deviation	between	the	measured	and	the	
calculated	m/z	values	on	the	instrument	used.	

b. All	 assignments:	 A	 listing	 of	 all	 compositions	 is	 given	 (Supplementary	 Table)	 for	
glycans	 released	 with	 either	 PNGase	 A	 or	 PNGase	 F.	 No	 glycans	 with	 core	
difucosylation	 (as	 judged	 by	 MS/MS)	 were	 detected	 in	 the	 PNGase	 F	 digests,	
consistent	with	the	known	specificity	of	this	enzyme.	For	the	glycans	present	in	each	
pool,	 see	 the	 RP-amide-HPLC	 chromatograms	 (Figures	 1-3	 and	 Supplementary	
Figures	 1-2)	 annotated	 with	 structures	 shown	 according	 to	 the	 Standard	
Nomenclature	 for	 Glycans.	 Downwardly-	 and	 upwardly-drawn	 core	 fucose	 and	
mannose	residues	are	respectively	α1,3-	and	α1,6-linked.	

c. Modifications	 observed:	 Listed	 are	 the	m/z	 values	 for	 glycans	 carrying	 a	 reducing	
terminal	pyridylamine	group	(Supplementary	Table).	For	the	positive	mode,	the	m/z	
values	are	 for	protonated	 forms;	 in	 the	case	of	glycans	detected	 in	negative	mode	
and	 carrying	 two	 sulphate	 residues,	 the	 m/z	 for	 sodiated	 adducts	 are	 shown.	
Depending	 on	 the	 glycan	 amount	 or	 presence	 of	 buffers	 in	 exoglycosidase	
preparations,	the	relative	amounts	of	the	H+,	Na+,	K+	and	trace	Cu+	adducts	varied.	

d. Number	of	assigned	masses:	No	glycan	assignments	were	based	on	measured	mass	
only;	 all	 assignments	 are	 based	 on	 at	 least	 MS/MS	 (examples	 are	 shown	 in	 the	
Figures	 4-9	 and	 Supplementary	 Figures	 2-4),	 in	most	 cases	 corroborated	 by	 digest	
and	elution	data.			

e. Spectra:	 Representative	 annotated	 spectra	 (MS	 and	 MS/MS)	 defining	 structural	
elements	 are	 given	 in	 Figures	 4-9	 and	 Supplementary	 Figures	 2-5.		 In	 total,	 MS	
and/or	MS/MS	data	 for	some	60	of	 the	approximately	100	glycans	are	shown.	The	
overall	data	is	based	on	some	1500	MS	and	MS/MS	spectra.	Ten	‘complete’	MALDI-
TOF	MS	spectra	of	pyridylaminated	glycan	pools,	as	well	as	a	spectrum	of	an	HPLC	
fraction	 containing	 Man8GlcNAc2,	 are	 also	 submitted	 in	 mzXML	 format,	 whereby	
both	positive	and	negative	mode	spectra	are	included	for	the	anionic	pools.	

