SUPPORTING INFORMATION

Photocontrol of Anion Binding Affinity to a Bis-Urea Receptor Derived from Stiff-Stilbene

Sander J. Wezenberg,* and Ben L. Feringa

Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands

Email: s.j.wezenberg@rug.nl

Table of contents

Experimental Section	
¹ H and ¹³ C NMR Spectra of new compounds	S5
¹ H NMR photoisomerization studies	S16
Quantum yield determination	S17
¹ H NMR titration experiments	S18
Job plot and titration curve analysis	S27
Geometry optimizations by DFT	S32
References	

Experimental Section

General methods and materials:

THF, toluene and CH₂Cl₂ were dried by using an MBraun solvent purification system. Dry DMSO and DMSO-d₆ were purchased from Acros Organics and were stored under N₂ over molecular sieves (4Å). The degassing of solvents was carried out by purging with N₂ for 30 min. All other chemicals were commercial products and were used as received. Flash chromatography (FC) was performed using silica gel (SiO₂) purchased from Merck (type 9385, 230-400 mesh) and thin-layer chromatography (TLC) was carried out on aluminum sheets coated with silica 60 F254 obtained from Merck; compounds were visualized with a UV lamp (254 nm) or by staining with phosphomolybdic acid (PMA). Melting points (m.p.) were determined using a Büchi-B545 capillary melting point apparatus. ¹H and ¹³C spectra were recorded on Varian Mercury-Plus 400 and Varian Mercury-Plus 600 spectrometers at 298K unless indicated otherwise. Chemical shifts (δ) are denoted in parts per million (ppm) relative to DMSO- d_6 (for ¹H detection, $\delta = 2.50$ ppm; for ¹³C detection, $\delta = 39.52$ ppm). Due to poor solubility, DMSO and H₂O peaks in the NMR spectra are larger than the compound peaks. The splitting pattern of peaks is designated as follows: s (singlet), d (doublet), t (triplet), (multiplet), br (broad), or dd (doublet of doublets). High-resolution mass spectrometry (ESI-MS) was performed on a LTQ Orbitrap XL spectrometer with ESI ionization. UV-vis spectra were recorded on Specord S600 and Hewlet-Packard HP 8543 diode arrays, equipped with a Quantum Northwest Peltier controller, in a 1 cm or 1 mm quartz cuvette. Irradiation of UV-vis samples was carried out at 20 °C using a Thorlab model M365F1 high-power LED (4.1 mW) and a Thorlab model M385F1 high-power LED (10.7 mW) positioned at a distance of 1 cm. NMR irradiation studies were performed at 20 °C with a Thorlab model M365FP1 high-power LED (15.5 mW) and a Thorlab model M385FP1 highpower LED (23.2 mW) coupled to a 600 µm optical fiber, which guided the light into the NMR tube inside the spectrometer.¹

(*E*)/(*Z*)-6,6'-dibromo-2,2',3,3'-tetrahydro-1,1'-biindenylidene [(*E*)/(*Z*)-2]:

Titanium(IV) chloride (3.30 mL, 30.0 mmol) was slowly added to zinc powder (3.93 g, 60.0 mmol) in THF (30 mL) under a N₂ atmosphere and under vigorous stirring. The solution was stirred at reflux for 2 h and cooled back to rt, after which solid 6-bromo-1-indanone (3.17 g, 15.0 mmol) was added to the black suspension. The mixture was stirred at reflux for a further 24 h, treated with a saturated aqueous NH₄Cl solution, and extracted with CHCl₃ (3 × 100

mL). The volume of the combined extracts was reduced to 30 mL and the precipitate was filtered off and air-dried to afford (*E*)-**2** (842 mg, 29%) as an off-white solid; m.p. 240.7 – 242.6 °C; ¹H NMR (400 MHz, DMSO-*d*₆, (*E*)-geometry assignment based on a NOESY spectrum): 7.68 (d, *J* = 1.8 Hz, 2H; 2 arom. H), 7.42 (dd, *J* = 8.0, 1.7 Hz, 2H; 2 arom. H), 7.33 (d, *J* = 8.0 Hz, 2H; 2 arom. H), 3.14-3.02 (m, br. 8H; 4 CH₂); too insoluble for a ¹³C NMR measurement. The filtrate was concentrated and FC (SiO₂, pentane) afforded (*Z*)-**2** (673 mg, 23%) as a white solid; m.p. 137.6 – 139.9 °C; ¹H NMR (400 MHz, DMSO-*d*₆): 8.01 (s, 2H; 2 arom. H), 7.40 (d, *J* = 8.0, 2H; 2 arom. H), 7.32 (d, *J* = 8.2 Hz, 2H; 2 arom. H), 2.95-2.89 (m, br. 4H; 2 CH₂), 2.92-2.75 (m, br. 4H; 2 CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆): 147.6, 141.8, 135.1, 130.1, 127.5, 125.0, 118.7, 34.4, 29.6.

