
S2: Fitting power-laws in empirical data with estimators that
work for all exponents

Rudolf Hanel1, Bernat Corominas-Murtra1, Bo Liu1, Stefan Thurner1,2,3,4,

1 Section for Science of Complex Systems, Medical University of Vienna, Spitalgasse 23,
1090 Vienna, Austria
2 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
3 IIASA, Schlossplatz 1, 2361 Laxenburg, Austria
4 Complexity Science Hub Vienna, Josefstädterstrasse 39, A-1090 Vienna, Austria

¤Current Address: Section for Science of Complex Systems, CeMSIIS, Medical
University of Vienna, Spitalgasse 23, Bauteil 86, A-1090, Vienna, Austria
* stefan.thurner@meduniwien.ac.at

APPENDIX B: Using r plfit

The matlab function

function out = r_plfit(data,varargin)

implements the algorithm discussed in the main paper. The function returns a struct
out that contains information about the data, the data range, but most and for all
out.exponent returns the estimated exponent of the power-law. Whether the exponent
out.exponent is the exponent λ of the sample distribution or the exponent α of the
frequency distribution of the data depends on how
function out = r_plfit(data,varargin) gets used as explained below. In the code
the sample space Ω is equivalent to a vector z = [z1, · · · , zW ] containing W distinct
event magnitudes zi, i = 1, · · · ,W .

The variable data can be used to import data while a variable number of arguments
can be set by varargin to tell the algorithm which type of data it should handle and to
control the range of the data. By default the only argument that has to be set is data.
r_plfit filters data from data points data<=0, NaN, Inf. The data passed on to
data can be

� a vector of observations data ≡ x = [x1, · · · , xN ] (default)

� a histogram data ≡ k = [k1, · · · , kW ] of recorded event types i = 1, · · · ,W

out = r_plfit(data,varargin) can be used in three basic modes

� out = r_plfit(x) returns the estimated exponent λ of the probability
distribution given the observation x (default)

� out = r_plfit(k,’hist’) returns the estimated exponent λ of the probability
distribution given the histogram of observations k

� out = r_plfit(k) returns the estimated exponent α of the frequency
distribution given the histogram of observations k

PLOS 1/??



The third mode out = r_plfit(k) is in fact identical to the first mode
out = r_plfit(x), only that passing a histogram as sample data to the algorithm is
identical to asking how many of the W states i have been observed n times. But this is
exactly the frequency distribution of the process, which possesses a tail with exponent
α = 1 + 1/λ. Depending on the mode r_plfit returns the exponent λ or α in
out.exponent

Fitting with observations x: If we run out = r_plfit(x) without further
options r_plfit assumes by default that the data x consists of natural numbers, and
that the process samples have been sampled from the sample space
Ω = {min(x),min(x) + 1, · · · ,max(x)− 1,max)}, i.e. min(x) ≤ zi = i ≤ max(x). If this
is not the case one can either specify the data range using all W unique values
z = [z1, · · · , zW ] occurring in the data x by using the option
out = r_plfit(x,’urange’). In order to define a fit range maximal and minimal data
values taken into account can be set by
out = r_plfit(x,’urange’,’rangemin’,minval, ... ... ’rangemax’,maxval)

such that r_plfit only takes into account data in the range minval ≤ z ≤ maxval. To
control the data range individually use out = r_plfit(x,’range’,z). If the data has
been sampled from a continuous sample space, and the histogram over the unique data
is flat, i.e. each value in the data only appears once (more or less), then one can tell
r_plfit that the data is sampled from a continuous sample space by setting the option
’cdat’, i.e. by running out = r_plfit(x,’cdat’, ...). This option tells the
algorithm to use the normalization constant for continuous sample spaces and estimates
xmin = min(x) and xmax = max(x). Moreover, ’cdat’ implicitly sets the ’urange’ and
the ’nolf’ option. ’nolf’ (see below) switches off the search of the algorithm for an
optimal low frequency cut-off.

Fitting with histograms k: Using histograms k as input works in exactly the
same way as for fitting x if we want to estimate the exponent α of the frequency
distribution and use r_plfit in the out = r_plfit(k) mode. If we use r_plfit in the
out = r_plfit(k,’hist’) mode, the algorithm assumes by default that the sample
space z is given by z = [1, 2, · · · ,W ]. The option ’urange’ has no effect in this mode
and gets ignored if set. Otherwise one can again use the ’range’ property to set the
event magnitudes z (the sample space) using out = r_plfit(k,’hist’,’range’,z).
The ’minrange’ and ’maxrange’ options work in exactly the same way as before.

Dynamic low frequency cut-off: By default r_plfit(data) runs an iterative
search for an optimal low frequency cut-off that is set at a range value zi such that the
expected number of samples for zi equals the variable Nmin (default value 1, reset using
option ’Nmin’). This means the algorithm performs a low frequency cut-off for
observations x. If however maxval is smaller than the predicted cut-off then the low
frequency cut-off has no effect. One should note that in the mode out = r_plfit(k)

the low frequency cut-off mechanism effectively acts as a high frequency cut-off with
respect to the data x. One can switch this mechanism off by setting the option ’nolf’

(no low frequency cut-off).
The ’plot’ option, out = r_plfit(data,... ...,’plot’), can be used for

visualization. r_plfit plots the fit over the data in double logarithmic coordinates
(loglog plot). Using the option ’figure’ behaves like ’plot’ but explicitly opens a new
figure. ’exp_min’ can be used to specify the minimal search value for the exponents
(default is 0) and ’exp_max’ to set the maximal search value (default is 5). ’eps’ can
be used to set the precision of the implicit algorithm (default 1e− 5). Several other
options exist to control the performance of the algorithm, which all can be listed by
using r_plfit(’help’) in the command line, which prints a brief manual on the usage
of r_plfit and available options.

The struct out produced by r_plfit contains information on the parameters used

PLOS 2/??



by the ML∗ estimator. The variable out.exponent returns the estimated exponent.
r_plfit performs a Kolmogorov-Smirnov (KS) goodness of fit test (GOF) at a default
confidence level of 0.05. This level can be altered set to level using the option
r_plfit(...,’KSlevel’,level,...). The KS test has been implemented using the
built in matlab function kstest2. The flag out.KSH is 0 if the power-law hypothesis
should be accepted according to the KS GOF-test, and out.KSH is 1 if the power-law
hypothesis should be rejected. out.KSP returns the p-value of the KS GOV-test. Note
that the power-law hypothesis needs to be rejected according to the KS test if the
associated p-value, out.KSP, is smaller than the confidence level. out.KSS returns the
KS value estimated by kstest2.

However, we need to point out that the KS GOF-test is not telling us much about
whether or not the estimated data has been generated by a power-law. In fact, to
control the false rejection rate, which is what a p-value is good for, one needs to know
the p-values of the entire ML∗ estimator (see S3 File appendix C).

Using r plhistfit

If one works with binned data, e.g. histogram data counting the number of events
falling into exponentially scaled bins (log-binning), then r_plhistfit needs to be used
instead of r_plfit. The function function out = r_plhistfit(data,varargin)

like r_plfit, by default, uses only data as input and other variables can be set
optionally. data is always a histogram k that is a vector k = [k1, · · · , kW ]. Bins can be
specified by giving bin margins b = [b0, b1, · · · , bW ] such thatevents counted in ki had a
magnitude x such that bi−1 ≤ x < bi. Usage, r_plhistfit(k,’margins’,b). By
default r_plhistfit assumes that bi = i+ 1/2. Other options work similar to the ones
available for r_plfit and can be reviewed by typing r_plhistfit(’help’) in the
matlab command line.

PLOS 3/??