f. Structural	assignments:	As	noted	in	the	results	section,	the	typical	oligomannosidic	
structures	 are	 assigned	 based	 on	 elution	 time	 and	 fragmentation	 pattern;	 it	 is	
otherwise	 assumed	 that	 the	 glycans	 contain	 a	 trimannosyl	 core	 consistent	 with	
typical	eukaryotic	N-glycan	biosynthesis.	MALDI-TOF	MS	of	oligomannosidic	glycans	
shows	 no	 evidence	 for	 significant	 in-source	 fragmentation	 under	 the	 employed	
analysis	conditions	(see	Supplementary	Figure	3	and	Man8GlcNAc2	mzXML	file).		
The	 assignments	 of	 antennal	 and	 core	 fucose	 residues	 are	 based	 on	 RP-HPLC	
retention	 time,	 fragmentation	 pattern	 and/or	 susceptibility	 to	 digestions.	 Other	
antennal	 modifications	 (e.g.,	 fucose,	 galactose,	 glucuronic	 acid	 and	 N-
acetylgalactosamine;	 including	 type	 of	 glycosidic	 linkage)	 are	 defined	 based	 on	
digestions	 and	 fragmentation	 patterns	 with	 rechromatography	 after	 digestion	 in	
some	 cases.	 There	 is	 no	 evidence	 of	 in-source	 fragmentation	 of	 either	 neutral	
terminal	monosaccharides	(including	Lewis-type	fucosylation),	phosphorylcholine	or	
glucuronic	acid	(as	evidenced	by	this	and	previous	publications).	
The	definition	of	sulphate	is	based	on	detection	in	negative	ion	mode,	in-source	loss	
in	 positive	 ion	 mode,	 resistance	 to	 hydrofluoric	 acid	 (as	 compared	 to	 isobaric	
phosphate),	non-digestion	of	the	underlying	residue	and	(as	appropriate)	co-elution	
with	 structures	 from	 mosquito	 shown	 to	 be	 partially	 sensitive	 to	 solvolysis	 with	
methanolic	HCl.	
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Supplementary	 Figure	 1:	 PNGase	 A-digests	 of	 T.	 ni	 and	 L.	 dispar	 larvae.	 RP-amide	
chromatograms	 of	 the	 pyridylaminated	 N-glycans	 of	 lepidopteran	 larvae	 resulting	 from	
PNGase	A	digestion	of	glycopeptides	remaining	after	a	PNGase	F	digest	are	annotated	with	
proposed	 structures	 and	 the	 glucose	 units.	 The	 dominant	 glycans	 in	 these	 preparations	
represent	residual	oligosaccharides	which	were	not	released	by	PNGase	F	despite	the	lack	of	
core	 α1,3-fucose;	 thereby,	 core	 α1,3-fucosylated	 and	 α1,3/6-difucosylated	 glycans	 are	
present	in	low	amounts	(see	inset	in	lower	panel	for	relevant	linkage	annotations).	
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Supplementary	Figure	2:	Neutral	PNGase	A-released	glycans	from	High	Five	cells.	(A)	RP-
amide	chromatogram	of	the	pyridylaminated	N-glycans	of	T.	ni	High	Five	cells	resulting	from	
PNGase	 A	 digestion	 of	 glycopeptides	 (which	 remained	 after	 PNGase	 F	 digestion)	 are	
annotated	 with	 proposed	 structures	 and	 the	 glucose	 units	 (g.u.).	 (B-G)	 Positive	 mode	
MALDI-TOF	MS	of	 three	 fractions	before	and	after	diagnostic	α1,6-mannosidase	or	FDL	β-
hexosaminidase	 treatment.	 (H-M)	 Positive	 mode	 MALDI-TOF	 MS/MS	 of	 core	 α1,3-
fucosylated	 and	 α1,3/6-difucosylated	 glycans	 (only	 protonated	 forms	 were	 fragmented	
despite	the	high	abundance	of	sodiated	adducts	in	the	FDL	digest);	characteristic	for	mono-	
and	difucosylation	of	pyridylaminated	glycans	are	 the	m/z	 446	and	592	Y1	 fragment	 ions.	