(*E*)-2,2',3,3'-tetrahydro-(1,1'-biindenylidene)-6,6'-diamine [(*E*)-3]:

Compound (E)-2 (960 mg, 2.46 mmol), palladium(II) acetate (44 mg, 0.20 mmol), DPPF (136 mg, 0.25 mmol) and sodium tert-butoxide (473 mg, 4.92 mmol) were brought under a N₂ atmosphere in a Schlenk tube via three vacuum/N₂ cycles. Then degassed toluene (12 mL) was added, followed by benzophenone imine (1.03 mL, 6.15 mmol). The mixture was stirred at 90 °C for 20 h, cooled to rt and diluted with water (10 mL). The aqueous layer was extracted with CHCl₃ (3×25 mL) and the combined organic phases were dried over Na₂SO₄ and concentrated. FC (SiO₂, 0.1% NEt₃ in CH₂Cl₂) afforded the imine intermediate as a yellow solid, which was redissolved in THF (100 mL). A 2M aqueous HCl solution (50 mL) was added and after 1.5 h of stirring, the solution was made basic by addition of a saturated aqueous KHCO₃ solution (pH \sim 10). The mixture was extracted with EtOAc (3× 50 mL) and the combined organic phases were dried over Na₂SO₄ and concentrated. The product was precipitated in Et_2O , filtered off and air-dried to afford (*E*)-3 (503 mg, 78%) as a light-brown solid; m.p. 260 °C (decomp); ¹H NMR (400 MHz, DMSO- d_6): 6.97 (d, J = 8.0 Hz, 2H; 2 arom. H), 6.87 (d, J = 2.0 Hz, 2H; 2 arom. H), 6.45 (dd, J = 8.0, 1.9 Hz, 2H; 2 arom. H), 4.89 (s, 4H; 2 NH₂), 3.03-2.84 (m, br. 8H; 4 CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆): 147.2, 143.4, 134.7, 134.1, 124.7, 113.6, 109.8, 31.9, 29.5; HRMS (ESI) *m/z*: 263.1544 ([M +H]⁺, calcd for $C_{18}H_{19}N_2^+$: 263.1543).

(*Z*)-2,2',3,3'-tetrahydro-(1,1'-biindenylidene)-6,6'-diamine [(*Z*)-3]:

Compound (*Z*)-2 (735 mg, 1.88 mmol), palladium(II) acetate (34 mg, 0.15 mmol), DPPF (104 mg, 0.19 mmol) and sodium tert-butoxide (362 mg, 3.77 mmol) were brought under a N_2 atmosphere in a Schlenk tube via three vacuum/ N_2 cycles. Then degassed toluene (9 mL) was added, followed by benzophenone imine (0.79 mL, 4.71 mmol). The mixture was stirred at 90

°C for 16 h, cooled to rt and diluted with water (10 mL). The aqueous layer was extracted with CH₂Cl₂ (3 × 25 mL) and the combined organic phases were dried over Na₂SO₄ and concentrated. FC (SiO₂, 0.1% NEt₃ in CH₂Cl₂) afforded the imine intermediate as a yellow oil, which was redissolved in THF (20 mL). A 2M aqueous HCl solution (10 mL) was added and after 30 min of stirring, the mixture was diluted with water (10 mL) and extracted with Et₂O (4 × 10 mL). The water layer was then made basic by addition of a saturated aqueous KHCO₃ solution (pH ~ 10) and extracted with EtOAc (3× 25 mL). The combined extracts were dried over Na₂SO₄ and concentrated to afford (*Z*)-**3** (332 mg, 67%) as a light-brown solid; m.p. 92.0 – 92.9 °C; ¹H NMR (400 MHz, DMSO-*d*₆): 7.27 (d, *J* = 2.1 Hz, 2H; 2 arom. H), 6.96 (d, *J* = 8.0 Hz, 2H; 2 arom. H), 6.45 (dd, *J* = 8.0, 2.0 Hz, 2H; 2 arom. H), 4.84 (s, 4H; 2 NH₂), 2.78-2.64 (m, br. 8H; 4 CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆): 146.5, 140.5, 135.7, 134.6, 125.0, 114.2, 109.1, 34.8, 29.0; HRMS (ESI) *m/z*: 263.1543 ([M +H]⁺, calcd for C₁₈H₁₉N₂⁺: 263.1543).

