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¤Current Address: Section for Science of Complex Systems, CeMSIIS, Medical
University of Vienna, Spitalgasse 23, Bauteil 86, A-1090, Vienna, Austria
* stefan.thurner@meduniwien.ac.at

APPENDIX C: The false rejection rate of power-laws

The KS goodness of fit (GOF) test is not actually testing whether the estimated data
has been generated by a power-law or not. It estimates the false rejection rate of
power-laws with respect to the estimated exponent. Since the exponent of a power-law
is measured with a finite accuracy the KS GOF-test tells you whether the estimated
exponent is acceptable rather than measuring whether the hypothesis that what we
observe is a power-law or not. To control the false rejection rate of the power-law
hypothesis, which is what a p-value is good for, one needs to know the p-values of the
entire ML∗ estimator.

Let KS be the same variable,

KS = max
i∈range

{|Fdata(i)− Fα(i)|} , (1)

that is used in the statistics of the KS GOF-test, where Fdata(i) is the cumulative
distribution-function generated from the data (the cumulative of the normalized
histogram), and Fα(i) is the cumulative distribution function with regard to the
estimated exponent α. By sampling a large number of data-sets from exact power-laws
and looking at the distribution of corresponding KS values, measuring the deviation
between the power-law with estimated exponent and the data, one obtains the p-values
of the ML∗ estimator.

We provide an algorithm r_plfit_calibrate, and r_plfit_calib_eval, which
can be used to determine the critical value KScrit such that rejecting an ML∗ estimate
with KS ≥ KScrit and accepting estimates KS < KScrit allows us to control the actual
false rejection rate of the ML∗ estimator. I.e. if we calibrate KScrit for a expected
exponent α, a given sample size, and a given confidence level, e.g. the confidence level
0.05, then the resulting value KScrit ensures that if we sample from an exact power-law
with exponent α, we will reject only 5% of all the sampled data. In contrast to what
one may expect from the KS-GOF test KScrit becomes rather large and many data sets
that would be rejected by the KS-GOF test need in fact to be accepted!

The calibration algorithm,
out1 = r_plfit_calibrate(alpha,W, Nsamples, Nrep), requires the variables
alpha, the expected exponent, W, the number of states found in the sample, Nsamples,
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Fig 1. Calibration curves for an expected exponent α = 1 and W = 100 states.
Depending on the sample-size the critical KS values are shown for confidence levels 0.01,
0.05, 0.1 and 0.2. Curves have been computed using
out1 = r plfit calibrate(α,W,Nsamples, 1000), with Nsamples = 50 : 50 : 1000, and a
function to evaluate the calibration data, out2 = r plfit calib eval(out1, p,N, 1). The
critical threshold values KScrit, of the KS parameter for a sample size N = 500 are
given by 0.7245 (confidence p = 0.01), 0.7163 (p = 0.05), and 0.7090 (p = 0.1), and
0.6994 (p = 0.2).

the a vector of sample sizes, e.g. Nsamples=(500:500:25000), and Nrep, the number
of times we sample a sample of size Nsamples from an exact power-law distribution
with exponent alpha. Typically Nrep of order 1000 suffices to get good estimates for
the critical p-values of the ML∗ estimator. After running r_plfit_calibrate, which
may take some time, one can use
out2 = r_plfit_calib_eval(out1,confidence,samplesize,plotflg) to obtain
KScrit which is returned as out2.KScrit by r_plfit_calib_eval for the confidence
level confidence and the sample-size samplesize within the range specified in
Nsamples. The flag plotflg can be used for plotting calibration curves (plotflg = 1 or
plotflg = 2) or suppressing the plot (plotflg = 0).

Figure (1) shows examples of calibration curves for α = 1 and sample sizes in the
range of N = 50 to N = 1000. It becomes obvious that the negative rejection rate is
critically controlled by large KS values (> 0.65). The maximal possible value is KS= 1.
This paints a very different picture than we might expect from the KS-GOF test, which
rejects hypothesis at much smaller values of the KS statistics. This means that
calibrating the false rejection rate of the power-law hypothesis is one thing. Whether
the estimate of α is good enough for the KS-GOF test to accept that the data has been
sampled from a power-law with exactly the estimated exponent is a totally different
question. We therefore can use the calibrated KS values to accept whether or not we
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believe data to be sampled from a power-law and we may rely on the KS goodness of fit
test whether or not to believe in the exponent we have estimated.
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