The	inset	in	A	shows	the	result	of	anti-HRP	Western	blotting	and	Ponceau	S	staining	of	three	
T.	ni	cell	lines	as	well	as	of	Sf9	cells;	the	low	anti-HRP	staining	of	Sf9	extracts	is	in	accordance	
with	previous	data	indicating	minimal	core	α1,3-fucosylation	in	this	cell	line.	
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Supplementary	 Figure	 3:	 Selected	 mass	 spectra	 of	 L.	 dispar	 neutral	 PNGase	 F-released	
HPLC-fractionated	 N-glycans	 with	 or	 without	 exoglycosidase	 treatments.	 The	 depicted	
MALDI-TOF	MS	spectra	represent	the	‘full’	data	for	parts	of	Figures	4	and	5	from	the	main	
text;	the	major	structures	are	annotated	with	m/z	values	of	the	[M+H]+	ions,	in	some	cases	
also	 other	 adducts	with	 sodium	 (+22),	 potassium	 (+38)	 or	 copper	 (+62/+64),	 as	 based	 on	
retention	time	and	fragmentation	data.	Panels	A	and	B	are	spectra	of	major	oligomannosidic	
fractions	 and	 indicate	 that	 in	 source	 dissociation	 is	 absent	 in	 the	 case	 of	Man7,8,9GlcNAc2	
(see	also	mzXML	file	for	Man8GlcNAc2).	Panels	C	and	D	are	fuller-range	depictions	of	the	MS	
spectra	 in	 Figure	 4	G	 and	H	 in	 the	main	 text	 (refer	 to	 Figure	 4	 S-X	 for	MS/MS	 spectra	 of	
selection	ions	before	and	after	Aspergillus	α1,2-mannosidase	digestion).	Panels	E,	F,	G	and	
H	are	 fuller-range	depictions	of	 the	MS	spectra	 in	Figure	5	A,	B,	D	and	F	 in	 the	main	 text	
(zoomed-in	sections	of	the	spectra	are	also	shown	to	highlight	the	effects	of	almond	α1,3/4-
fucosidase	 on	 the	 glycans	 containing	 antennal	 Lewis-like	 fucose	modifications	 –	 see	 also	
changes	in	MS/MS	patterns	in	Figure	5	of	the	main	text);	no	evidence	of	unspecific	removal	
of	 core	 α1,6-fucose	 of	 the	 co-eluting	 m/z	 1503	 structure	 (m/z	 1541/1565	 as	
[M+K]+/[M+Cu]+)	was	observed,	but	some	shift	towards	sodiated	adducts	occurred.	Panels	I	
and	 J	depict	MS	spectra	of	 the	 two	neighbouring	9.5	and	10.5	g.u.	 fractions	 (hence	 some	
overlap	 in	 the	 contained	 structures);	 panel	 J	 is	 a	 fuller-range	 spectrum	 of	 that	 shown	 in	
Figure	5	C.	
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Supplementary	 Figure	 4:	 Characterisation	 of	 neutral	 and	 zwitterionic	 antennal	
modifications	of	L.	dispar	and	T.	ni	glycans.		(A-C)	MS/MS	spectra	of	Gal1Man3GlcNAc3Fuc1	
(m/z	 1500)	 before	 and	 after	 specific	Xanthomonas	α1,2/3-mannosidase	 or 	 Xanthomonas	
β1,3-galactosidase	 treatment;	 this	 isomer	 eluting	 at	 11.5	 g.u	 is	 distinct	 from	 the	
Man4GlcNAc3Fuc1	glycan	eluting	at	8.4	g.u.	(see	Figure	4	D	and	Q).	(D	and	E)	MS/MS	of	two	
isomers	of	Hex3HexNAc5Fuc1	(m/z	1744)	of	different	elution	times	isolated	from	T.	ni	larvae,	
whereby	 the	B	 ion	of	m/z	 407	 is	diagnostic	 for	a	HexdiNAc	motif;	 the	elution	 time	of	 the	
triantennary	 glycan	 corresponds	 to	 that	 of	 one	 from	mosquito	 run	 on	 the	 same	 column	
(13.5	g.u.),	but	contrasts	with	an	isomer	with	a	putative	upper	arm	β1,6-GlcNAc	as	found	in	
nematodes	 (elution	at	8.2	g.u.).	 (F)	Western	blotting	of	 three	T.	ni	 cell	 lines	as	well	as	Sf9	
cells	with	the	murine	TEPC15	antibody	and	human	C-reactive	protein,	which	both	recognise	
phosphorylcholine;	protein	loading	was	similar	as	judged	by	Ponceau	S	staining	(see	inset	in	