(*E*)-1,1'-(2,2',3,3'-tetrahydro-(1,1'-biindenylidene)-6,6'-diyl)bis(3-phenylurea) [(*E*)-1]:

Phenyl isocyanate (66 µL, 0.60 mmol) was added to compound (*E*)-**3** (72 mg, 0.27 mmol) in CH₂Cl₂ (40 mL) under a N₂ atmosphere. The mixture was stirred at reflux for 3 d, after which the white precipitate was filtered off. The product was recrystallized from DMSO, washed vigorously with CH₂Cl₂ and air-dried to afford (*E*)-**1** (78 mg, 57%) as a beige solid; m.p. 260 °C (dec); ¹H NMR (400 MHz, DMSO-*d*₆): 8.71 (s, 2H; 2 NH), 8.63 (s, 2H; 2 NH), 7.89 (s, 2H; 2 arom. H), 7.46 (d, *J* = 8.0 Hz, 4H; 4 arom. H), 7.31-7.20 (m, 8H; 8 arom. H), 6.97 (t, *J* = 7.4 Hz, 2H; 2 arom. H), 3.15-3.01 (m, br. 8H; 4 CH₂); too insoluble for a ¹³C NMR measurement; HRMS (ESI) *m/z*: 501.2275 ([M +H]⁺, calcd for C₃₂H₂₉N₄O₂⁺: 501.2285).

(Z)-1,1'-(2,2',3,3'-tetrahydro-(1,1'-biindenylidene)-6,6'-diyl)bis(3-phenylurea) [(Z)-1]:

Phenyl isocyanate (86 µL, 0.79 mmol) was added to compound (*Z*)-**3** (103 mg, 0.39 mmol) in CH₂Cl₂ (5 mL) under a N₂ atmosphere. The solution was stirred for 16 h, after which the white precipitate was filtered off and air-dried to afford (*Z*)-**1** (137 mg, 70%) as a white solid; m.p. 340 °C (dec); ¹H NMR (400 MHz, DMSO-*d*₆): 8.74 (s, 2H; 2 NH), 8.50 (s, 2H; 2 NH), 8.11 (d, *J* = 2.1 Hz, 2H; 2 arom. H), 7.46-7.40 (m, 6H; 6 arom. H), 7.23 (d, *J* = 8.2 Hz, 2H; 2 arom. H), 7.10 (t, *J* = 7.8 Hz, 4H; 4 arom. H), 6.83 (t, *J* = 7.4 Hz, 2H; 2 arom. H), 2.93-2.75 (m, br. 8H; 4 CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆): 152.6, 141.3, 140.1, 139.8, 137.5, 134.8, 128.6, 125.1, 121.5, 118.1, 117.7, 113.6, 34.4, 29.4; HRMS (ESI) *m/z*: 501.2275 ([M +H]⁺, calcd for C₃₂H₂₉N₄O₂⁺: 501.2285).; elemental analysis calcd (%) for C₃₂H₂₈N₄O₂· $^{2}/_{5}C_{2}H_{6}SO: C 74.07$, H 5.76, N 10.53; found: C 74.01, H 5.77, N 10.51.

Figure S1. 400 MHz ¹H NMR spectrum of (E)-2 measured at 298 K in DMSO- d_6 .

Figure S2. NOESY NMR spectrum of (E)-2 measured at 298 K in DMSO- d_6 .

Figure S3. 400 MHz ¹H NMR spectrum of (Z)-2 measured at 298 K in DMSO- d_6 .

Figure S4. 100 MHz 13 C NMR spectrum of (Z)-2 measured at 298 K in DMSO- d_6 .

Figure S5. 400 MHz ¹H NMR spectrum of (E)-3 measured at 298 K in DMSO- d_6 .

Figure S6. 100 MHz 13 C NMR spectrum of (*E*)-3 measured at 298 K in DMSO- d_6 .

Figure S7. 400 MHz ¹H NMR spectrum of (Z)-3 measured at 298 K in DMSO- d_6 .

Figure S8. 100 MHz 13 C NMR spectrum of (Z)-3 measured at 298 K in DMSO- d_6 .

Figure S9. 400 MHz ¹H NMR spectrum of (E)-1 measured at 298 K in DMSO- d_6 .

Figure S10. 400 MHz ¹H NMR spectrum of (Z)-1 measured at 298 K in DMSO- d_6 .

Figure S11. 100 MHz 13 C NMR spectrum of (Z)-1 measured at 298 K in DMSO- d_6 .

¹H NMR photoisomerization studies

Figure S12. Aromatic and aliphatic region in the ¹H NMR spectrum (600 MHz, 293 K) of (*E*)-1 in degassed DMSO- d_6 (2.5 × 10⁻⁴ M) (top) and spectral changes after irradiation with 365 nm light for 1 h (middle) followed by irradiation with 385 nm light for 1 h (bottom) at 20 °C. For determination of the PSS ratios, the integrals of the NH, H_a and H_f signals were averaged giving a PSS₃₆₅ ratio (*E/Z*) of 49:51 and a PSS₃₈₅ ratio (*E/Z*) of 93:7.