Supplementary	Figure	2A).	(G	and	H)	MS/MS	of	two	further	isomers	of	Hex3HexNAc4Fuc1PC1	
(m/z	1706)	with	a	biantennary	or	‘upper	arm’	pseudohybrid	structure;	(I-K)	MS/MS	of	Hex3-
4HexNAc4-5Fuc1PC1-2	glycans;	(L)	MS/MS	of	Hex3HexNAc6Fuc1PC2	(m/z	2278)	before	and	after	
(see	 inset)	C.	 elegans	HEX-4	β-N-acetylgalactosaminidase	 treatment,	 thereby	verifying	 the	
presence	 of	 two	 unsubstituted	 terminal	 GalNAc	 residues.	 Key	 B-fragments	 are	 annotated	
with	structures	and	selected	losses	yielding	Y-fragments	are	also	indicated.		
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Supplementary	 Figure	 5:	 RP-amide	 HPLC	 and	 MALDI-TOF-MS	 analysis	 of	 L.	 dispar	
sulphated	 glycans	 before	 and	 after	 glycosidase	 digestion.	 (A)	 Digestion	 of	 the	 7.5	 g.u.	
anionic	 fraction	 (solid	 arrow)	with	Xanthomonas	α1,2/3-mannosidase	 resulted	 in	 shifts	 to	
higher	 retention	 time	 (only	 ~90%	 due	 to	 steric	 effect	 in	 case	 of	m/z	 1416);	 subsequent	
bovine	 α-fucosidase	 then	 resulted	 in	 a	 lower	 retention	 time	 reflecting	 shifts	 in	m/z	 as	
judged	by	negative	(B-D)	and	positive	(E-G)	MALDI-TOF	MS.	The	original	sulphated	glycans	
are	 indicated	 on	 the	 chromatogram	 in	 grey	 and	 the	 digestion	 products	 as	 well	 as	 the	
mannosidase-resistant	m/z	2042	glycan	 (see	also	Figure	 8	M	and	 Figure	 9	 F	 and	G	 in	 the	
main	text)	in	colour.	
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Supplementary	 Figure	 6:	 Anionic	 High	 Five	 PNGase	 A-released	 glycans.	 An	 aliquot	 of	
PNGase	A-released	N-glycans	was	pyridylaminated	without	prior	solid	phase	extraction.	This	
revealed	 at	 peak	 eluting	 at	 6	 g.u.	 containing	 three	 glycans	 with	 core	 difucosylation	 and	
hexose-linked	 sulphate.	 This	 fraction	 was	 subject	 to	 treatment	 with	 either	 bovine	 α-
fucosidase	(removal	of	α1,6-fucose)	or	hydrofluoric	acid	(removal	of	α1,3-fucose)	leading	to	
shifts	 in	retention	time	(note	that	different	chromatogram	windows	are	shown)	as	well	as	
m/z	 (see	panels	on	upper	right);	original	and	product	glycans	are	annotated	together	with	
the	 relevant	positive	or	negative	mode	m/z	value	 (bold	 in	 the	 case	of	negative	 ions).	 The	
relevant	negative	mode	MS/MS	of	the	original	m/z	1359	and	1562	glycans	as	well	as	the	m/z	
1213	and	1416	HF	products	demonstrate	sulphation	of	the	core	trimannosyl	region	(panels	
on	lower	right).		
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Supplementary	 Table.	 Compositions	 and	 theoretical	 m/z	 values	 for	 pyridylaminated	
lepidopteran	 N-glycans.	 The	 ninety	 different	 compositions	 are	 of	 the	 form	 HxNyF1-2PC0-
2GlcA0-1S0-2	(i.e.,	HexxHexNAcyFuc1-2PC0-2GlcA0-1S0-2,	shown	as,	e.g.,	H4N5FPCGlcAS,	whereby	
PC	and	S	are	the	abbreviations	for	phosphorylcholine	and	sulphate),	but	do	not	take	account	
of	isomers;	single	fucose,	PC,	glucuronic	acid	or	sulphate	modifications	are	given	without	a	
number.	 The	 presence	 of	 a	 particular	 glycan	 mass	 in	 a	 sample	 is	 indicated	 by	 a	 tick.	
Theoretical	m/z	were	calculated	by	Glycoworkbench;	generally	the	observed	values	(refer	to	
individual	spectra)	are	within	0.2	mass	units.		
	