Figure S13. Aromatic and aliphatic region in the ¹H NMR spectrum (600 MHz, 293 K) of a mixture of (*E*)-1 (2.5×10^{-4} M) and [Bu₄N]⁺[CH₃CO₂]⁻ (2.5×10^{-3} M) in degassed DMSO*d*₆/0.5% H₂O (top) and spectral changes after irradiation with 365 nm light for 1 h (middle) followed by irradiation with 385 nm light for 1 h (bottom) at 20 °C. For determination of the PSS ratios, the integrals of the NH, H_a and H_f signals were averaged giving a PSS₃₆₅ ratio (*E/Z*) of 48:52 and a PSS₃₈₅ ratio (*E/Z*) of 88:12.

Quantum yield determination

The photon flux of the Thorlab model F365F1 high-power LED ($\lambda_{max} = 365$ nm) was estimated by measuring the production of ferrous ions from potassium ferrioxalate.² The rate (*r*) of Fe²⁺ ion formation was: 8.81×10^{-7} M s⁻¹. Hence, the moles of photons absorbed per time unit (*Nh v/t* = moles of Fe²⁺/ ϕ *t*) in a 2 mL solution can be calculated using the reported quantum yield of ferrioxalate (ϕ = 1.21),³ which gives: 1.46×10^{-9} mol s⁻¹.

A solution of (*E*)-1 in DMSO (1 × 10⁻⁴ M) in a 1 cm quartz cuvette was irradiated at 20 °C with the Thorlab model F365F1 high-power LED. The concentration was high enough to absorb all incident light (Abs₃₆₅ \geq 2). The absorbance increase at λ = 380 nm was monitored over time by UV-vis spectroscopy and the molar absorptivities at this wavelength (ε_E = 2468.4 M⁻¹ cm⁻¹, ε_Z = 7365.5 M⁻¹ cm⁻¹) were used to calculate the concentration of (*Z*)-1. The slopes of the plots of the concentration increase versus time (Figure S12), at low conversion, represent the rate of formation (*r*). These were obtained by linear fitting to the equation y = ax +b using Origin software. The photochemical quantum yield was obtained by comparison of the rate of formation of (*Z*)-1 (*r* = 3.64 × 10⁻⁸ M s⁻¹) with the rate of Fe²⁺ formation from potassium ferrioxalate giving $\phi_{Z\to E} = 5.0 \pm 0.15\%$. The quantum yield for the 'backward' reaction is defined as: $\phi_{Z\to E} = \phi_{E\to Z} \varepsilon_E n_E/\varepsilon_Z n_Z$, where $\varepsilon_E, \varepsilon_Z$ are the molar absorptivities at λ = 365 nm (ε_E = 27945 M⁻¹ cm⁻¹, ε_Z = 16834 M⁻¹ cm⁻¹) and n_E, n_Z are the amount of (*E*)-1 and (*Z*)-1 at the photostationary state (PSS₃₆₅ *E*/*Z* = 49:51), giving $\phi_{Z\to E} = 8.0 \pm 0.23\%$.

Figure S14. Concentration of (*Z*)-1 as a function of time during $\lambda = 365$ nm irradiation of a 1 $\times 10^{-4}$ M solution (2 mL) obtained by measuring the absorbance increase at $\lambda = 380$ nm.

¹H NMR titration experiments

First, 5 mM solutions of receptors (*E*)-1 and (*Z*)-1 were prepared in DMSO- $d_6/0.5\%$ H₂O (v/v). The tetrabutylammonium anion was dissolved in the receptor solution and was present at a 50 mM concentration. The 50 mM anion solution was added stepwise to 0.5 mL of the 5 mM receptor solution and a ¹H NMR spectrum (400 MHz) was recorded after each addition.

			_n_M_		0.0 Equiv.
//		M	_n_h_	M	0.38 Equiv.
		M	_n_M	M	0.74 Equiv.
		M	_n_M	M	1.07 Equiv.
		M	_n.h	M	1.38 Equiv.
		M	_n.M	M	1.67 Equiv.
		M	_n_M		1.94 Equiv.
		M	_n.M	M	2.31 Equiv.
		M		M	2.86 Equiv.
		M			3.33 Equiv.
		M			3.75 Equiv.
	Λ	M	_n.h	M	4.44 Equiv.
	Λ	M			5.00 Equiv.
9.4 9.2 9.0 8.8 8.6 8.4	8.2 8.0 7.8 δ(ppm)	7.6 7.4	7.2 7.0	0 6.8	6.6 6.4

Addition of $[Bu_4N]^+[Cl]^-$ to (*Z*)-1:

Figure S15. ¹H NMR spectral changes (400 MHz, 293 K) in the aromatic region of (*Z*)-1 (5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O) upon the stepwise addition of [Bu₄N]⁺[Cl]⁻ (from top to bottom: 0.0, 0.38, 0.74, 1.07, 1.38, 1.67, 1.94, 2.31, 2.86, 3.33, 3.75, 4.44, 5.00 equivalents).

Addition of $[Bu_4N]^+[Br]^-$ to (Z)-1:

Figure S16. ¹H NMR spectral changes (400 MHz, 293 K) in the aromatic region of (*Z*)-1 (5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O) upon the stepwise addition of [Bu₄N]⁺[Br]⁻ (from top to bottom: 0.0, 0.38, 0.74, 1.07, 1.38, 1.94, 2.86, 3.75, 4.74 equivalents).

Addition of $[Bu_4N]^+[NO_3]^-$ to (Z)-1:

Figure S17. ¹H NMR spectral changes (400 MHz, 293 K) in the aromatic region of (*Z*)-1 (5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O) upon the stepwise addition of [Bu₄N]⁺[NO₃]⁻ (from top to bottom: 0.0, 0.38, 0.74, 1.07, 1.38, 1.67, 2.31, 2.86, 3.75, 4.44, 5.00 equivalents).

			And	0	.0 Equiv.
		M	1_nh	0.2	20 Equiv.
		M		0.3	38 Equiv.
		LN	Lin	<u>, 0.</u>	57 Equiv.
		n M	m		74 Equiv.
		LM	m	.0.9	91 Equiv.
		rnM	m	1.0	07 Equiv.
		1n M	m	1.2	23 Equiv.
		rM	w	1.3	38 Equiv.
		1	M	1.6	67 Equiv.
		LM	m	1.9	94 Equiv.
		M	nh_	2.3	31 Equiv.
		M	nh_	2.8	86 Equiv.
		M		3.7	75 Equiv.
				4.4	44 Equiv.
10.8 10.4 10.0 9.6 9.2 8.8	8.4 δ (ppm)	8.0 7.6	7.2	6.8	6.4

Addition of $[Bu_4N]^+[CH_3CO_2]^-$ to (Z)-1:

Figure S18. ¹H NMR spectral changes (400 MHz, 293 K) in the aromatic region of (*Z*)-1 $(5 \times 10^{-3} \text{ M in DMSO-} d_6/0.5\% H_2 \text{O})$ upon the stepwise addition of $[\text{Bu}_4\text{N}]^+[\text{CH}_3\text{CO}_2]^-$ (from top to bottom: 0.0, 0.20, 0.38, 0.57, 0.74, 0.91, 1.07, 1.23, 1.38, 1.67, 1.94, 2.31, 2.86, 3.75, 4.44 equivalents).

Addition of $[Bu_4N]^+[H_2PO_4]^-$ to (Z)-1:

Figure S19. ¹H NMR spectral changes (400 MHz, 293 K) in the aromatic region of (*Z*)-1 (5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O) upon the stepwise addition of [Bu₄N]⁺[H₂PO₄]⁻ (from top to bottom: 0.0, 0.20, 0.38, 0.57, 0.74, 0.91, 1.07, 1.23, 1.38, 1.67, 1.94, 2.31 equivalents).

Addition of $[Bu_4N]^+[HSO_4]^-$ to (Z)-1:

Figure S20. ¹H NMR spectral changes (400 MHz, 293 K) in the aromatic region of (*Z*)-1 $(5 \times 10^{-3} \text{ M in DMSO-} d_6/0.5\% \text{H}_2\text{O})$ upon the stepwise addition of $[\text{Bu}_4\text{N}]^+[\text{HSO}_4]^-$ (from top to bottom: 0.0, 0.38, 0.74, 1.07, 1.38, 1.67, 2.31, 2.68, 3.75, 4.44, 5.00 equivalents).

Addition of $[Bu_4N]^+[Cl]^-$ to (*E*)-1:

		\mathbb{A}			0.0 Equiv.
		M	_Mh	M	0.38 Equiv.
U		M	Mh		0.74 Equiv.
U		M		M	1.07 Equiv.
U		M	_M	M	1.38 Equiv.
		M	M		1.67 Equiv.
		M	M		1.94 Equiv.
		M	M		2.31 Equiv.
		M	M		2.86 Equiv.
		M	M		3.33 Equiv.
		M	M		3.75 Equiv.
	_^	M			4.44 Equiv.
	_^				5.00 Equiv.
9.5 9.3 9.1 8.9 8.7 8.5 8.3 8.1 δ (p	7.9 7.7 pm)	7.5	7.3 7.	1 6.9	6.7 6.5

Figure S21. ¹H NMR spectral changes (400 MHz, 293 K) in the aromatic region of (*E*)-**1** (5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O) upon the stepwise addition of [Bu₄N]⁺[Cl]⁻ (from top to bottom: 0.0, 0.38, 0.74, 1.07, 1.38, 1.67, 1.94, 2.31, 2.86, 3.33, 3.75, 4.44, 5.00 equivalents).