Composition	 [M+H]+	 [M-H]-	 [M-2H+Na]-	 T.	ni	 Hi	5	 L.	dispar	

H1N2F	 811.34	 		 		 ✓	 ✓	 ✓	
H2N2	 827.34	 		 		 ✓	 ✓	 ✓	
H2N2S	

	
905.28	 		 ✓	 ✓	 ✓	

H2N2F	 973.39	
	

		 ✓	 ✓	 ✓	
H3N2	 989.39	 		 		 ✓	 ✓	 ✓	
H2N2FS	 		 1051.34	 		 ✓	 ✓	 ✓	
H3N2S	 		 1067.33	 		 ✓	 ✓	 ✓	
H2N3S	 		 1108.36	 		 ✓	 ✓	 	
H2N2F2	 1119.46	 		 		 ✓	 ✓	 ✓	
H3N2F	 1135.45	 		 		 ✓	 ✓	 ✓	
H4N2	 1151.45	 		 		 ✓	 ✓	 ✓	
H3N2S2	 		 		 1169.27	 ✓	 ✓	 ✓	
H2N3F	 1176.48	 		 		 ✓	 ✓	 ✓	
H3N3	 1192.47	 		 		 ✓	 ✓	 ✓	
H3N2FS	 		 1213.39	 		 ✓	 ✓	 ✓	
H2N3FS	 		 1254.42	 		 ✓	 ✓	 ✓	
H3N3S	 		 1270.41	 		 ✓	 ✓	 ✓	
H3N2F2	 1281.51	 		 		 ✓	 ✓	 ✓	
H4N2F	 1297.50	 		 		 ✓	 ✓	 ✓	
H5N2	 1313.50	 		 		 ✓	 ✓	 ✓	
H3N2FS2	 		 		 1315.33	 ✓	 ✓	 ✓	
H3N3F	 1338.53	 		 		 ✓	 ✓	 ✓	
H4N3	 1354.52	 		 		 ✓	 ✓	 ✓	
H3N3PC	 1357.53	 		 		 ✓	 ✓	 ✓	
H3N2F2S	 	 1359.45	 	  ✓  

H3N3S2	 		 		 1372.35	 ✓	 ✓	 ✓	
H3N4	 1395.55	 		 		 ✓	 ✓	 ✓	
H3N3FS	 		 1416.47	 		 ✓	 ✓	 ✓	
H4N3S	 		 1432.47	 		 ✓	 ✓	 	
H3N3PCS	 		 1435.47	 		 ✓	 ✓	 	
H3N4S	 		 1473.49	 		 ✓	 ✓	 ✓	
H6N2	 1475.55	 		 		 ✓	 ✓	 ✓	
H3N3F2	 1484.59	 		 		 	 ✓	 	
H5N2F	 1459.56	 		 		 ✓	 ✓	 ✓	
H4N3F	 1500.58	 		 		 ✓	 ✓	 ✓	
H3N3FPC	 1503.59	 		 		 ✓	 ✓	 ✓	
H5N3	 1516.58	 		 		 ✓	 ✓	 ✓	
H3N3FS2	 		 		 1518.41	 ✓	 ✓	 ✓	
H4N3GlcA	 1530.56	 1528.54	 		 ✓	 	 ✓	
H3N4F	 1541.61	 		 		 ✓	 ✓	 ✓	
H3N4PC	 1560.61	 		 		 ✓	 ✓	 ✓	
H3N3F2S	 	 1562.53	 	  ✓  