Addition of $[Bu_4N]^+[CH_3CO_2]^-$ to (*E*)-1:

Figure S22. ¹H NMR spectral changes (400 MHz, 293 K) in the aromatic region of (*E*)-1 $(5 \times 10^{-3} \text{ M in DMSO-} d_6/0.5\% \text{H}_2\text{O})$ upon the stepwise addition of $[\text{Bu}_4\text{N}]^+[\text{CH}_3\text{CO}_2]^-$ (from top to bottom: 0.0, 0.38, 0.74, 1.07, 1.38, 1.67, 1.94, 2.31, 2.86, 3.33, 3.75, 4.44, 5.00 equivalents).

Addition of $[Bu_4N]^+[H_2PO_4]^-$ to (*E*)-1:

Figure S23. ¹H NMR spectral changes (400 MHz, 293 K) in the aromatic region of (*E*)-1 $(5 \times 10^{-3} \text{ M in DMSO-} d_6/0.5\% \text{H}_2\text{O})$ upon the stepwise addition of $[\text{Bu}_4\text{N}]^+[\text{H}_2\text{PO}_4]^-$ (from top to bottom: 0.0, 0.38, 0.74, 1.07, 1.38, 1.67, 1.94, 2.31, 2.86, 3.33, 3.75, 4.44, 5.00 equivalents).

Job plot and titration curve analysis

Scheme S1. Schematic representation of the species and equilibria involved in the formation of a 1:1 anion/receptor complex (A) and the stepwise formation of a 2:1 anion/receptor complex (B). The stability constant of the 1:1 complex (K_{11}), 2:1 complex (K_{21}) and the stepwise constant (K_{11-21}) are shown and related to the microscopic binding constants (K_{1m} , K_{2m}). The data were fitted using HypNMR software.⁴

It should be noted that no clear distinction can be made between the ¹H NMR signals of the 1:1 and 2:1 complexes throughout the titration. In the data analysis using a 2:1 model, both urea binding sites were therefore treated as equal, i.e. $K_{1m} = K_{2m}$ (cooperativity factor $\alpha = 1$). Furthermore, the data was initially fitted to a 1:1 model to afford K_{11} , after which the stability constant of the 2:1 complex [$K_{21} = (K_{11}/2)^2$] was included.

Figure S24. Job plot analysis generated from the addition of $[Bu_4N]^+[Cl]^-$ to (*Z*)-1 indicating a 2:1 binding stoichiometry.

Figure S25. Titration curves for the addition of $[Bu_4N]^+[Cl]^-$ to (*Z*)-1 and data fitting obtained by simultaneous analysis of the urea-NH (red, blue) and arom-H (green) signals using either a 1:1 (left) or a 2:1 (right) binding model. Based on the residuals analysis, the latter binding model is more likely to be correct: $K_{1m} = 66 \text{ M}^{-1}$ (for 1:1); $K_{1m} = 33 \text{ M}^{-1}$ (for 2:1).

Figure S26. (left) Job plot analysis generated from the addition of $[Bu_4N]^+[CH_3CO_2]^-$ to (*Z*)-1 indicating 1:1 binding. (right) Titration curves and data fitting to a 1:1 model obtained by analysis of the urea-NH (red, blue) and $CH_3CO_2^-$ (purple) signals: $K_{1m} = 1.40 \times 10^3 \text{ M}^{-1}$.

Figure S27. (left) Job plot analysis generated from the addition of $[Bu_4N]^+[H_2PO_4]^-$ to (*Z*)-1 indicating 1:1 binding. (right) Titration curves and data fitting to a 1:1 model obtained by analysis of the urea-NH (red, blue) signals: $K_{1m} = 2.02 \times 10^3 \text{ M}^{-1}$.

Figure S28. (left) Job plot analysis generated from the addition of $[Bu_4N]^+[Cl]^-$ to (*E*)-1 indicating 2:1 binding. (right) Titration curves and data fitting to a 2:1 model obtained by simultaneous analysis of the urea-NH (red, blue) and arom-H (green) signals: $K_{1m} = 17 \text{ M}^{-1}$.

Figure S29. (left) Job plot analysis generated from the addition of $[Bu_4N]^+[CH_3CO_2]^-$ to (*E*)-**1** indicating 2:1 binding. (right) Titration curves and data fitting to a 2:1 model obtained by simultaneous analysis of the urea-NH (red, blue), arom-H (green) and $CH_3CO_2^-$ (purple) signals: $K_{1m} = 1.04 \times 10^2 \text{ M}^{-1}$.

Figure S30. (left) Job plot analysis generated from the addition of $[Bu_4N]^+[H_2PO_4]^-$ to (*E*)-1 indicating 2:1 binding. (right) Titration curves and data fitting to a 2:1 model obtained by simultaneous analysis of the urea-NH (red, blue) and arom-H (green) signals: $K_{1m} = 77 \text{ M}^{-1}$.

Geometry optimizations by DFT

The Gaussian 09 program⁵ was used for geometry optimizations and the calculation of energies. Initially, different input geometries were optimized at the semi-empirical PM6 level to find the global minima. Further geometry optimizations were performed at the DFT B3LYP/6-31G++(d,p) level using tight convergence criteria and using an IEFPCM DMSO solvation model. The DFT geometries were found to have zero imaginary frequencies.

Table S1. Cartesian coordinates of (Z)-1 \supset CH₃CO₂⁻.

symmetry c1

atom	Х	Y	Z
С	-0.481458000	4.584697000	-0.366837000
С	0.655949000	4.563943000	0.375700000
С	1.535310000	3.466975000	0.835860000
С	2.437834000	3.963913000	1.802106000
С	2.170430000	5.421034000	2.092233000
С	1.290556000	5.856855000	0.896109000
С	-1.398904000	3.520589000	-0.830672000
С	-2.272422000	4.049186000	-1.806835000
С	-1.948211000	5.494880000	-2.096196000
С	-1.065768000	5.899493000	-0.891000000
С	1.678336000	2.150322000	0.372767000
С	2.690959000	1.327445000	0.894436000
С	3.552418000	1.820153000	1.891628000
С	3.428096000	3.140789000	2.331618000
С	-1.596919000	2.212073000	-0.365030000

С	-2.635804000	1.426154000	-0.893824000
С	-3.466660000	1.948593000	-1.902286000
С	-3.286951000	3.262186000	-2.344530000
С	-3.980642000	-0.570203000	-0.259365000
0	-5.082295000	-0.108733000	-0.587241000
С	3.956681000	-0.705826000	0.222167000
0	5.082269000	-0.260117000	0.483633000
Ν	-2.787321000	0.111127000	-0.401772000
Ν	2.786626000	0.003807000	0.410042000
Ν	-3.801795000	-1.823413000	0.294716000
Ν	3.724333000	-1.965933000	-0.295163000
С	-7.028583000	-3.687305000	0.662409000
С	-6.580681000	-4.844605000	1.304653000
С	-5.217391000	-4.968770000	1.597583000
С	-6.145585000	-2.661161000	0.310809000
С	-4.774935000	-2.785717000	0.607084000
С	-4.325010000	-3.954794000	1.255346000
С	4.160718000	-4.104712000	-1.283623000
С	5.015492000	-5.138409000	-1.661321000
С	6.391637000	-5.045902000	-1.421802000
С	4.662041000	-2.948243000	-0.650759000
С	6.045802000	-2.855316000	-0.408938000
С	6.890805000	-3.900211000	-0.796692000
0	0.890480000	-1.919657000	-0.526051000
С	-0.050717000	-2.458176000	0.132527000
0	-0.987570000	-1.814653000	0.698216000
С	-0.082846000	-3.981855000	0.233184000
Н	4.323620000	1.178208000	2.296084000
Н	-4.258352000	1.336164000	-2.311978000
Н	3.087946000	6.010411000	2.186293000
Н	1.617454000	5.534243000	3.035087000
Н	0.544210000	6.605305000	1.175274000
Н	-2.842218000	6.117641000	-2.200922000
Н	-1.380950000	5.586297000	-3.032935000
Н	-0.291531000	6.622160000	-1.161906000
Н	-1.953610000	-0.345833000	-0.017116000
Н	1.925795000	-0.436116000	0.069820000
Н	1.922392000	6.306886000	0.116596000
Н	-1.689670000	6.370045000	-0.117199000
Н	1.046854000	1.764704000	-0.419722000
Н	4.115743000	3.521125000	3.082943000
Н	-0.988233000	1.805936000	0.435111000
Н	-3.952156000	3.665791000	-3.103905000
Н	-2.834674000	-2.067920000	0.532857000
Н	2.740476000	-2.198423000	-0.467971000
Н	-8.083035000	-3.572654000	0.425738000
Н	-7.276861000	-5.633656000	1.571941000
Н	-4.843502000	-5.858423000	2.096617000
Н	-6.504512000	-1.770914000	-0.184989000
Н	-3.269496000	-4.060987000	1.489933000

Н	3.095107000	-4.185137000	-1.479987000
Н	4.602148000	-6.017844000	-2.147122000
Н	7.058591000	-5.850074000	-1.717071000
Н	6.444144000	-1.974464000	0.073435000
Н	7.956090000	-3.810044000	-0.601678000
Н	0.893472000	-4.419920000	0.016601000
Н	-0.802482000	-4.368311000	-0.498356000
Н	-0.420179000	-4.296487000	1.224253000

Sum of electronic and zero-point Energies= -1834.007803

Table S2. Cartesian coordinates of (Z)-1 \supset H₂PO₄⁻.