H3N4S2	 		 		 1575.43	 ✓	 ✓	 ✓	
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Composition	 [M+H]+	 [M-H]-	 [M-2H+Na]-	 T.	ni Hi	5 L.	dispar 
H4N3FS	 		 1578.52	 		 ✓	 ✓	 ✓	
H3N3FPCS	 		 1581.53	 		 ✓	 ✓	 	
H4N3GlcAS	 		 1608.50	 		 ✓	 	 ✓	
H3N4FS	 		 1619.55	 		 ✓	 ✓	 	
H6N2F	 1621.61	 		 		 ✓	 ✓	 ✓	
H7N2	 1637.60	 		 		 ✓	 ✓	 ✓	
H3N4PCS	 		 1638.46	 		 ✓	 ✓	 	
H5N3F	 1662.64	 		 		 ✓	 ✓	 	
H4N3FPC	 1665.64	 		 		 ✓	 	 	
H4N3FGlcA	 1676.61	 1674.60	 		 ✓	 ✓	 ✓	
H3N4F2	 1687.67	 		 		 	 ✓	 ✓	
H3N4FPC	 1706.66	 		 		 ✓	 ✓	 ✓	
H3N4FS2	 		 		 1721.49	 ✓	 ✓	 	
H4N4PC	 1722.66	 		 		 ✓	 	 	
H4N4GlcA	 1733.64	 1731.62	 		 ✓	 	 	
H3N5F	 1744.69	 		 		 ✓	 ✓	 	
H4N3FGlcAS	 		 1754.56	 		 ✓	 	 ✓	
H3N5PC	 1763.69	 		 		 ✓	 	 	
H3N4F2S	 		 1765.61	 		 ✓	 ✓	 	
H4N4FS	 		 1781.60	 		 ✓	 ✓	 	
H7N2F	 1783.66	 		 		 ✓	 ✓	 	
H3N4FPCS	 		 1784.61	 		 ✓	 ✓	 ✓	
H8N2	 1799.66	 		 		 ✓	 ✓	 ✓	
H3N4PC2S	 		 1803.60	 		 	 ✓	 	
H5N3FPC	 1827.69	 		 		 ✓	 	 	
H3N5PCS	 		 1841.63	 		 ✓	 ✓	 	
H3N4F2PC	 1852.72	 		 		 ✓	 ✓	 ✓	
H4N4FPC	 1868.72	 		 		 ✓	 	 	
H3N4FPC2	 1871.72	 		 		 	 ✓	 ✓	
H4N4FGlcA	 1879.69	 1877.68	 		 ✓	 	 ✓	
H4N4PCGlcA	 1898.69	 1896.68	 		 ✓	 ✓	 ✓	
H3N5FPC	 1909.74	 		 		 ✓	 ✓	 ✓	
H3N4F2PCS	 		 1930.66	 		 	 ✓	 	
H3N4FPC2S	 		 1949.66	 		 	 ✓	 	
H9N2	 1961.71	 		 		 ✓	 ✓	 ✓	
H3N5FPCS	 		 1987.69	 		 ✓	 ✓	 ✓	
H4N4FPCGlcA	 2044.75	 2042.73	 		 ✓	 ✓	 ✓	
H3N5FPC2	 2074.80	 		 		 ✓	 	 	
H4N5FGlcA	 2082.77	 2080.76	 		 	 	 ✓	
H4N5PCGlcA	 2101.77	 2099.76	 		 	 ✓	 ✓	
H10N2	 2123.76	 		 		 ✓	 ✓	 ✓	
H4N4F2PCGlcA	 2190.81	 2188.79	 		 	 	 ✓	
H4N5FPCGlcA	 2247.83	 2245.81	 		 ✓	 ✓	 ✓	
H3N6FPC2	 2277.88	 		 		 ✓	 ✓	 ✓	
H11N2	 2285.81	 		 		 ✓	 	 	
H4N5FPCGlcAS	 		 2325.77	 		 	 	 ✓	
H12N2	 2447.69	 		 		 ✓	 	 	
H4N6FPCGlcA	 2450.91	 2448.89	 		 	 	 ✓	
H4N6FPC2GlcA	 2615.96	 2613.95	 		 	 	 ✓	
	