symmetry c1

atom	Х	Y	Z
С	0.591779000	4.700275000	0.390979000
С	-0.531371000	4.709178000	-0.372753000
С	-1.432631000	3.638013000	-0.852481000
С	-2.289913000	4.160919000	-1.846146000
С	-1.964727000	5.606502000	-2.134011000
С	-1.118351000	6.019103000	-0.906215000
С	1.485163000	3.616257000	0.855623000
С	2.358853000	4.122748000	1.843423000
С	2.050804000	5.568818000	2.147079000
С	1.193185000	6.000014000	0.933629000
С	-1.638667000	2.332642000	-0.380430000
С	-2.676594000	1.548569000	-0.914719000

С	-3.487878000	2.063726000	-1.942626000
С	-3.296063000	3.371697000	-2.395321000
С	1.670844000	2.311439000	0.373713000
С	2.705190000	1.512589000	0.891884000
С	3.535719000	2.012670000	1.911640000
С	3.363777000	3.319653000	2.374875000
С	4.057638000	-0.468721000	0.221345000
0	5.159673000	-0.000232000	0.535619000
С	-4.062911000	-0.420927000	-0.277591000
0	-5.150814000	0.050675000	-0.633548000
Ν	2.861053000	0.205852000	0.378398000
Ν	-2.856341000	0.242845000	-0.406759000
Ν	3.876760000	-1.721751000	-0.329575000
Ν	-3.909706000	-1.667127000	0.296264000
С	7.107456000	-3.553908000	-0.800968000
С	6.647637000	-4.724579000	-1.409712000
С	5.275219000	-4.868402000	-1.645566000
С	6.227164000	-2.533382000	-0.427001000
С	4.847416000	-2.678457000	-0.665157000
С	4.385164000	-3.860747000	-1.279659000
С	-4.467748000	-3.786550000	1.262371000
С	-5.377197000	-4.783732000	1.608751000
С	-6.737950000	-4.638373000	1.313677000
С	-4.898312000	-2.613438000	0.608500000
С	-6.266265000	-2.466923000	0.310629000
С	-7.166326000	-3.476936000	0.665598000
Н	-4.276639000	1.451225000	-2.357494000
Н	4.322199000	1.388441000	2.313672000
Н	-2.858289000	6.224493000	-2.266498000
Н	-1.371132000	5.696553000	-3.054456000
Н	-0.346668000	6.752222000	-1.155202000
Н	2.951670000	6.177394000	2.273585000
Н	1.469907000	5.656276000	3.075819000
Н	0.428716000	6.734798000	1.199577000
Н	2.032180000	-0.251280000	-0.006764000
Н	-2.044320000	-0.214870000	0.012028000
Н	-1.768283000	6.478744000	-0.147384000
Н	1.837058000	6.464684000	0.172743000
Н	-1.039997000	1.931658000	0.430542000
Н	-3.947737000	3.770315000	-3.168873000
Н	1.058308000	1.921590000	-0.432225000
Н	4.028779000	3.706407000	3.143082000
Н	2.905543000	-1.974482000	-0.535637000
Н	-2.948765000	-1.921157000	0.545258000
Н	8.169211000	-3.424010000	-0.609161000
Н	7.341833000	-5.509031000	-1.695068000
Н	4.892359000	-5.768846000	-2.117681000
Н	6.594842000	-1.632848000	0.043228000
Н	3.322157000	-3.982050000	-1.469346000
Н	-3.414098000	-3.909099000	1.497742000

Н	-5.018677000	-5.677259000	2.112093000
Н	-7.447250000	-5.414668000	1.583799000
Н	-6.609698000	-1.573258000	-0.190035000
Н	-8.218548000	-3.346085000	0.427468000
0	-1.106332000	-1.741208000	0.803339000
Ρ	-0.012590000	-2.511065000	0.089308000
0	1.048264000	-1.785486000	-0.715119000
0	-0.788336000	-3.598306000	-0.865364000
0	0.807886000	-3.439292000	1.166686000
Н	-0.183976000	-4.026736000	-1.490439000
Н	0.222453000	-3.809524000	1.844659000

Sum of electronic and zero-point Energies= -2249.117127

References

- Feldmeier, C.; Bartling, H.; Riedle, E. Gschwind, R. M. J. Magn. Reson. 2013, 232, 39-44.
- (2) Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M. T. *Handbook of Photochemistry, Third Edition.*, CRC Press, Boca Raton, Fl, **2006**.
- (3) Hatchard, C. G.; Parker, C. A. Proc. Roy. Soc. 1956, A235, 518-536.
- (4) C. Frassineti, S. Ghelli, P. Gans, A. Sabatini, M. S. Moruzzi and A. Vacca, *Anal. Biochem.* 1995, 231, 374-382.
- (5) Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, Keith, T.; V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2013**.